
RAA 2021 Vol. 21 No. 3, 54(9pp) doi: 10.1088/1674-4527/21/3/54
c© 2021 National Astronomical Observatories, CAS and IOP Publishing Ltd.

http://www.raa-journal.org http://iopscience.iop.org/raa

Research in
Astronomy and
Astrophysics

NBFTP: a dedicated data transfer system for remote astronomical observation
at Dome A ⋆

Si-Yuan Huang (�g�)1, Ce Yu (uü)1,2, Chao Sun (��)1,2⋆⋆, Yi Hu (�Â)3⋆⋆, Zhaohui Shang

(û�z)3,4⋆⋆⋆, Bin Ma (êR)3⋆⋆⋆, Ming Che (�²)1 and Xiao-Xiao Lu (¶��)1

1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China;sch@tju.edu.cn
2 NAOC-TJU Joint Research Center in Astro-Informatic, Tianjin 300350, China
3 National Astronomical Observatories, Chinese Academy of Science, Beijing 100101, China;huyi.naoc@gmail.com
4 Tianjin Normal University, Tianjin 300387, China

Received 2020 April 29; accepted 2020 August 17

Abstract Dome A, Antarctica, has been thought to be one of the best astronomical sites on the Earth for
decades. Since it was first visited by astronomers in 2008, dozens of facilities for astronomical observation
and site testing were deployed. Due to its special geographical location, the data and message exchange
between Dome A and the domestic control center could only depend on Iridium. Because the link bandwidth
of Iridium is extremely limited, the network traffic cost is quite expensive and the network is rather unstable,
the commonly used data transfer tools, such as rsync and scp,are not suitable in this case. In this paper,
we design and implement a data transfer tool called NBFTP (narrow bandwidth file transfer protocol) for
the astronomical observation of Dome A. NBFTP uses a uniforminterface to arrange all types of data and
matches specific transmission schemes for different data types according to rules. Break-point resuming and
extensibility functions are also implemented. Our experimental results show that NBFTP consumes 60%
less network traffic than rsync when detecting the data pending to be transferred. When transferring small
files of 1KB, the network traffic consumption of NBFTP is 40% less than rsync. However, as the file size
increases, the network traffic consumption of NBFTP tends toapproach rsync, but it is still smaller than
rsync.

Key words: Astronomical instrumentation, methods and techniques — techniques: miscellaneous —
telescopes — site testing

1 INTRODUCTION

Astronomical observation always needs the most strict
requirements of the experimental environment. Modern
astronomical sites are usually selected as the most
isolated places on the Earth, to get rid of the influence
of human activities and obtain supreme observational
conditions. For example, Dome A, the highest point
on the Antarctic inland ice cap, is potentially one of
the best astronomical observation sites on the planet
(Saunders et al. 2009; Hu et al. 2014, 2019). With its

⋆ The source code has been uploaded on gitee (https://
gitee.com/AstroTJU/NBFTP) and china-vo (https://code.
china-vo.org/ast3/nbftp).
⋆⋆ Corresponding authors

⋆⋆⋆ The ORCIDs of Yi Hu, Zhaohui Shang and Bin Ma are
0000-0003-3317-4771, 0000-0002-6796-124X and
0000-0002-6077-6287, respectively.

extremely stable atmosphere and long polar nights, the site
condition at Dome A could even be comparable to that in
the space. The 21st Chinese National Antarctic Research
Expedition (CHINARE) reached Dome A for the first time
in 2005, and since the 24th CHINARE reached Dome A
for the second time, dozens of facilities for astronomical
observation and site testing were deployed (Yuan et al.
2008, 2010; Bonner et al. 2010; Hu et al. 2014; Shi et al.
2016; Ma et al. 2018; Shang et al. 2018).

However, because of the harsh environment and
logistical difficulties, Dome A is still a completely
unattended site, which means that there will be no human
on-site to operate any facilities after the expedition team
leaves at the end of every January (Hu et al. 2019). This
situation will still be true for the foreseeable future.
Although the facilities installed at Dome A were designed

https://gitee.com/AstroTJU/NBFTP
https://gitee.com/AstroTJU/NBFTP
https://code.china-vo.org/ast3/nbftp
https://code.china-vo.org/ast3/nbftp
0000-0003-3317-4771
0000-0002-6796-124X
0000-0002-6077-6287


54–2 S. Huang et al.: NBFTP: A Dedicated Data Transfer System

to operate as automatically as possible (Hu et al. 2016), it
is still inevitable to transmit data back and forth between
Dome A and the domestic control center (DCC). Thus, an
effective method of data transfer is quite crucial for safely
operating the remote astronomical observatory at Dome A
(Zhang et al. 2016; Kubánek 2016).

As a fast and versatile incremental file transfer tool,
rsync is probably the best choice for data transfer under
various network conditions (Shial et al. 2015). Rsync is
known for its delta transfer algorithm. It firstly compares
the files in both source and target, and then only sends
the differences between them so that it reduces the amount
of data to transfer1. However, this tool does not achieve
network traffic economization in all the cases, because it
does not truly implement the network traffic control. When
transferring small files, rsync performs unsatisfactorilydue
to the overhead of the file comparison and incremental
calculations. It will also consume extra network traffic
when checking the differences directories between the
source and target.

Located in the innermost of the continent, Dome A has
no other Internet access except Iridium (Lawrence et al.
2008; Jia et al. 2018). The power and Iridium connection
for instruments are provided by an automated observatory
platform PLATO-A (Ashley et al. 2010). Because the
Iridium network communication is not only unstable but
also very expensive (Shang et al. 2012), maximizing the
utility of the Iridium channel is quite important for us
to operate our observatory at Dome A. Most of the data
transferred from Dome A to the DCC are system log
files, stamp images, site-testing data, and alarm messages
(Hu et al. 2016). The typical size of these data is around
10 KB. As we showed above, rsync will use the Iridium
channel inefficiently because of its severe overhead.
Hence, it is urgent to develop a new tool for transferring
data, especially for files with a small size under Iridium
network communication.

Therefore, we design NBFTP, which is an intelligent
data transfer system that achieves fine-grained network
traffic control. The NBFTP system is composed of a sender
at Dome A and a receiver at the DCC. It can effectively
transmit the data from the observatory at Dome A to the
DCC with user-provided priority.

The rest of this article is organized as follows. We
show the related works on data transfer in Section2. We
then describe the architecture of NBFTP and its detailed
information on modules and algorithms in Section3. We
show the performance of NBFTP and compare NBFTP
with other file transfer tools in Section4. In the final
section, we summarize and discuss future work.

1 https://linux.die.net/man/1/rsync

2 RELATED WORK

Data transfer is one of the basic functions of computer
networks. There are mature file transfer protocols such
as File Transfer Protocol (FTP) and SSH File Transfer
Protocol (SFTP), and most Linux distributions have
integrated practical tools, such as rcp, scp, rsync, etc.

FTP is a standard network protocol for transfer files
between clients and servers on a computer network2.
The main advantage of FTP is that it comes with the
most commonly used operating systems, including most
Linux distributions and Microsoft Windows. Most FTP-
based tools support resuming from break-points. SFTP
is a component of Secure Shell (SSH), which supports
encrypted file transfer and resuming3. The encryption and
decryption technology of SFTP makes it more secure than
FTP, but the process also creates another kind of overhead.
Besides, file transfer based on FTP or SFTP requires
interactive operations even when used in automated scripts.
These interaction operations will cause extra network
traffic.

As a remote file copy tool, rcp can transfer files or
directories between different hosts4. Scp encrypted with
SSH is a more secure version of rcp5. Both tools copy all
the files in the source directory, including those that have
been transferred. Thus, they may introduce unnecessary
traffic consumption. Besides, neither tools support break-
point resuming.

Rsync is designed to synchronize file directories
between different hosts6. Its incremental transfer algorithm
reduces the amount of data transmitted over the network
by only sending the different parts between the source
files and the existing files in the destination. This approach
makes it consume less network traffic than rcp and
scp do. Unlike rcp and scp, rsync supports break-point
resuming. However, the incremental algorithm of rsync
is not suitable for the situation where the number of
files keeps increasing. Every time rsync is called, it will
check all subdirectories and files in the directories at
both ends, causing unnecessary overheads. Rsync supports
resuming by storing extra information in a temporary file.
Therefore, it needs to perform additional file operations
and information calculations every time it transfers a file.
Such a resuming procedure may decrease the transfer
efficiency.

2 https://en.wikipedia.org/wiki/
File_Transfer_Protocol

3 https://en.wikipedia.org/wiki/
SSH_File_Transfer_Protocol

4 https://en.wikipedia.org/wiki/
Berkeley_r-commands

5 https://en.wikipedia.org/wiki/Secure_copy
6 https://linux.die.net/man/1/rsync

https://linux.die.net/man/1/rsync
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Berkeley_r-commands
https://en.wikipedia.org/wiki/Berkeley_r-commands
https://en.wikipedia.org/wiki/Secure_copy
https://linux.die.net/man/1/rsync


S. Huang et al.: NBFTP: A Dedicated Data Transfer System 54–3

3 TRAFFIC-SAVING DATA TRANSFER SYSTEM

3.1 NBFTP Software Architecture

Our work focuses on transferring data from Dome A to
the DCC stably and cost-effectively. As shown in Figure1,
NBFTP consists of a sender and a receiver. The sender of
NBFTP is deployed at the Dome A. It includes a Monitor
Module (MM), a Task Module (TM), and a Data Module
(DM). The receiver is deployed at the DCC, which mainly
includes a TM, a DM, and an Expansion Module (EM).
It is loosely-coupled between the components which can
effectively reduce the scale and complexity of the system.
Although it is the sender that is transferring data to the
receiver, the receiver can also transfer files to the sender.

Once the MM detects a file to transfer, it will add a
transmission task to the task queue. The TM is responsible
for managing the task queue, such as sending and receiving
data, sorting the tasks in the queues according to priorities.
We will interpret task types in Section3.2. The DM
provides a series of functions for packing data to or
extracting from the buffer. The EM is used by the receiver
to complete other functions using shell commands after
receiving a file or message, such as sending mail and
importing the received data to a database.

Overall, the main functions of NBFTP include:

– Optimizing data size/actual network traffic. In the
TM, NBFTP intelligently matches the throttling
transmission scheme according to the size of the data
to be transmitted and assigns transmission tasks.

– Resuming break-points. In the TM, all tasks will be
tracked to the block level. Only after each block
is successfully transmitted can the next block be
transferred. So that even after disconnection, the last
position of the successful transmission can be found
to start again.

– Extensibility functions. In the EM, we can start the
automatic transaction processing, such as sending an
email, by modifying the configuration file of the
domestic receiver.

NBFTP is a tool for transferring data between Dome
A and the DCC. It is an open-source project running on
the Linux platform, coded in C++, with the following
dependencies: GNU C Library, GNU GLIB 2.0, C Shell,
Gamin. There are two programs of the nbftp and nbftp-
server in our project. The nbftp-server is a daemon process,
which starts immediately after the operating system
is booted up. Given different configuration parameters,
nbftp-server can act as either the sender or the receiver.
Users can execute nbftp commands, which is the client
of nbftp-server, instead of directly manipulating the file
directory. The operations of sending data and receiving

data are different. The specific instructions and their
meanings are tabulated in Tables1 and2.

3.2 Transfer Protocol

The TM of NBFTP is carefully designed to use unified in-
terfaces to arrange all types of data, corresponding to eight
task types: SMALL FILE, LARGE FILE, MESSAGE,
LASTPOS, COMPLETE SIG, CHECK PASS, CHECK
FAILED and REPLY. The first three types are used to
transfer small files, large files, and messages, while the
latter five are used for transmitting feedback information
to ensure the stability of the transmission. During a
transmission process, each task of the sender will be
packaged into one or more RawData segments, which are
the smallest units of transmission. Then the receiver will
resemble it. Different tasks follow different packing rules.
The communication protocol of this transmission system
is tabulated in Table3.

For all the types of tasks, the first byte in NBFTP stores
the type name, and the following four bytes store the ID
of the task. The subsequent information will be different
and correspond one-to-one in Table3. For instance, when
transferring a small size file, the TM of the sender uses
only one RawData segment. It firstly sets the task type
as SMALL FILE in the first byte and assigns a task ID.
Then the TM calculates the MD5 checksum of the file and
fills the value into the 16-byte MD5 field of the segment.
Finally, it fills the length of the file name, the file name, the
size of the file, and the file content into the segment. After
these steps, the TM sends the RawData segment to the
receiver. The TM of the receiver receives and extracts the
segment, writes the content to a new file. Then it calculates
the MD5 of the file and compares it with that in the MD5
field. If the file check is successful, the TM acknowledges a
CHECK PASS segment to the sender to signify the success
of transmission. Otherwise, it acknowledges a CHECK
FAILED segment to the sender to ask for retransmitting.

It is worth mentioning that sending LARGE FILE
tasks uses two types of RawData. The former is the
LARGE FILE (begin), which contains metadata for large
files, marking the beginning position of a large file chunked
transfer task. Large files are divided into blocks, and each
block uses the latter type of RawData named LARGE FILE
(part), which is then transferred in turn. If the receiver TM
receives a LARGE FILE (begin) or LARGE FILE (part)
other than the last segment, it acknowledges a REPLY
segment to the sender.

The five kinds of feedback information are sent by
the receiver to indicate the current data reception status
to the sender. Each of them uses 4 bytes to store the
associated task ID. In particular, the LASTPOS uses 4



54–4 S. Huang et al.: NBFTP: A Dedicated Data Transfer System

Fig. 1 The software architecture of NBFTP.

Table 1 Operations of Sending Data

Instruction Meaning Remark

nbftp push FILENAME [PRIORITY] Submit a file to transfer The default priority is 5
nbftp mail MESSAGE Submit a message to transfer The default priority is 3
nbftp pull TASKID Cancel file transfer task
nbftp pull all Cancel all transfer tasks
nbftp pending List pending files

Table 2 Operations of Receiving Data

Instruction Meaning Remark

nbftp list List currently received files
nbftp get TASKID Save the file to the current directory or showmessage
nbftp delete TASKID Delete the reception record
nbftp delete all Delete all reception records

bytes to show the current transmission position, which can
help to implement the break-point resuming function.

3.3 Break-point Resuming Function

Since the Iridium network communication is extremely un-
stable, the packet loss must happen frequently. Therefore,
any file transfer tools without supporting the break-point
resuming function are not suitable for using at Dome A.

NBFTP implements break-point resuming function by
dividing files into blocks. It then encapsulates the blocks
into RawData segments, as tabulated in Table3. RawData
segment is the smallest unit to transmit in NBFTP, which
means it will be either delivered successfully or discarded
completely. As we demonstrated in Section3.2, the sender
of NBFTP issues only a single RawData segment for a
small size file. On the contrary, for a large size file, the
sender will firstly issue a LARGE FILE (begin) segment
which contains only the metadata of that file; it then
delivers the file body of the file by issuing LARGE

FILE (part) segments. Each LARGE FILE (part) contains
a “current position” field to record the position of the
data block of the file. Whenever the sender delivers a
segment, it will wait for a REPLY acknowledgment from
the receiver. If the delivery fails or waiting for REPLY
acknowledgment is timed out, the sender will suspend
for a while and try to send the LARGE FILE (part)
segment in the next transmission. In this case, the receiver
will acknowledge a LASTPOS RawData segment rather
than a REPLY segment to the sender. This segment also
contains a “current position” field to signify to the sender
to restart to transfer the file from that position. By applying
the LASTPOS segment, NBFTP implements break-point
resuming.

Obviously, the size of the block will significantly
influence the transmission efficiency of NBFTP. When the
loss rate is high in a bad network condition, adopting a
large block size will more likely waste the cost of Iridium
network communication. On the other hand, using a small



S. Huang et al.: NBFTP: A Dedicated Data Transfer System 54–5

Table 3 NBFTP Transfer Protocol

RawData type Data length (Byte) Content

1 sign: SMALL FILE DATA
4 task id

SMALL FILE 16 MD5
1 + namelength file name

4 + file size binary file content

1 sign: LARGE FILE BEGIN
4 task ID

LARGE FILE (begin) 16 MD5
1 + namelength file name

4 file size

1 sign: LARGE FILE PART
LARGE FILE (part) 4 task ID

4 current position
4 + file block size binary file block content

1 sign: MESSAGE DATA
MESSAGE 4 task ID

1 + messagelength message

1 sign: LASTPOS / COMPLETE SIG / CHECK PASS /
LASTPOS / COMPLETE SIG / CHECK FAILED / REPLY

CHECK PASS / CHECK FAILED / 4 task ID
REPLY 4 associated task ID

4 current position (LASTPOS only)

block size will introducing extra protocol overhead when
encapsulating the RawData segments. Since this trade-
off is strongly dependent on the network condition, we
use an adaptive block size mechanism inspired by TCP
congestion control7. The block size is set to213 bytes
at the beginning. After the previous block is successfully
transmitted, which means that the network may be in good
condition, then the block size will be doubled, reducing the
block prefix consumption. If it reaches a maximum of2

22

bytes, it will not increase. If a block loss occurs midway,
it means that the network environment becomes poor and
the packet loss rate is increased, then the block size will
shrink to reduce extra network traffic. The block size will
be adjusted according to the network conditions, which
is more suitable for unstable network environments. By
dynamical determining of the block size, NBFTP achieves
a fine controlling network traffic.

3.4 Extensibility Function

In addition to transferring data with low network traffic
consumption, NBFTP also provides an interface for users
to implement extensibility functions, which are mainly
used for subsequent processing after receiving data. After
accepting a certain type of data, the receiver can automat-
ically call other programs according to the configuration
file, including but not limited to the following functions:
proofreading data correctness, sending an short message
service (SMS) or email to the specified location, importing
the data in the file to the database, etc.

7 http://www.hjp.at/doc/rfc/rfc5681.html

The implementation details of the extensibility func-
tions are shown in Table4.

3.5 Autonomous Data Transmission

In order to implement fully automatic data transmission,
it is necessary to ensure that the system can continue to
be stable under unmanned operation and poor network
conditions to ensure the integrity of the data. At the same
time, special events can be sent to the DCC as soon as
possible, to achieve a certain degree of resilience.

NBFTP implements fully automatic data transmission
through MM. The main functions are shown in Table5.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Settings

Astronomical observations at Dome A require NBFTP to
support fully automatic continuous operation for a whole
year. According to the actual needs of data transmission,
we analyzed and evaluated the performance of NBFTP
in the following aspects: single file transfer, periodic file
transfer, directory synchronization overhead, and file block
parameter settings.

Most of the files transferred from Dome A are system
logs, site-testing data, and alarm messages. The system
logs and site-testing data will be transferred periodically.
The compressed file size of the system log and site-testing
data is about 8 KB, and the size of the alarm message is
less than 1 KB. The transmission of observation data will
be carried out as needed, and the transmission frequency

 http://www.hjp.at/doc/rfc/rfc5681.html


54–6 S. Huang et al.: NBFTP: A Dedicated Data Transfer System

Table 4 Functions of the Expansion Module

Basic features of the Expansion Module Notes

Prerequisite File reception completed
Configuration setting Set the command with specific parameters in the configuration file

Supported program languages C/C++/Shell/Java/Python/Perl/...
Supported function Mail sending/Data cleaning/Data archiving/SMS/...

Table 5 Functions of the Monitor Module

Event Response

Generate new observations Start the data transfer process
Generate specific types of data Set a specific action (e.g. send back to country with highest priority)

Tasks often terminate abnormally Restart or terminate the task as needed

and file size cannot be determined in advance. In order
to simulate Iridium network communication, we limit the
network bandwidth to 128 Kbps.

As the main competitor, rsync is set to run in daemon
mode, which requires less network transmission than the
interactive shell mode.

4.2 Single File Transfer

Single file transfer is the basic function of NBFTP. We
compared the network traffic of NBFTP, rsync, and scp
when transferring single files of different sizes, as shown
in Figure2.

For the system log and site-testing data that need to be
transferred periodically, a single file is usually less than
8 KB. When transmitting such data, NBFTP generates
less network traffic than rsnyc and scp. The reason why
the actual amount of data transferred by rsync is larger
is that it requires additional operations to determine
which files need to be transferred. The additional data
transmission required by the scp method mainly comes
from the encryption of the data transmission process.
When transferring larger files, the amount of network
traffic required by the three methods tends to be the same.

4.3 Directory Synchronization Overhead

During long-term synchronization, most files in the
source directory are most likely the same as files in the
remote destination directory. As mentioned earlier, rsync
uses algorithms to determine the difference between the
source and the target, thereby reducing network traffic.
However, the frequent comparisons of the same files will
consume unnecessary network traffic. The more files exist
in both the source and destination directory, the more
extra network traffic RSYNC consumes when detecting
duplications.

Figure 3 validates our conjecture. In each test case,
the file sizes are also 1 KB, 8 KB, and 64 KB. In the

beginning, the source and destination directories hold the
same files, which means all files have been synchronized.
Then we use NBFTP and rsync to transfer them again.
The results show that the network traffic of rsync is about
2.4 times that of NBFTP on average, and increases when
the size and number of synchronized files doubles, while
the network traffic of NBFTP is almost unchanged. One
method to reduce the overhead of using rsync is deleting
the transferred files in the source directory, but it will
cause potential data security issues. Overall, the directory
synchronization overhead of NBFTP is less than rsync,
so NBFTP is more suitable for long-term transmission
between Dome A and DCC.

4.4 Periodically Generated Small Files

As mentioned earlier, the site-testing data will be
transferred from Dome A periodically. In this section,
we will simulate the transmission process of the actual
situation. Small files are generated into the source directory
at regular intervals other than immediately put into the
queue to transmit. Just like the above experiments, files are
of 1 KB, 8 KB, and 64 KB respectively. Figure4 shows the
network traffic when the number of files reached different
levels.

This experiment can be regarded as a combination of
the above two experiments. On the one hand, the files
are generated at regular times, and each generation will
trigger a transmitting operation to transfer files one by
one, corresponding to the first experiment. On the other
hand, the number of transferred files doubles over time,
and there can be a lot of duplicates in the source and target
directories, which is like the second experiment.

From Figure4, it can be seen that when the sizes
of files to be transferred are 1KB and 8KB, the network
traffic performance of NBFTP is better than rsync due to
the same reason shown in Figure2. As the number of
files increases, NBFTP performs better than rsync because
the latter need to check more and more same files, which



S. Huang et al.: NBFTP: A Dedicated Data Transfer System 54–7

20 22 24 26 28 210 212 214 216 218 220 222
29

211

213

215

217

219

221

ne
tw

or
k 

tr
af

fic
 (b

yt
e)

file size (byte)

 nbftp
 rsync
 scp

(a) network traffic

20 22 24 26 28 210 212 214 216 218 220 222

0.0

0.2

0.4

0.6

0.8

1.0

fil
e 

si
ze

/n
et

w
or

k 
tr

af
fic

file size (byte)

 nbftp
 rsync
 scp

(b) file size / network traffic

Fig. 2 The actual network traffic transmitting a single file of different sizes. The network traffic refers to the total size
of the IP packets transmitted by the sender and receiver. When the size of the target file is less than215 bytes, NBFTP
requires the least amount of network traffic. When the file size exceeds215 bytes, the efficiency of these three methods
tends to be the same.

0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

ne
tw

or
k 

tr
af

fic
 (b

yt
e)

number of files

 nbftp
 rsync

(a) 1 KB

0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

ne
tw

or
k 

tr
af

fic
 (b

yt
e)

number of files

 nbftp
 rsync

(b) 8 KB

0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

ne
tw

or
k 

tr
af

fic
 (b

yt
e)

number of files

 nbftp
 rsync

(c) 64 KB

Fig. 3 The actual network traffic transmitting multiple small filesthat have already been transferred.

0 2 4 6 8 10
0

5000

10000

15000

20000

25000

30000

35000

ne
tw

or
k 

tr
af

fic
 (b

yt
e)

number of files in the flow

 nbftp
 rsync

(a) 1 KB

0 2 4 6 8 10
0

20000

40000

60000

80000

100000

120000

ne
tw

or
k 

tr
af

fic
 (b

yt
e)

number of files in the flow

 nbftp
 rsync

(b) 8 KB

0 2 4 6 8 10
0

100000

200000

300000

400000

500000

600000

700000

800000

ne
tw

or
k 

tr
af

fic
 (b

yt
e)

number of files in the flow

 nbftp
 rsync

(c) 64 KB

Fig. 4 The actual network traffic transmitting periodically generated small files of different sizes.

is shown in Figure3. The network traffic performance
of NBFTP improves as the number of files increases but
decreases as the file size increases. In general, NBFTP
can save more network traffic, because its performance is
almost the same as rsync when transferring large files, and
in the case of transferring smaller files, the efficiency of
NBFTP is better than rsync.

4.5 Impact of Block Size in NBFTP

NBFTP divides large files into blocks for transmission.
The file block size setting will affect the network traffic
during transmission. When transferring files of the same
size, the larger the block size, the smaller the number of
blocks, the less space the header file takes up, and the less
network traffic it consumes. Figure5 shows the network



54–8 S. Huang et al.: NBFTP: A Dedicated Data Transfer System

Table 6 Function Comparison of Several Data Transfer Tools

Function scp rsync NBFTP

Large file transfer Send the entire file Compare the difference Split files and receive a
and only receive a between the source and the target, confirmation message

confirmation message and only transfer the difference everytime a block is sent
Break-point resuming Unsupported Supported Supported
Network traffic control Unsupported Unsupported Supported

Guarantee of file integrity Unsupported Unsupported Supported
Encryption SSH Unsupported OpenSSL

213 214 215 216 217 218 219 220

4.4M

4.5M

4.6M

4.6M

4.7M

4.8M

ne
tw

or
k 

tr
af

fic
 (b

yt
e)

block size (byte)

 nbftp

Fig. 5 Impact of block size in NBFTP.

traffic of transferring 4MB files with different block sizes
using NBFTP. The experimental results are as expected.

However, large blocks cause high costs for re-
transmissions. In order to save network traffic in the
unstable Iridium network environment, NBFTP uses an
adaptive block size mechanism to select the optimal block
size according to the network situation. The specific
introduction of the adaptive block size mechanism is in
Section3.

5 CONCLUSION

In this paper, we designed a dedicated data transfer system
called NBFTP for remote astronomical observation at
Dome A, Antarctic. NBFTP provides a highly stable,
traffic-saving, and easy-to-use data channel by optimizing
the ratio of file size to network traffic, resuming break-
points, and implementing extensibility.

Iridium communication link is narrow-band and
unstable, and the network traffic price is high. The
retransmission mechanism of existing tools can cause
extra network traffic. To this end, NBFTP controls the
traffic at the block level, implements the break-point
resuming function based on the adaptive block size
mechanism, and effectively controls the overhead caused
by retransmissions. Our experimental results show that

NBFTP is superior to rsync and scp in data traffic.
It consumes 60% less network traffic than rsync when
detecting the data pending to be transferred. When
transferring continuously generated 1KB files, NBFTP
consumes 40% less traffic than rsync.

The reasons why NBFTP has transmission efficiency
come from three levels of optimization. Firstly, NBFTP
adopts a special transmission protocol that consider differ-
ent file sizes to reduce extra data (see Sect.3.2). Secondly,
it uses a fine-grained data retransmission mechanism that
reduces the overhead of data retransmission under unstable
network conditions (see Sect.3.3). Finally, when doing
remote directory synchronization, NBFTP can avoid the
overhead of full directory scanning required by rsync,
based on local logs (see Sect.4.3).

In addition, existing tools have only basic data trans-
fer functions and cannot support automatic transaction
processing. NBFTP implements an EM with triggering
functions such as mail sending, data cleaning, and data
archiving, which can provide more support for remote
astronomical observation.

NBFTP and its data transfer protocol are specially
designed for remote astronomical observations based on
narrow bandwidth and an unstable Iridium communication
network. Table 6 shows the comparison of related
functions of NBFTP and other commonly used tools
mentioned in Section2.

A stable version of NBFTP has been serving the data
transfer of KLAWS, KCLAM, KL-DIMM at Dome A.
NBFTP can also be helpful for site testing and early-
stage astronomical observation at other places where such
narrow-band and unstable Iridium communication is the
only choice. In future work, we will focus on more fine-
grained network traffic control and try to expand it to
support short message communication of BeiDou.

AcknowledgementsThis work is supported by the Joint
Research Fund in Astronomy (U1931130) under the
cooperative agreement between the National Natural
Science Foundation of China (NSFC) and the Chinese
Academy of Sciences (CAS). HU, SHANG, and MA
acknowledge support from NFSC (Grant Nos. 11873010
and 117330037), and the Operation, Maintenance and



S. Huang et al.: NBFTP: A Dedicated Data Transfer System 54–9

Upgrading Fund for Astronomical Telescopes, and Facility
Instruments, budgeted from the Ministry of Finance of
China (MOF) and administrated by the CAS.

References

Ashley, M. C. B., Bonner, C. S., Everett, J. R., et al. 2010,

Proc. SPIE, 7735, 773540
Bonner, C. S., Ashley, M. C. B., Cui, X., et al. 2010, PASP, 122,

1122
Hu, Y., Shang, Z. H., Ma, B., & Hu, K. 2016, Proc. SPIE, 9913,

99130M
Hu, Y., Shang, Z. H., Ashley, M. C. B., et al. 2014, PASP, 126,

868
Hu, Y., Hu, K. L., Shang, Z. H., et al. 2019, PASP, 131, 015001
Jia, M. H., Chen, Y. Q., Zhang, G. Y., et al. 2018, Astronomy and

Computing, 24, 17
Kubánek, P. 2016, in Software and Cyberinfrastructure for

Astronomy IV, 9913, International Society for Optics and

Photonics, 99132U
Lawrence, J. S., Allen, G. R., Ashley, M. C. B., et al. 2008,

Proc. SPIE, 7012, 701227
Ma, B., Hu, K. L., Hu, Y., et al. 2018, Proc. SPIE, 10700,

1070052
Saunders, W., Lawrence, J. S., Storey, J. W. V., et al. 2009, PASP,

121, 976
Shang, Z. H., Hu, K. L., Yang, X., et al. 2018, Proc. SPIE, 10700,

1070057
Shang, Z. H., Hu, K. L., Hu, Y., et al. 2012, in Observatory

Operations: Strategies, Processes, and Systems IV, 8448,

International Society for Optics and Photonics, 844826
Shi, S. C., Paine, S., Yao, Q. J., et al. 2016, Nature Astronomy,

1, 0001
Shial, G., Majhi, S. K., & Phatak, D. B. 2015, Procedia Computer

Science, 48, 133
Yuan, X. Y., Cui, X. Q., Liu, G. R., et al. 2008, Proc. SPIE, 7012,

70124G
Yuan, X. Y., Cui, X. Q., Gong, X. F., et al. 2010, Proc. SPIE,

7733, 77331V
Zhang, G. Y., Wang, J., Tang, P. Y., et al. 2016, MNRAS, 455,

1654


	Introduction
	Related Work
	TRAFFIC-SAVING DATA TRANSFER SYSTEM
	NBFTP Software Architecture
	Transfer Protocol
	Break-point Resuming Function
	Extensibility Function
	Autonomous Data Transmission

	EXPERIMENTS AND RESULTS
	Experimental Settings
	Single File Transfer
	Directory Synchronization Overhead
	Periodically Generated Small Files
	Impact of Block Size in NBFTP

	CONCLUSION

