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Abstract A sky model from CLEAN deconvolution is a particularly effective high dynamic range
reconstruction in radio astronomy, which can effectively model the sky and remove the sidelobes of the
point spread function (PSF) caused by incomplete sampling in the spatial frequency domain. Compared to
scale-free and multi-scale sky models, adaptive-scale sky modeling, which can model both compact and
diffuse features, has been proven to have better sky modeling capabilities in narrowband simulated data,
especially for large-scale features in high-sensitivity observations which are exactly one of the challenges
of data processing for the Square Kilometre Array (SKA). However, adaptive scale CLEAN algorithms have
not been verified by real observation data and allow negative components in the model. In this paper, we
propose an adaptive scale model algorithm with non-negative constraint and wideband imaging capacities,
and it is applied to simulated SKA data and real observation data from the Karl G. Jansky Very Large
Array (JVLA), an SKA precursor. Experiments show that the new algorithm can reconstruct more physical
models with rich details. This work is a step forward for future SKA image reconstruction and developing
SKA imaging pipelines.
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1 INTRODUCTION

The Square Kilometre Array (SKA) (Wu 2019), a large
international scientific project in which China participates,
is the world’s largest synthesis aperture radio telescope
array jointly constructed by more than 10 countries
around the world, with a frequency coverage of 50 MHz
to 20 GHz and an equivalent receiving area of up to
a square kilometer. The SKA will have an extremely
high sensitivity, a wide field of view, ultra-high spatial,
frequency and time resolutions, and ultra-fast survey
speed (Wu 2019; An 2019), which will provide an
unprecedented powerful performance and is expected to
answer fundamental questions such as the origin of the
universe, the nature of gravity, magnetic field of the
universe and life, which will bring revolutionary changes
in many major fields of natural science and provide

humans with a great opportunity to explore and understand
the universe. However, it also brings huge technical
challenges.

The SKA will increase the sensitivity of the telescope
by about 50 times compared to the largest existing radio
telescope array, Karl G. Jansky Very Large Array (JVLA)
(Wu 2019). The extremely high sensitivity can image a
large number of faint compact emission and faint structures
of diffuse emission, so that signal features within the
imaging region become very complicated. This provides a
wealth of materials for exploring the universe, but it also
brings a big challenge to sky modeling – effective sky
modeling is needed to reconstruct such images.

CLEAN deconvolution is a very widely used and
particularly effective image reconstruction method in radio
astronomy (Bhatnagar & Cornwell 2004; Cornwell 2008;
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Zhang 2018; Zhang et al. 2020), which employs iterative
methods to continuously accumulate model components to
achieve a model for the sky. CLEAN deconvolution first
finds a credible component in the residual images (the dirty
image for the first component), and then subtracts the dirty-
beam effects of this component, and iterates in this way
continuously until there is no obvious signal or close to
noise in the residuals, and accumulate all components form
the sky model. According to the parameterization of sky
modeling, CLEAN deconvolution can be divided into three
categories (Zhang et al. 2020): scale-free CLEAN, which
constructs a scale-free sky model, multi-scale CLEAN,
which constructs a multi-scale sky model, and adaptive-
scale CLEAN, which constructs an adaptive-scale sky
model.

Adaptive-scale sky models have been proven to have
better sky modeling capabilities (Bhatnagar & Cornwell
2004; Zhang et al. 2020). However, there are three
problems with the current adaptive-scale sky models:

1. Negative components are allowed in these models.
2. They have not been verified in wideband/multi-

frequency cases commonly used in modern telescopes
such as the SKA.

3. They have not been tested by real observation data.

To apply adaptive-scale sky models to future SKA
imaging, these three problems need to be addressed. In
this paper, we propose a new adaptive-sale sky model
algorithm, which is applied to simulated SKA data and real
observation data of the JVLA.

To better understand the whole problem and our
algorithm, the theories of radio synthesis imaging, multi-
frequency synthesis and parameterized sky models are
introduced in Section 2. The algorithm proposed in this
paper is discussed in detail in Section 3. The results of the
proposed algorithm applied to simulated and real wideband
observations are discussed in Section 4. The final summary
is provided in Section 5.

2 THEORY

2.1 Radio Synthesis Imaging

Radio interferometry (Pawsey et al. 1946; Ryle &
Vonberg 1948; Thompson et al. 2017) employs multiple
telescopes to simultaneously obtain samples in the spatial
frequency domain, and uses Earth-rotation synthesis to
increase samples to measure more spatial frequencies.
For narrowband observations, this measurement can be
expressed as follows:

V obs = SV sky + SN, (1)

where V obs is the observed data, which is called visibilities
in radio astronomy, S is a sampling matrix determined

by the UV coverage of the observation, V sky is the
visibility function which is the Fourier transform of the sky
brightness distribution Isky (please refer to the van Cittert-
Zernike theorem in Thompson et al. (2017) and Taylor
et al. (1999)), and N is the noise in the spatial frequency
domain. The dirty image Iobs is computed by the inverse
Fourier transform,

Iobs = F−1V obs = Idbeam(Isky + Inoise), (2)

where F−1 is the inverse Fourier transform, Inoise =

F−1N is the noise in the image domain, Idbeam is a
Toeplitz matrix where each row is a shifted version of
the dirty beam which is the inverse Fourier transform of
the sampling matrix S. The dirty beam often has different
levels of sidelobes due to factors such as the limited
number of telescopes and observation times. It, together
with the noise term, contaminates astrophysics objects,
which often seriously affects their astrophysics analysis.
Therefore, an effective sky model is needed to represent the
astrophysics objects that are submerged in the dirty beam
and noise.

2.2 Multi-frequency Synthesis

Just like other modern telescope arrays, the SKA will
have a wideband imaging capability, which improves the
sensitivity of the instruments to measure the spectral
structure of astronomical sources in detail, and provides
high-dynamic-range imaging performance that is superior
to narrowband observations. In wideband measurements,
different frequency channels measure different spatial
frequency ranges, which increases UV coverage and
improves the imaging performance of an interferometric
array on the sky brightness distribution. Multi-frequency
synthesis (MFS) (Conway et al. 1990) is a technique com-
bining multiple discrete frequency observation, which is
applied to multi-frequency image reconstruction. Standard
multi-frequency synthesis imaging assumes that the sky
brightness distribution does not vary across the total
measured frequency bandwidth and grids all observed
visibilities from different frequency channels onto the
same spatial-frequency grid.

V obs =
∑
v

V obs
v , (3)

where V obs
v is the visibilities measured at frequency

v. MFS can be used to combine multiple narrowband
observations to increase UV coverage by switching
frequencies during observations, or to eliminate the
bandwidth-smearing of wideband observations by splitting
the broadband into multiple narrowband frequencies and
mapping them to corresponding spatial frequencies. The
dirty/observed image is calculated from wideband or
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multi-frequency visibilities using MFS, and then find
the optimal adaptive-scale sky model to represent a
sky brightness distribution. Different sky models have
significant differences in the ability to represent a sky
brightness distribution, which is discussed below.

2.3 Parameterized Sky Models

A scale-free sky model (Högbom 1974; Clark 1980;
Schwab 1984; Mei et al. 2018) parameterizes the sky into
a series of delta functions,

Imodel =

N∑
i=1

Ipeaki δi(x− xi, y − yi), (4)

where Imodel is a scale-free sky model consisting of N
components,

∑
is a summing operation, Ipeaki is the peak

amplitude of the ith component and δi is a delta function
located at (x − xi, y − yi). It is very effective for the
representation of compact emission, especially the case
which there are only a few well-separated point sources
in the imaging sky region. However, this model cannot
represent the correlation between adjacent pixels. A scale-
free sky model represents diffuse emission as a series
of isolated delta functions, which is often a physically
inaccurate expression. A well-known example is the stripes
from the reconstruction of diffuse emission (Clark 1982)
and many improvements have been developed in the
early days to eliminate the stripes (Palagi 1982; Cornwell
1983; Steer et al. 1984). For example, Cornwell (1983)
suppressed stripes by adding a regularization term to the
objective function to introduce a smooth prior into the
model. However, these did not fundamentally solve the
problem. Reconstruction based on a scale-free sky model
may not be distinguishable from the real sky due to the
unmeasured spatial frequencies that are not limited by this
model.

To represent the complex features of astrophysics
targets at different scales, a straightforward idea is to
introduce some a priori constraints on the scale of sky
emission. A multi-scale sky model (Cornwell 2008; Rau
& Cornwell 2011) parameterizes the sky in a multi-scale
basis, which can express the correlation between pixels
and provides a strong constraint to the unmeasured spatial
frequencies.

Imodel =

N∑
i=1

Icomp
i (amp, loc, scale), (5)

where Icomp
i (amp, loc, scale) is the ith component at loc

with the amplitude amp and the enumerated scale scale.
It significantly improves the ability to express diffuse
emission and fundamentally eliminates the stripes caused
by a scale-free sky model. However, a multi-scale sky

model is built on user-specified scales, and the length of
the scale list is generally a few due to the limitations of the
computer’s memory and computational load. This causes
sky emission that is not in the specified scale list to be
broken into the specified scales, and the sky is forced to
be represented as a set of specified scales, which results in
an inaccurate representation.

Sky emission obtained by modern ultra-high sensitivi-
ty telescopes such as the SKA often has a large number of
complex features with uncertain scales, which essentially
requires an adaptive-scale sky model. Such cases cannot
be well modeled by scale-free and multi-scale sky models.
An adaptive-scale sky model (Bhatnagar & Cornwell 2004;
Zhang et al. 2016; Zhang 2018; Zhang et al. 2019) uses
an adaptive scale basis to parameterize the sky and its
scales are changed adaptively with the inherent scales of
emission.

Imodel =

N∑
i=1

Icomp
i (pi), (6)

where Icomp
i (pi) is the ith component with an adaptive-

scale parameter pi. The inaccurate representation due
to the specified scales in a multi-scale sky model is
theoretically eliminated. As mentioned earlier, there are
still some problems with adaptive scale models, which will
be addressed as follows.

3 THE ALGORITHM OF ADAPTIVE-SCALE SKY
MODEL WITH MFS

In this section, we introduce this new algorithm that
combines MFS to construct an adaptive scale sky model
from wideband or multi-frequency observations. In this
adaptive-scale sky model, emission is physically restricted
to positive, so we also call it positive-fusedClean or p-
fusedClean.

Our algorithm uses the standard reconstruction frame-
work (Venkata 2010; Zhang et al. 2020) to construct the
optimal adaptive-scale sky model which is consistent with
the measurements and predicts the unmeasured spatial
frequencies well by the following iterative method.

1. Compute dirty/residual images;
2. Search model components;
3. Update the model and residuals;
4. Predict the model onto the observed data points when

the model accumulates to a certain degree;
5. Compute the visibility residuals;
6. Repeat the above process until the optimal adaptive-

scale sky model was found.

This process is performed alternately between the image
domain and the visibility domain. Model component
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search is performed in the image domain and errors such
as from gridding are corrected in the visibility domain.

The adaptive-scale sky model needs to be estimated
from the dirty image determined by the following formula,

Iobs = F−1
N−1∑
0

SvV
sky, (7)

where Sv is a sampling matrix that changes with
frequencies. All the measured Svs after multi-frequency
synthesis together determine the entire sampling matrix.
In the subsequent correction process, the residual image
V vis−resi needs to be computed, which is estimated from
the residual visibilities V residual,

V vis−resi = F−1
N−1∑
0

SvV
residual. (8)

The spatial frequencies increased by multi-frequency
synthesis will significantly reduce the sidelobes of the
dirty beam, thereby increasing the sensitivity of the
measurements. Therefore, there is less overlap between
adjacent sources due to the sidelobes of the dirty beam,
and the quality of the dirty image is better and easier to
reconstruct the original appearance of the sky.

During the model search phase, the adaptive-scale
gaussian functions and delta functions are used to model
the radio sky. The delta functions are used to construct
compact emission, which are effective approximations to
the zero-scale gaussian functions. Most of the emission
is parameterized by the adaptive-scale gaussian functions,
which are obtained by a fast explicit fit. An initial guess
of fitting parameters by a matched filtering is used to find
these adaptive-scale gaussian components. Each gaussian
component is estimated from the current residual image by
minimizing the following objective function,

χ2 =
1

2

(
Iresiduali−1 − Ig−comp

i (pi)
)T (

Iresiduali−1 − Ig−comp
i (pi)

)
,

(9)

where T is the transpose operation, Ig−comp
i (pi) =

Igaussi (aig, lig,mig, ωig) is a gaussian function with
amplitude aig, position (lig,mig) and scale ωig, which
is estimated by, for example, the Levenberg-Marquardt
optimizer (Marquardt 1963) from the current residual
image Iresiduali−1 . The optimal component is obtained
by continuously updating the direction of the negative
gradients,

∂χ2

∂pi
= −

[
Iresiduali−1

]T ∂Ig−comp
i

∂pi
, (10)

where T is a transpose operation. This optimizer is able to
find that the largest scale size in the current residual image,

which is consistent with the nature of the image, and the
scale size of the component is completely determined by
the nature of the image itself. The parameters of a model
component can be computed from the optimal gaussian
Igaussi by the following method,

li = lig, (11)

mi = mig, (12)

ω2
ig = ω2

i + ω2
b, (13)

aigω
2
ig = 2πabaiω

2
bω

2
i , (14)

where li and mi are the location of the ith model
component respectively, which are constant during fitting,
and ωi and ai are the width and amplitude of this model
component, respectively. In this method, a gaussian beam
with amplitude ab and width ωb needs to be estimated from
the dirty beam. The major effect from the main lobe of
the dirty beam can be analytically eliminated. Here, the
errors caused by the approximation of the dirty beam will
be corrected in the next step. The method of analytically
eliminating the effects of the main lobe of the dirty beam
can significantly improve the computing efficiency by
removing a lot of time-consuming convolution calculations
in the fitting process.

When compact emission is detected, delta functions
are used to represent the components Icomp

i = Ipeaki (l,m).
The peak search method is triggered to find compact
components when small scale sizes appear frequently in
recent model components or the initial scale calculated by
the matched filtering method is smaller than a threshold.
The number of iterations nitr triggered after the peak
search method can be a constant number or proportional
to the number ttrig of triggers of the peak search method,
i.e.

nitr = 100 + 2500
1− e0.05ttrig

1 + e0.05ttrig
. (15)

The specific form of Equation (15) is not important (Zhang
2018), it will have slight differences in performance with
different data, but the important thing is that delta functions
are used to represent compact emission. The use of delta
functions to represent compact emission has been proven
to be effective (Högbom 1974; Schwab 1984), and the peak
search method is significantly faster than explicit fitting
in a model component search. However, the expression of
diffuse emission is more effective in constructing adaptive
scale models using explicit fitting. The combination of the
two has been proven to have a large improvement in model
representation and computing performance (Zhang 2018).

There is only one zero-scale in the scale-free sky
model and a few scales specified by the user in the multi-
scale sky model. These specified scales do not adequately
represent radio sky with uncertain scales. The scales
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inconsistent with the enumerated scales will be broken
into several specified scales, which means unmeasured
spatial frequencies cannot be accurately predicted and the
resulting model is not optimal. The scales of the sky model
constructed by our method are adaptive to the nature of the
observed image, not limited to the preset scale, which just
solves the problem of scale-free and multi-scale key model
representation.

Once a model component is found, the model and
residual images need to be updated. Before updating the
model image, the new model component will be multiplied
by a factor term called loop gain,

Imodel
i = Imodel

i−1 + kIcomp
i (16)

where k is the loop gain factor term and its value is
between 0 and 1. This defines the step size of the
gradient update to prevent overshoot and divergence. In
order to reduce the effect of the negative component,
the loop gain of the negative component is half of that
of the positive component. This can effectively reduce
the negative components and increase the extraction of
the positive components, so that the model tends to
be as positive as possible, which helps to make strict
non-negative restrictions in the major cycle. In order to
eliminate the influence of the dirty beam of the current
model and find new model components, the residual
Iresiduali is updated,

Iresiduali = Idirty −BdirtyImodel
i . (17)

When we are unable to extract a reliable signal from the
current residuals (e.g. the current residual peak is a ratio
(such as 10%) of the residual peak calculated from the
visibility domain), and then perform corrections in the
visibility domain. This requires model prediction and then
calculation of visibility residuals.

We retain the possibility of negative components
during the model search phase, which helps to increase
the robustness of our algorithm. However, the negative
components are not physical, so the negative components
in the model need to be eliminated before the prediction,

Ip−model
j = PImodel

i , (18)

where Ip−model
j is the model modified before the jth

prediction, and P is the modification operation which
makes the model nonnegative. In the modified model,
emission is restricted to positive, which is more consistent
with astrophysics. In order to correct the errors of
operations from visibilities to images, the current model
needs to be predicted onto the measurement points. The
predicted visibilities

V pre
j = AIp−model

j , (19)

where A represents the set of operations from the model
image to the predicted visibilities. This is the inverse of
computing the dirty image from visibilities (Venkata 2010;
Zhang et al. 2020). Then we use the predicted visibilities
to calculate the visibility residuals,

V residual
j = V obs − V pre

j . (20)

Then we return to the first step to calculate the residual
image to correct the errors.

Our algorithm is capable of processing wideband or
multi-frequency observations and building a physically
adaptive-scale sky model. The adaptive-scale sky model
constructed by our algorithm in this paper has no negative
components allowed in the current other adaptive-scale sky
model algorithms (Bhatnagar & Cornwell 2004; Zhang
et al. 2016; Zhang 2018). In Bhatnagar & Cornwell
(2004), the active-set is used to construct orthogonal
basis functions to reconstruct an adaptive-scale radio sky,
however, building an orthogonal adaptive scale sky is
very time-consuming. As in Zhang (2018), our algorithm
relaxes the orthogonal assumption and significantly
accelerates the reconstruction process while maintaining
the reconstruction quality. Instead of calculating a model
component after obtaining a gaussian component from the
dirty image, a model component in our method is directly
optimized during the fitting process. This eliminates the
manual critical judgment rules for distinguishing between
compact and extended features, making reconstruction
more accurate and automated. Another notable difference
is that our algorithm can handle wideband or multi-
frequency observations while other adaptive-scale sky
models are only studied in narrowband mode. The next
section will demonstrate the performance of our algorithm
with simulated SKA data and real wideband observations
of the JVLA.

4 RESULTS AND DISCUSSION

4.1 Performance on Simulated SKA Data

In order to show the ability of the sky model construction
of this algorithm proposed in this paper, here we apply
simulated SKA data where the reference/true image
is known. Using the Radio Astronomy Simulation,
Calibration and Imaging Library (RASCIL) 1, we make
an SKA observation simulation with the configuration
‘LOWBD2’ on this widely researched medium-complex
radio source ‘M31’ (Fig. 2 left). This simulation was

1 https://developer.skatelescope.org/projects/
sim-tools/en/latest/ or https://github.com/
SKA-ScienceDataProcessor/rascil; this library is officially
developed by the SKA for radio interferometry calibration and imaging
algorithms using Python and numpy.

https://developer.skatelescope.org/projects/sim-tools/en/latest/
https://developer.skatelescope.org/projects/sim-tools/en/latest/
https://github.com/SKA-ScienceDataProcessor/rascil
https://github.com/SKA-ScienceDataProcessor/rascil
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Fig. 1: This is the UV coverage from the simulation of SKA observation at 100 megahertz with the ‘LOWBD2’
configuration.

Fig. 2: The simulation of SKA observation. Left: the reference /true image ‘M31’ used in this simulation, middle: the
spread point function with the logarithmic scaling (CASA scaling power cycles = −0.9) to show more details of these
sidelobes, right: the dirty image corrupted by the point spread function (PSF).

performed at a center frequency of 100 megahertz and a
bandwidth of 1 megahertz. This source is considered to be
at right ascension 15 degrees and declination −45 degrees.
This simulated UV coverage is shown in Figure 1 and the
simulated observation image (i.e. dirty image) is shown in
Figure 2 right. We then reconstruct a sky model from the
dirty image that is close to the reference image, which is
also the work of deconvolution.

In Figure 3, we show the reconstruction results from
the multiscale CLEAN and our algorithms. From these

model images, our algorithm can reconstruct the extended
features very well. We can see that our algorithm can
construct a model close to the reference image. Obviously,
the residual image of our algorithm contains fewer signals,
which shows that our algorithm extracts signals more fully.
In reconstruction, we use a CLEAN window of 1/4 image
size. The results show that the residual image obtained by
our algorithm has less signal residue. The final restored
image is shown in Figure 4. Our restored image (Fig. 4
right) shows that our algorithm has well eliminated the
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Fig. 3: Model and residual images from multiscale CLEAN and our algorithms. In the first column from the multiscale
CLEAN algorithm: top: the model image, bottom: the residual image. In the second column from our algorithm: top: the
model image, bottom: the residual image.

Fig. 4: Restored Images. Left: from the multiscale CLEAN algorithm, right: from our algorithm.

sidelobe effects in the dirty image displayed in Figure 2,
so that there are no longer significant features outside the
source.

Table 1 records the residual RMS and dynamic
range of the restored images of different algorithms.
In this example, our algorithm can achieve over 66%

improvement in dynamic range and over 30% reduction

Table 1: Numerical Comparison of Different Algorithms
for the SKA Simulation

Off-source RMS Full RMS Dynamic Range
(10−3) (10−3) (103)

Multiscale 4.435 5.982 4.224
Our 2.664 3.962 7.028

Off-source RMS is calculated from the non-source area of the residual
image while full RMS is calculated from the entire residual image.
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Fig. 5: The behavior of the reconstructed model flux with
different initial parameters as the components decrease.
Notes: ‘scale list 1’ =[0,1,2,4] pixels, ‘scale list 2’
=[0,2,4,6] pixels, ‘scale list 3’ =[0,2,5,8] pixels, ‘scale list
4’ =[0,3,6,10] pixels. These scales are the full width at half
maximum of the Gaussian functions, which are used to find
the best initial fitting parameters in the matched filtering
process. Figs. 6 and 7 are the same.

Fig. 6: The RMS behaviors of the entire residual images
with different initial parameters.

in residual RMS. This further confirms that our algorithm
can obtain better reconstruction quality. This improvement
is likely to come from the better representation of adaptive
scale model for sky emission.

In our algorithm, the acquisition of optimization
components requires initial parameters. The effect of
different initial parameters on the accumulation process
of the reconstructed model is shown in Figure 5. It
can be seen that although different initial parameters
have a slight effect on the accumulation process of the
reconstructed model, this does not affect the convergence
of the algorithm to the same level. If we look at the effect
of different parameters on the residual RMS (Fig. 6), it

Fig. 7: The off-source RMS behaviors of the residual
images with different initial parameters.

can quickly drop to very low levels. At the same time, we
can also see that there is some recovery in RMS during
the descent, which is caused by the accumulation of errors
during model construction, but our algorithm can quickly
correct it and continue to move forward until convergence.
In addition, RMS is insensitive to these initial parameters.
We can get similar conclusions from the residual off-
source RMS (Fig. 7). These show that our algorithm is
not significantly affected by the parameters, that is, robust.
This enables our algorithm to obtain a stable result under
different parameters.

4.2 Performance on Real Data

Now that we know the performance of our algorithm in
SKA simulated data, we now test its performance in real
observation data. The demonstration example for real data
is the supernova remnants G55.7+3.4, observed with the D
configuration of the JVLA. This 8-hour observation uses
the entire 1 GHz bandwidth at the L band from 1 GHz to 2
GHz (Bhatnagar et al. 2011). The frequency resolution is
2 MHz and the time resolution is 1 s. During the imaging,
the 1s resolution data is averaged to the 10 s time resolution
to reduce the amount of the data. J1925–2106 is used for
a bandpass and phase calibrator and 3C147 for standard
flux calibration. The robust weighting is used during the
gridding. The cell size is 8 arcsec, and the imaging region
is approximately 34 arcmin. All observations of different
frequency windows are combined by the MFS in our
algorithm, which significantly increases the observed UV
coverage (Fig. 8). The wideband dirty image shown in
Figure 9 has an extended source with different angular
scales and many compact sources in the background. The
representation of such a sky region essentially requires an
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Fig. 8: Left: the UV coverage from one frequency measurements, right: the full UV coverage, which combines all
observations from 1 to 2 GHz by the MFS.

adaptive-scale sky model, which models diffuse emission
at different scales and compact emission well.

Fig. 9: This is the wideband dirty image, which combines
all observations from 1 to 2 GHz by the MFS.

Model images reconstructed from three different sky
models are displayed in Figure 10. Obviously, the scale-
free model image (Fig. 10 left) represents the sky as a
collection of points with zero scales (delta functions),
which cannot represent the correlation between adjacent
pixels in such an extended emission as G55.7+3.4. In addi-
tion, the scale-free sky model has difficulty reconstructing
faint extended features. Compared to the scale-free sky
model, the model image reconstructed by the multi-scale
sky model (Fig. 10 middle) has improved significantly on
the representation of the extended emission. However, the
enumeration scale of the multi-scale sky model often keeps
the reconstructed model image away from the intrinsic

scale characteristics of astrophysical targets. It is obvious
that the adaptive-scale model image (Fig. 10 right) is
the best reconstructed model image, which is basically
consistent with the nature of astrophysical targets and has
rich details. This shows that our proposed adaptive scale
sky model can reconstruct the intrinsic scale characteristics
of astrophysical targets well.

In addition, scale-free and multi-scale sky models
allow negative components in model images. These neg-
ative structures can be seen in the beamed model images
(shown in Fig. 11), which are obtained by convolving
model images and the restored beam. A physically credible
model should not contain any negative structures, so we
removed the negative components from the beamed model
images shown in Figure 11. Therefore, these non-negative
model images in Figure 12 are astrophysical. As can be
seen from Figure 12, the scale-free model image recovers
the fewest physically credible features, while the adaptive-
scale model image recovers the richest detail and looks
like more consistent with the features contained in the
observed/dirty image. This happens because the adaptive-
scale sky model presented in this paper can represent the
intrinsic scale characteristics of astrophysical targets well
and does not allow the presence of non-physical negative
components, which makes the reconstructed model images
closer to astrophysical targets. Accurate reconstruction of
the adaptive scale sky model will provide more powerful
material for astrophysical research.

5 SUMMARY

In this paper, we propose a new adaptive-scale sky
model and apply it to data processing for simulated SKA
observation and real wideband measurements. Compared
to scale-free and multi-scale sky models, the adaptive-
scale sky model can better represent the sky. In the
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Fig. 10: These model images from different sky models. Left: the scale-free model image, middle: the multi-scale model
image, right: the adaptive-scale model image reconstructed by our algorithm.

Fig. 11: These beamed model images from different sky models. Left: the scale-free beamed model image, middle: the
multi-scale beamed model image, right: the adaptive-scale beamed model image reconstructed by our algorithm.

Fig. 12: These non-negative beamed model images from different sky models, which are physical representations. Left:
the physical scale-free beamed model image, middle: the physical multi-scale beamed model image, right: the physical
adaptive-scale beamed model image reconstructed by our algorithm.

other adaptive-scale sky models, negative components
are allowed in the final model image, but the negative
components do not conform to the nature of astrophysics.
So we introduce positive restrictions on emission, which

makes the adaptive-scale sky model physically represent
the sky, which will make the sky model constructed
by our algorithm more consistent with the nature of
astrophysics. These are very important for high dynamic
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range imaging. In addition, the current other adaptive-
scale sky models are designed for narrowband simulation
observations, which cannot meet the requirements of
SKA’s wideband observations. However, our algorithm
can have wideband imaging capabilities, which effectively
combines observations of different frequencies, which is
conducive to increasing measurement sensitivity and cop-
ing with bandwidth smearing issues. Effective sky models
and processing capabilities for wideband observations are
very important for SKA imaging. This is also quite useful
for the development of the SKA imaging pipeline.
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