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Abstract Different measurements of the Hubble constant (H0) are not consistent, and a tension between
the CMB based methods and cosmic distance ladder based methods has been observed. Measurements from
various distance based methods are also inconsistent. To aggravate the problem, the same cosmological
probe (Type Ia SNe for instance) calibrated through different methods also provides different values of H0.
We compare various distance ladder based methods through the already available unique data obtained from
the Hubble Space Telescope (HST). Our analysis is based on parametric (t-test) as well as non-parametric
statistical methods such as the Mann-Whitney U test and Kolmogorov-Smirnov test. Our results show that
different methods provide different values of H0 and the differences are statistically significant. The biases
in the calibration would not account for these differences as the data have been taken from a single telescope
with a common calibration scheme. The unknown physical effects or issues with the empirical relations of
distance measurement from different probes could give rise to these differences.
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1 INTRODUCTION

Our understanding of the Universe increased exponentially
during the last century. Initially, static models were
suggested, but after Edwin Hubble’s observations, it
was established that the Universe is expanding (Hubble
1929; Freedman 2000; Nussbaumer & Bieri 2009).
These observations can be summarised in the form of a
graph between the distance to several galaxies and their
recessional velocities. The graph, known as the Hubble
diagram, results in a straight line whose slope is called
the Hubble parameter (van den Bergh 1995). The Hubble
parameter is dynamic in nature, and its present value is
referred to as the Hubble Constant (H0). It is among
the most fundamental parameters of standard cosmology,
as it is a measure of the expansion rate and age of the
Universe. The Hubble constant also determines the critical
density, ρc = 3H0/8πG, essential for flat geometry of
the Universe. Many other cosmological parameters such
as physical properties of galaxies and quasars, growth of
large scale structures, etc., depend on the numerical value
of the Hubble constant. Thus, obtaining an accurate value
of H0 is of great importance to present day cosmology.

Various fundamentally different methods have been
employed to determine an accurate value of the Hubble
constant including Cosmic Microwave Background
Radiation (CMBR), gravitational waves and the methods
based on cosmic distance ladder such as type Ia supernovae
(SNe Ia) (these methods are discussed in Sect. 2). The
latest CMBR observations by the Planck satellite
(Hinshaw et al. 2013; Planck Collaboration et al. 2018)
along with the ΛCDM cosmological model predicted
H0 = 66.93 ± 0.62 km s−1 Mpc−1. It differs by around
3σ or more with that measured with the distance ladder
based methods (Riess et al. 2016, 2019). Several solutions
have been suggested, including a dark component in the
early Universe (Slatyer & Wu 2018; Sakstein & Trodden
2020; Vagnozzi 2020), to resolve this tension. It is also
a matter of concern that various methods based on the
cosmic distance ladder also provide different values of
H0. Moreover, inconsistency has been observed in the
data obtained from the same secondary distance indicator
(SNe Ia) calibrated through different probes (Cepheids vs.
Tip of Red Giant Branch (TRGB)) (Freedman et al. 2019,
2020). We wish to explore the statistical significance of the
differences in these distance ladder based measurements.
Significant differences would indicate either a lack of
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understanding of physical concepts inherent in these
probes, or presence of systematic effects, or issues related
to the calibration of telescopes. This paper is organised as
follows: we discuss various distance ladder based methods
to measure the Hubble constant in Section 2. The data
and statistical tools used for our analysis are addressed in
Sections 3 and 4, respectively. The results and conclusions
are presented in Sections 5 and 6, respectively.

2 MEASUREMENT OF HUBBLE CONSTANT AND
COSMIC DISTANCE LADDER

Determination of the Hubble constant requires measure-
ment of the distances to the galaxies and their recessional
velocities up to sufficiently large scales. The progress
in accurate determination of H0 has been slow due
to various issues in distance measurement methods. A
distance indicator, in principle, should fulfill the following
basic criteria: (i) it should be bright enough to be
detectable at cosmological distances, (ii) the physics of the
distance indicator should be clear, (iii) empirical relations
among various quantities which are utilized for distance
measurement should be free of systematic effects and (iv)
statistically significant samples of such objects should be
available.

The period luminosity (P-L) relation of young Cepheid
stars found in spiral galaxies is a promising primary
distance indicator as the physics of this correlation is
well understood (Lanoix et al. 1999). However, they
are found in dusty regions and hence the observed P-
L relation often requires correction against scattering,
absorption, reddening and extinction, leading to systematic
errors. The P-L relation may also depend on the chemical
composition (Freedman & Madore 1990), which is difficult
to model. It is also difficult to resolve the Cepheid stars
in distant galaxies; moreover, they are often observed
mainly in spiral galaxies. Thus Cepheid variables alone
cannot be relied on to estimate H0, and we need to use
secondary distance indicators such as SNe Ia and the Tully-
Fisher (T-F) relation. However, accurate measurements
of extragalactic distances have always been challenging;
often the uncertainties in measurement are underestimated
and systematic errors dominate. Even today, identifying
and reducing the sources of systematic errors in distance
measurement are challenging tasks. Measurement of H0

up to 1% accuracy is a difficult goal. However, as per the
results of the Hubble Space Telescope (HST) Key Project
(Freedman et al. 2001), an accuracy of 10% was achieved
in 2003; and 2.4% accuracy was claimed recently (Riess
et al. 2016). The following different methods were applied
as secondary indicators: (i) SNe Ia, (ii) T-F relation, (iii)
surface brightness fluctuations, (iv) type II supernovae
(SNe II) and (v) the fundamental plane relation of elliptical

galaxies. We review these methods in the next section. The
current status of these methods is available in Verde et al.
(2019) and references therein.

2.1 Type Ia Supernovae

SNe Ia are believed to arise from the explosion of a
carbon-oxygen white dwarf (Nomoto et al. 1997). Their
peak luminosity can outshine the entire host galaxy, which
makes them observable at cosmological distances (Kowal
1968; Sandage & Tammann 1982). The peak luminosities
of all SNe Ia are found to be in a narrow range. Moreover,
the decline rate of their brightness is strongly correlated
with the peak luminosity (Phillips 1993). Using this
correlation, the absolute magnitude of an individual SN
and hence its distance can be measured with high precision
(less than 10%).
Current Status: So far, SNe Ia are the most promising
cosmological distance indicators. Unfortunately, the exact
mechanism of an SN Ia explosion has not yet been
well understood and recently, subclasses within the SN
Ia family have also been explored (Umeda et al. 1999);
some peculiar SNe Ia follow a special category recently
termed SNe Iax (Jha 2017). Confidence in this empirical
method will be strengthened once we gain a theoretical
understanding of the explosion process.

2.2 The Tully-Fisher Relation

An empirical relation, known as the T-F relation, exists
between the total luminosity and rotational speed of spiral
galaxies (Tully & Fisher 1977; Tully & Pierce 2000).
The correlation becomes tighter at longer wavelengths;
especially at I band the rms scatter is only 0.4 mag
(Willick et al. 1997). The T-F relation reflects the fact that
massive and hence luminous galaxies rotate more rapidly
and can be exploited to measure the distances to spiral
galaxies (Giovanelli et al. 1997). Earlier measurements of
H0 based on the T-F relation provided a large range of
values indicating the presence of systematic effects. Sakai
et al. (2000) applied BV RIH photometry calibrations to
several galaxy clusters to measure H0 and investigate the
possible systematic uncertainties including the metallicity
dependence. Using the new P-L calibration and adopting
the metallicity corrections, Freedman et al. (2001) obtained
theH0 value, which is not different from that of Sakai et al.
(2000).
Current Status: Recently, the relation has been measured
for hundreds of galaxies and amounts to around 15%
uncertainty in distance measurement (McGaugh 2005,
2012).
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2.3 Fundamental Plane Relation

A correlation between luminosity and central velocity of
elliptical galaxies was first discovered by Faber & Jackson
(1976); Jorgensen et al. (1996). It is similar to the T-F
relation of spiral galaxies; however, it has a lot of scatter. A
similar noisy correlation also exists between the effective
radius and mean surface brightness of elliptical galaxies
(Djorgovski & Davis 1987). Both of these correlations are
now understood as the projections of a plane, known as the
fundamental plane of elliptical galaxies, defined as re ∝
σαIβe , where re is the effective radius, Ie is the average
surface brightness within re and σ is the stellar velocity
dispersion (Schaeffer et al. 1993; Kelson et al. 2000). The
scatter in the fundamental plane relation is much smaller
than its projections and thus can be utilized to measure
the distance to elliptical galaxies in various clusters (Seljak
2002).
Current Status: Although the scatter in the fundamental
plane relation is small, it suffers from systematic effects.
For instance, early type brightest cluster galaxies exhibit
a steeper size-luminosity relation which would indicate
curvature in the plane (Bernardi et al. 2007). Many
improvements have been suggested (see Joachimi et al.
2015; Saulder et al. 2019 for a recent review). Saulder et al.
(2019) calculated reliable galaxy distances by removing
the biases and selection effects.

2.4 Surface Brightness Fluctuations

Since each galaxy contains a finite number of stars, which
are not distributed uniformly, the number of stars in a
small patch of a galaxy varies from point to point (Lauer
et al. 1998). This leads to fluctuations in the surface
brightness of the galaxy. These fluctuations smooth out
with distance since the resolution of stars within the
galaxies depends on distance (Tonry & Schneider 1988;
Tonry et al. 2000). This technique has been effectively
applied as a distance indicator in the HST Key Project.
However, HST Advanced Camera for Surveys exhibits
geometrical distortion due to its off-axis position (Mei
et al. 2005).

Current Status: This method is appropriate for
elliptical galaxies because they have fairly consistent
stellar populations or to spirals with prominent bulges
(Jensen et al. 2001; Liu et al. 2002). Corrections due
to variations in metallicity and age of galaxies are
often required. Stellar population modelling and Cepheid
variables are used for calibration of the method (Verde
et al. 2019). Recently, the method has been employed to
calibrate SNe Ia and hence measure the Hubble constant
(Khetan et al. 2020).

2.5 Type II Supernovae

SNe II originate from core collapse of massive stars and are
fainter than SNe Ia. Often they are observed in spiral arms
of galaxies and HI clouds in the interstellar medium, but
rarely in elliptical galaxies. Although they are not standard
candles, their distance can be measured by combining the
spectra of their expanding photosphere and photometric
observations of angular size. The technique, known as the
Baade-Wesselink method, has been utilized by Kirshner
et al. (1994) to reliably determine the distances to various
SNe II and hence H0. Freedman et al. (2001) found
the distances to SN 1970G, SN1987A and 1989L using
Cepheids in their host galaxies. The distances measured
by the above two methods agree quite well.
Current Status: Many new theoretical and empirical
methods to measure distances to SNe II have been
proposed in the last decade, e.g., the standard candle
method (SCM) based on the correlation between the
luminosity and the expansion velocities (Hamuy & Pinto
2002; de Jaeger et al. 2020b), the photospheric magnitude
method (PMM) which is a generalisation of the SCM
(Rodrı́guez et al. 2014, 2019), and the photometric colour
method (PCM) which relies on the relation between
the luminosity and the slope of the plateau (de Jaeger
et al. 2015, 2017). New measurements of H0 from these
methods, which are 69 ± 16 km s−1 Mpc−1 for SCM
(Olivares E. et al. 2010) and 71 ± 8 km s−1 Mpc−1 for
PMM in the V band (Rodrı́guez et al. 2019), have been
derived. However, their precision is not yet comparable to
those of Planck or SNe Ia owing to a lack of large number
of SNe II in the Hubble flow, as well as to a small number
of Cepheids or resolved red giants in SN II host galaxies
(de Jaeger et al. 2020a).

3 HST KEY PROJECT AND HST DATA

The data for our analysis have been taken from the Hubble
Space Telescope Key (HST Key) Project (Freedman et al.
2001). The main goal of the HST Key Project was to
determine H0 to an accuracy of < 10% by calibrating
the secondary distance indicators by examining Cepheid
variables. Several new Cepheid stars were discovered by
HST in various galaxies within a distance of 25 Mpc.
The Cepheid P-L relation was also calibrated against
the metallicity by HST. The better seeing conditions
and the ability to schedule the observations independent
of phases of the Moon or weather conditions were the
biggest advantage of HST compared to ground based
observatories. Due to this, the number of Cepheids
available for calibration increased drastically which is
responsible for reduced uncertainties in the distance
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measurement. Table 1 of Freedman et al. (2001) compares
the status of Cepheid calibrators pre and post HST.

3.1 The Revised P-L Relation of Cepheid Variables

The Cepheid P-L relation was first introduced by Leavitt
& Pickering (1912). Various authors, e.g., Gieren (1993),
used Cepheid surface brightness to estimate distances and
absolute magnitudes. Currently, Cepheids are among the
best stellar distance indicators and an important initial step
on the cosmic distance ladder. However, the sensitivity
of the zero point of the P-L relation to the chemical
composition has always been a matter of concern.

Measuring an accurate value of H0 was one of the
motivating reasons for building the HST. Thus, in the mid
1980s, accurate measurement of H0 with an accuracy of
10%, by observing several Cepheids and hence calibrating
the secondary distance indicators, was designated as one of
the key objectives of the HST. Before the launch of HST,
most Cepheid searches were restricted to our own Local
Group of galaxies and the very nearest surrounding groups
(M101, Sculptor, and M81 groups) (Madore & Freedman
1991). By that time, only five galaxies with well-measured
Cepheid distances were available for calibration of the
T-F relation. The calibration of the surface brightness
fluctuation method (Tonry 1991) was done by considering
a single Cepheid distance, i.e., M31. Moreover, before
HST no Cepheid calibrators were available for SNe Ia.
A large number of Cepheid variables were required to be
observed to improve the calibration of the P-L relation
and hence the calibration of secondary distance indicators.
Several improvements and refinements were made by the
HST team, including installation of HST Wide Field and
Planetary Camera 2 (WFPC2) for photometric calibration.
Observations of several Cepheids in the Large Magellanic
Cloud (LMC) were carried out to obtain the fiducial P-L
relation and to study the dependence of the P-L relation
on metallicity. The final results of the HST Key Project
were based on a Cepheid calibration of several secondary
distance methods applied up to a distance of 400 Mpc.

3.2 Data

Calibration is often a challenging issue in astronomical
measurements. Different primary indicators (such as
Cepheids, TRGB, etc.) and different instruments are used
for photometric calibration, which lead to systematic
biases. The HST Key Project data are unique as they
have been obtained through calibration of several different
methods by a single primary distance indicator, i.e.,
Cepheid variables. Use of a single instrument (WFPC2 of
HST) for photometric calibration also makes it special.

Based on the revised Cepheid P-L relation, 36 SNe
Ia were calibrated, which are available in table 6 of
the key paper Freedman et al. (2001). The value of H0

obtained from this sample, 71 ± 2 ± 6 km s−1 Mpc−1, is
slightly higher than the previous measurement considering
SNe Ia (68 ± 2 ± 5 km s−1 Mpc−1) (Freedman et al.
2001). Twenty-one galaxies in the general field and in
various clusters and groups were calibrated for the T-F
relation incorporating the newly available Cepheids. The
measurements are available in table 7 of the key paper
and provide a value of H0 = 71 ± 3 ± 7 km s−1 Mpc−1.
These results have not changed much from the previous
measurements available in the literature (Sakai et al.
2000), indicating the self-consistency of the T-F relation
with respect to the Cepheid P-L relation. Distances to
11 elliptical galaxies in various clusters were measured
through the fundamental plane relation with a calibration
relying on the revised P-L relation. The new value of
H0 is 82 ± 6 ± 9 km s−1 Mpc−1, which is substantially
different from the previous measurements, with the reason
being the galaxies in the Key Project were quite distant,
and their metallicities were quite high. Thus, the new
calibration had a larger impact on this sample. The other
two methods, surface brightness fluctuations and SNe II,
were also calibrated and considered for H0 measurement.
However, the sample sizes of these methods are very
small, and hence we do not include them in our analysis.
Altogether, we have three samples for our analysis, 36 SNe
Ia, 21 T-F galaxies and 11 FPR galaxies.

4 METHODOLOGY

Five different probes have been employed to measure the
Hubble constant in the HST Key Project. All the methods
have been calibrated utilizing a common mechanism, i.e.,
the P-L relation of Cepheid variables. However, empirical
relations and the physical concepts involved in these
methods are different. It would be interesting to ask the
following question: Do these methods provide the same
value of H0? If the answer is no, it raises doubts about our
understanding of the physical concepts and the empirical
relations involved. Alternatively, it could also be due
to the inconsistency of the systematics involved in the
measurement process. Various statistical methods, related
to hypothesis testing, can also be employed to answer the
above question. If µ1 and µ2 are the averages of H0 from
two different samples, then the null hypothesis can be set
as

µ1 = µ2. (1)

The alternative hypothesis which does not emphasise any
of the samples, the non-directional hypothesis, would be

µ1 6= µ2 . (2)
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Table 1 Hubble Constant Measurements Using SNe Ia, σ Represents the Uncertainty in H0 (table 6 of Freedman et al.
2001)

SN H0 σ SN H0 σ SN H0 σ
SN1990O 67.3 2.3 SN1990T 75.6 3.1 SN1990af 75.8 2.8
SN1991S 69.8 2.8 SN1991U 83.7 3.4 SN1991ag 73.7 2.9
SN1992J 74.5 3.1 SN1992P 64.8 2.2 SN1992ae 81.6 3.4

SN1992ag 76.1 2.7 SN1992al 72.8 2.4 SN1992aq 64.7 2.4
SN1992au 69.4 2.9 SN1992bc 67.0 2.1 SN1992bg 70.6 2.4
SN1992bh 66.7 2.3 SN1992bk 73.6 2.6 SN1992bl 72.7 2.6
SN1992bo 69.7 2.4 SN1992bp 76.3 2.6 SN1992br 67.2 3.1
SN1992bs 67.8 2.8 SN1993B 69.8 2.4 SN1993O 65.9 2.1
SN1993ag 69.6 2.4 SN1993ah 71.9 2.9 SN1993ac 72.9 2.7
SN1993ae 75.6 3.1 SN1994M 74.9 2.6 SN1994Q 68.0 2.7
SN1994S 72.5 2.5 SN1994T 71.5 2.6 SN1995ao 78.8 2.7
SN1995ak 80.9 2.8 SN1996C 66.3 2.5 SN1996bl 78.7 2.7

Table 2 Hubble Constant Measurements Using T-F Relation, σ Represents the Uncertainty in H0 (table 7 of Freedman
et al. 2001)

Cluster/Group H0 σ Cluster/Group H0 σ Cluster/Group H0 σ
Abell 1367 75.2 12.8 Abell 0262 70.9 12.7 Abell 2634 77.7 12.7
Abell 3574 76.2 11.9 Abell 0400 79.3 12.6 Antlia 68.8 10.3

Cancer 67.1 10.9 Cen30 75.8 17.4 Cen45 70.7 10.9
Coma 83.5 13.9 Eridanus 77.6 13.1 ESO50 79.8 11.9
Fornax 92.2 15.2 Hydra 69.6 10.6 MDL59 73.6 13.7

NGC 3557 85.0 12.9 NGC 0383 73.9 12.9 NGC 0507 84.9 14.6
Pavo2 86.3 15.0 Pegasus 66.4 11.7 Ursa Major 54.8 8.6

Table 3 Hubble Constant Measurements Using Fundamental Plane Relation, σ Represents the Uncertainty in H0 (table
9 of Freedman et al. 2001)

Cluster/Group H0 σ Cluster/Group H0 σ Cluster/Group H0 σ
Dorado 81.9 8.2 GRM15 95.6 10.7 Hydra I 82.8 8.0

Abell S753 87.5 7.2 Abell 3574 92.0 9.7 Abell 194 91.3 7.6
Abell S639 109.7 10.0 Coma 83.2 6.2 Abell 539 86.2 6.4
DC 2345-28 83.2 6.5 Abell 3381 88.9 8.2

The alternative hypothesis would be directional if it
emphasises a particular sample, i.e., µ1 < µ2 or µ1 > µ2.

Various parametric methods such as the t-test are often
employed for hypothesis testing when the data samples are
drawn from a Gaussian distribution. As the central limit
theorem suggests that outcomes of a measurement process
would follow a Gaussian distribution, we expect the same
for our data sets as well. However, non-parametric methods
provide more reliable results when the distribution of data
values is far from a bell curve. We briefly discuss these
techniques in the next section.

4.1 Parametric Methods: t-test

Average values ofH0 obtained from two different methods
can be compared applying an unpaired t-test since the
number of data points are different for different samples.
If the mean values of H0 for two different samples with n1
and n2 data points are M1 and M2 respectively then the
t-score is defined as

T =
M1 −M2√
s21
n1

+
s22
n2

, (3)

where s21 and s22 are the variances of the first and second
samples respectively (Sheskin 1997). The uncertainties are
an important part of the measurement process and contain
vital information. We thus weigh the measurements, i.e.,
H0 values, with the uncertainties, so that more precise
values get more weight.

H
′i
0 =

Hi
0/σ

2
i∑

j 1/σ2
j

, (4)

whereHi
0 represents an individual measurement of Hubble

constant (Crandall & Ratra 2015; Podariu et al. 2001).
Since our alternative hypothesis in Equation (2) is non-
directional, as it does not emphasise any particular method
(µ1 6= µ2), a “two-tailed test” would be required. One can
compare the t-score calculated from Equation (3) with a
critical value which is the probability of obtaining the data
samples assuming that the null hypothesis is true. If the t-
score is larger than the critical value, the null hypothesis is
rejected but a smaller t-score supports the null hypothesis.
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4.2 Non-parametric Methods

Often due to systematic effects, the data values are far
from a normal distribution. In such cases, distribution
free tests or non-parametric tests are applied. If the data
values follow a normal distribution, the relative efficiency
of parametric methods is higher and vice-versa. We
now outline some non-parametric methods which can be
applied to the data (Sheskin 1997).

4.2.1 Mann-Whitney U test

Due to its resistance to outliers, the median is a more
robust estimate of central tendency than mean. The Mann-
Whitney U test compares the median of two samples. The
null hypothesis, in this case, would be M1 = M2, where
M1 and M2 are the medians of the samples, respectively.
The non-directional alternative hypothesis would beM1 6=
M2 and the directional hypothesis would be either M1 <

M2 or M1 > M2. The data values of the two samples
are arranged in ascending order, ranks are assigned to the
combined data, and the sum of ranks of each sample ΣRi
is calculated. The U values are computed by relying on
Equation (5)

Ui = ninj +
ni(ni + 1)

2
−
∑

Ri, (5)

where ni and nj are the sample sizes. One can easily verify
that Ui and Uj are always positive and Ui + Uj = ninj .
The smaller value of Ui and Uj is designated as the U
statistic. Statistical tables can be referenced to calculate the
critical value of U for small samples. For large samples,
the approximate normal deviate z is calculated (Sheskin
1997),

z =
(|U − ninj

2 | − 0.5)

A
, (6)

where A =
√

ninj(ni+nj+1)
12 .

4.2.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (K-S test) is utilized to
compare a data sample with a reference probability
distribution (Sheskin 1997) or to compare two different
samples by computing their cumulative distribution
functions (CDFs). The distributions are calculated under
the null hypothesis that both the samples are drawn from
an identical distribution. The K-S test is quite useful since
it is sensitive to the difference in location as well as shape
of the underlying distributions. The two-sample K-S test
estimates the difference between the CDFs of the two
sample data vectors over a given range of x in each data
set. The test statistic is the maximum distance, D, between
the CDFs

D = max|F1(x)− F2(x)|, (7)

Table 4 Mean and standard deviation of H0 values
obtained from different methods: (a) SNe Ia, (b) T-F and
(c) fundamental plane relation.

Method Mean H0 Std dev No of data points
SNe 72.18 4.87 36
TF 75.68 8.34 21

FPR 89.3 8.07 11

where F1(x) and F2(x) are the proportions of x1 and x2
values that are less than or equal to x respectively. For
our analysis, we applied the K-S test function available
in Matlab, h = kstest2(x1, x2), where x1 and x2 are
the two samples. Based on the maximum distance D, it
returns a value of zero or one. For large values of D, the
function returns h = 1 which implies rejection of the null
hypothesis. For small values of D, the function returns
h = 0, which implies a failure to reject the null hypothesis
at the given significance level, which is α = 0.01 in our
analysis.

5 RESULTS AND DISCUSSION

We first calculate the average value of the Hubble constant
and its standard deviation obtained from each method and
present it in Table 4. It is clear that although the average
values of H0 are close to each other for SNe and TF,
their standard deviations are significantly different. The
average in case of FPR is quite different from the other
two methods.

Now, we sketch a histogram of the H0 values in the
three samples which are presented in Figure 1. A first
glance at the figures indicates a deviation from the normal
distribution. Although a small sample size in the case of
T-F and fundamental plane relations could be one of the
reasons for the deviation, the SN sample size is sufficient
to display a bell shape. In any case, this motivates us to
use non-parametric methods. Thus, along with the regular
parametric tests, we apply non-parametric methods as well.

5.1 Results for the Parametric Test: t-test

As mentioned in Section 3.2, there are three samples of
data and, hence, three pairs of data samples, namely, pair
1: SNe-TF, pair 2: TF-FPR and pair 3: SNe-FPR. Our
first pair of samples consists of data from SNe Ia and T-F
methods. A t-test is performed to check the null hypothesis
(Eq. (1)) that the average value of H0 is the same in SNe
and T-F methods. The t-score has been calculated using
Equation (3) and is presented in Table 5 (row 1). The
critical value for the non-directional alternative hypothesis
(Eq. (2)): “average values of H0 for the two methods are
not the same” taken from the table at 99% significance
level is 2.7. Since the observed t value is smaller than the
critical value, the null hypothesis is not rejected. However,
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Fig. 1 Frequency distribution of H0 values obtained from different methods: (a) SNe Ia, (b) T-F and (c) fundamental
plane relation.

a one-tailed t-test is implemented, if the alternative
hypothesis is directional, i.e., H0(SNe) is smaller than
H0(TF). The critical value at 95% significance level is 1.7,
which is smaller than the t-score, and the null hypothesis
is rejected. A similar analysis for the other two pairs is
also presented in Table 5. It is clear that for both pairs, the
obtained value is greater than the critical value; hence, the
null hypothesis is rejected at the 99% significance level.

We now include measurement uncertainties in the
analysis by defining a new variable H

′

0 as the H0 values
weighted by the measurement uncertainties as defined in
Equation (4) in each sample. The t-scores for various
pairs of samples are again calculated and are presented
in Table 6. Clearly, the t-score is larger compared to the
critical value in all cases. Hence the null hypothesis “the
measurement values are the same using different methods”
is rejected in all cases.

5.2 Results for Non-parametric Tests

Since the histograms of data samples in Figure 1 do not
show a clear bell shape, we apply the non-parametric tests
as well. The tests are described in Section 4.2, and the
results are discussed below.

5.2.1 U test

The null hypothesis for U test has been set up by replacing
the mean with the median in Equation (1), and the
numerical values of U1 and U2 have been calculated
using Equation (5). Since the sample sizes are relatively
large to obtain the critical U from the table, the normal
approximate z has been calculated utilizing Equation (6).

Fig. 2 Comparison ofH0 obtained from different methods.
Errors are signified by vertical lines on top.

All these values are presented in Table 7. The critical value
of z corresponding to the 99% significance level is 2.58,
which is common in all cases. Since the z value in column
7, obtained using Equation (6), is smaller for the SN-TF
pair, it supports the null hypothesis. On the other hand,
it is greater than 2.58 for the TF-FPR and SN-FPR pairs
and the null hypothesis is rejected for these sample pairs.
However, the table value of z at 95% significance level is
1.96; thus, the null hypothesis is rejected for this case also
at the 95% level.

In order to make use of the uncertainties in the
measurement, we apply the U test on the H

′

0 values
obtained utilizing Equation (4) for all the three pairs of
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Fig. 3 K-S Test: CDF for original values of Hubble constant obtained from different methods. CDFs of different pairs
have been plotted together for comparison: (a) SNe Ia and T-F Fig, (b) T-F and FPR and (c) SNe Ia and FPR.

Fig. 4 K-S Test: CDF for Hubble constant values weighted by uncertainties. Comparison of CDF for different samples:
(a) SNe Ia and T-F, (b) T-F and FPR and (c) SNe Ia and FPR.

Table 5 Unpaired t-test between various pairs of data samples without considering uncertainties. Null hypothesis (Eq. (1))
is rejected at the 99% significance level except for the SNe-TF pair.

Pair µ1 µ2 S2
1 S2

2 Ttheory Tcritical DOF Result
SN-TF 72.2 75.7 23.8 69.6 1.8 2.7 55 NR

TF-FPR 75.7 89.3 69.6 65.2 4.5 2.8 30 R
SN-FPR 72.2 89.3 23.8 65.2 6.7 2.7 45 R

samples. As in the previous case, the U1, U2 and z values
have been calculated by relying on Equations (5) and (6)
and are presented in Table 8. It is clear from the table that
since in all cases, the tabulated z value is smaller than the
calculated z value, the null hypothesis is rejected at the
99% significance level in all cases.

5.2.2 K-S test

Finally, we perform the K-S test for the same three pairs
of samples to verify the equality of different methods (see
Sect. 4.2.2). The original H0 values were supplied to the
Matlab function kstest2 to calculate the value of h at the
99% significance level. The results are presented in Table 9
(A). The value of h for the SN-TF pair is zero which
supports the null hypothesis. However, in the remaining
two cases, h is equal to one, indicating the rejection of the
null hypothesis. The CDFs of these pairs have been plotted
in Figure 3. The CDFs obtained for the TF-FPR pair and
for the SN-FPR pair are quite far from each other. Since
the distance between the CDFs is very large in both cases,
the null hypothesis is rejected. Although the CDFs for SN

and TF do not match well, they are not too different. This
is the reason for the non-rejection of the null hypothesis.

In order to exploit the information available in the
uncertainties, we apply the K-S test on the uncertainty
weighted measurements, i.e.,H

′

0. The results are presented
in Table 9 (B). This time the null hypothesis is rejected
in all three cases. Thus we conclude that the different
methods of measuring H0 provide different results. The
CDFs of H0 values from different methods have been
compared in Figure 4. It is clear from the figure that in
all the cases the distance between the CDFs is too large,
hence the null hypothesis is rejected in all cases.

6 CONCLUSIONS

We have applied both the parametric and non-parametric
methods to test if HST Key measurements of H0 from
different methods based on the cosmic distance ladder
are statistically different. The use of HST Key data is
favoured to avoid the instrumental biases arising from
different telescopes. Our null hypothesis is that the average
or median H0 values obtained from different methods are
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Table 6 Unpaired t-test between various pairs of samples (H0 values weighted by uncertainties). Null hypothesis is
rejected at the 99% significance level in all cases.

Pair µ1 µ2 S2
1 S2

2 Ttheory Tcritical DOF Result
SN-TF 2.0 3.5 0.2 0.3 11.9 2.7 55 R

TF-FPR 3.5 8.0 0.3 7.1 5.5 2.8 30 R
SN-FPR 2.0 8.0 0.2 7.1 7.5 2.7 45 R

Table 7 U test between various pairs of samples (using original H0 values). z values in column 8 were referenced from a
table of a standard normal distribution at the 99% significance level. The null hypothesis is rejected in two cases.

Pair n1 n2 U1 U2 U z from Eq. (6) z from table Result
SN-TF 36 21 501.5 254.5 254.5 2.03 2.58 NR

TF-FPR 21 11 205 26 26 3.53 2.58 R
SN-FPR 36 11 392 4 4 4.86 2.58 R

Table 8 U test between various pairs of samples (H0 values weighted by uncertainties). z values in column 8 were
referenced from a table of standard normal distribution for 99% significance level. The null hypothesis is rejected in all
cases.

Pair n1 n2 U1 U2 U z from Eq. (6) z from table Result
SN-TF 36 21 3 753 3 6.19 2.58 R

TF-FPR 21 11 1 230 1 4.5 2.58 R
SN-FPR 36 11 0 396 0 4.96 2.58 R

Table 9 (A) indicates the K-S test results for sample
pairs without including uncertainties. The null hypothesis
is rejected in two cases. (B) signifies the K-S test results
for samples including uncertainties. The null hypothesis is
rejected in all cases.

Pair h value Result Pair h value Result
SN-TF 0 NR SN-TF 1 R

TF-FPR 1 R TF-FPR 1 R
SN-FPR 1 R SN-FPR 1 R

(A) (B)

the same. Based on the results presented in Section 5, we
conclude that the null hypothesis is rejected at the 99%
confidence level in most cases and at the 95% level in all
cases. A possible reason for the failure could be the gaps
in our understanding of the physical processes involved
in these cosmological probes. As an example, SNe Ia
were assumed to be among the most precise secondary
distance indicators. However, the possibility of sub-classes
within the SN Ia class (discovered after the HST Key era)
could bias the correlation between the peak luminosity
and decline rate which might lead to undesired systematic
effects in distance measurement. The physics of the T-
F relation was also poorly understood, for instance, the
constant mass to light ratio assumption may not be reliable,
and the role of dark matter in the galaxy rotation curve
is also debatable (Gurovich et al. 2004), which could
bias the distances measured through the T-F relation. The
difference in the metallicity of various elliptical galaxies in
FPR method could also affect the distance measurement.
The SNe Ia measurements have improved over time, and
precise measurement of H0 relying on SNe Ia is available
now (Riess et al. 2016). Although other methods have

been improved since the HST Key Project era (Verde et al.
2019), it will take a long time to reach the required level of
sensitivity.
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