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Abstract We study the connections between the pairwise velocity moment generating functionG(k‖, r)
and redshift space distortion (RSD) modeling. Herek‖ is the Fourier wavevector parallel to the line of
sight, andr is the pair separation vector. We demonstrate its usage by two examples. (1) Besides the known
relations betweenG and the RSD power spectrum (and the correlation function), we propose a new RSD
statisticsP s(k‖, r⊥) whose connection toG is convenient to evaluate numerically. (2) We then develop a
fast method to numerically evaluateG, and apply it to a high resolution N-body simulation. We find thatG
(lnG) shows complicated dependence onk‖ beyond the linear and quadratic dependencies. This not only
shows inaccuracy in some existing models and identifies sources of inaccuracy but also provides possible
ways of improving the RSD modeling. Consequently, more comprehensive investigations onG are needed
to fully explore the usage ofG in RSD modeling.
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1 INTRODUCTION

Redshift space distortion (e.g.,Peebles 1980; Kaiser 1987;
Scoccimarro 2004) is a powerful cosmological probe. It
has made significant contribution in the establishment of
the standardΛCDM cosmology (e.g.,Davis & Peebles
1983; Peebles 1984). It continues to be a major scientific
target of several major galaxy surveys such as SDSS,
2dF, 6dF, VVDS and BOSS (e.g.,Peacock et al. 2001;
Tegmark et al. 2004; Guzzo et al. 2008; Reid et al. 2012,
2014). Ongoing/upcoming stage IV surveys such as
DESI, PFS, Euclid, SKA (e.g.DESI Collaboration et al.
2016; Amendola et al. 2016; Abdalla et al. 2015) will use
redshift space distortion (RSD) to achieve 1% accuracy in
measuring the structure growth ratef(z)σ8(z) over mul-
tiple redshift bins. Significant further improvement is also
possible by more advanced surveys (e.g.,Dodelson et al.
2016).

The physics of RSD is straightforward. In a
spectroscopic redshift survey, we assign the associated
cosmological distance to a given galaxy by assuming the
observed redshift as the cosmological redshift. However,
since the observed galaxy redshift has an extra Doppler
redshift induced by the galaxy peculiar velocity, the
measured 3D distribution of galaxies (the so called
redshift space distribution), is therefore different fromthe

distribution in real space. This shift in galaxy position
happens along the line of sight but not perpendicular
to the line of sight. Therefore it renders the otherwise
(statistically) isotropic galaxy distribution into anisotropic
distribution. By analyzing this characteristic anisotropy,
we are able to infer the peculiar velocity of galaxies,
without the need of distance indicators and free of the
associated systematics. The peculiar velocity field itselfis
a major measure of the large scale structure (LSS) of the
universe, and contains crucial information on dark energy
and gravity (e.g.,Zhang et al. 2007; Jain & Zhang 2008).
This makes RSD one of the major dark energy probes.

A major unresolved problem in RSD cosmology is
its theoretical modeling. First, RSD involves both the
nonlinear evolution of density field and velocity field,
and the nonlinear coupling between the two. Second, the
mapping from real space to redshift space is nonlinear. An
inevitable consequence is that even the simplest 2-point
correlation function in redshift space is determined by not
only the 2-point correlation function in real space, but also
n-point correlation functions (n > 2). Over the past three
decades, many RSD models (e.g.,Peebles 1980; Kaiser
1987; Scoccimarro 2004; Matsubara 2008; Taruya et al.
2010; Seljak & McDonald 2011; Reid & White 2011;
Okumura et al. 2012; Zhang et al. 2013; Zheng et al.
2013; Wang et al. 2014; Zheng & Song 2016; Song et al.
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2018; Zheng et al. 2019) have been constructed, test-
ed against numerical simulation (e.g.,Okumura & Jing
2011; Bianchi et al. 2012; de la Torre & Guzzo 2012;
White et al. 2015), and/or applied in the data analysis.
Nevertheless, their accuracy atk ≥ 0.1 − 0.2 h Mpc−1

and their applicability to general galaxy samples require
more comprehensive studies and independent checks.
Furthermore, to fully realize the power of ambitious
surveys beyond stage IV (Dodelson et al. 2016), accurate
RSD modeling up tok = 0.4 − 0.5 h Mpc−1 is required.
This is beyond the capability of any existing RSD models.

This paper presents an attempt to study RSD, through
the viewpoint of pairwise velocity moment generating
function. Although we are not able to obtain any
solid results directly improving the RSD modeling,
the presented results show useful clues/insights for the
generating function based RSD modeling, alternative to
existing models. This paper is organized as follows.
In Section 2, we present the theoretical results linking
the pairwise velocity moment generating function to the
RSD modeling in configuration space, Fourier space and
hybrid space. In Section3, we use N-body simulation to
evaluate the generating function and its dependence on
the Fourier wavevector parallel to the line of sightk‖.
Section4 discusses the possible implications, summarizes
the results, and lists key issues for future works.

2 THE PAIRWISE VELOCITY MOMENT
GENERATING FUNCTION AND ITS
CONNECTION TO RSD MODELING

Redshift space distortion changes the galaxy/DM particle
positionx to s,

s = x+
v · x̂

H(z)
x̂ = x+

v‖

H(z)
x̂ . (1)

HereH(z) is the Hubble parameter at redshiftz. v‖ is the
velocity component along the line of sight. For brevity we
often neglect thisH(z) where it does not cause confusion.
The mass/number conservation then leads to an equality

(1 + δ(x))d3x = (1 + δs(s))d3s . (2)

In Fourier space we have

δs(k) =

∫

(1 + δs(s))eik·sd3s − (2π)3δ3D(k)

=

∫

[

(1 + δ(x))eik‖v‖(x)
]

eik·xd3x− (2π)3δ3D(k) .

(3)
Herek‖ is the wavevector component parallel to the line of
sight. We have adopted the parallel plane approximation
(distant observer approximation) such that the line of sight
is a fixed direction. The power spectrum is defined by

〈δs(k)δs(k
′

)〉 = (2π)3δ3D(k+ k
′

)P s(k) . (4)

We then obtain

P s(k) =

∫

〈(1 + δ1)(1 + δ2)e
ik‖v12〉

r
′ eik·r

′

d3r
′

− (2π)3δ3D(k) .

(5)

Here δi ≡ δ(xi) (i = 1, 2), r
′

≡ x1 − x2, v12 ≡

v‖(x1)−v‖(x2). The ensemble average〈· · · 〉
r
′ is for fixed

pair separationr
′

. We define a function

G(k‖, r) ≡
〈(1 + δ1)(1 + δ2)e

ik‖v12〉

1 + ξ(r)
. (6)

By definition |G| ≤ 1. Any non-zero velocity component
anywhere in the field will causeG 6= 1. The asymmetric
component of v12 induces an imaginary part.G is
the moment generating function of pairwise velocity
(Scoccimarro 2004), since

〈vm12〉 ≡
〈(1 + δ1)(1 + δ2)v

m
12〉

1 + ξ(r)
=

∂mG

∂(ik‖)m

∣

∣

∣

∣

k‖=0

, m ≥ 1 .

(7)
This moment generating functionG determines the
redshift space power spectrum

P s(k) =

∫

[

(1 + ξ(r
′

))G(k‖, r
′

)− 1
]

eik·r
′

d3r
′

. (8)

Here for the purpose of numerical evaluation, we have
moved the(2π)3δ3D(k) in Equation (5) into the integral.
Furthermore,G is related to the pairwise velocity
probability distribution function (PDF), and the RSD
modeling in configuration space (correlation function). By
multiplying both sides of Equation (8) with

∫

exp(−ik ·

r)d3k/(2π)3 and performing the integral, we obtain the
redshift space correlation function

1 + ξs(r = (r‖, r⊥))

=

∫

(1 + ξ(r
′

= (r
′

‖, r⊥))p(v12|r
′

= (r
′

‖, r⊥))dr
′

‖ ,

v12 = r‖ − r‖
′ .

(9)
Herep(v12|r) is the pairwise velocity PDF. This is related
toG by

p(v12|r) =

∫

G(k‖, r)e
ik‖v12

dk‖

2π
. (10)

Although these results have been known in the literature
(e.g.,Scoccimarro 2004), to our knowledge no one directly
evaluatedG and compared it with numerical simulations
in the context of RSD. Consequently, this will be a major
focus of this paper. Equation (9) is the streaming model
widely adopted in RSD modeling. If we adopt a Gaussian
p(v12) with nonzero〈v12〉, then we obtain the Gaussian
streaming model (Reid & White 2011).
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Interestingly, if we multiply both side of Equation (8)
with

∫

exp(−ik⊥ · r⊥)d
2
k⊥/(2π)

2 instead, we obtain

P s(k‖, r⊥) =

∫

[

(1 + ξ(r))G(k‖ , r)− 1
]

eik‖r‖dr‖ .

(11)
This is neither the correlation function nor the power
spectrum. But this hybrid statistics has some attractive
features. (1)P s(k‖ = 0, r⊥) = P (k‖ = 0, r⊥) = wp(r⊥).
Namely thek‖ = 0 mode is unaffected by RSD, and its
value equals to projected correlation function. So RSD is
constrained tok‖ 6= 0 modes. This is an advantage thatξs

does not share. (2) The modeling ofG(k‖, r) is expected
to be more straightforward thanp(v12|r). So the modeling
of P s(k‖, r⊥) can be easier thanξs(r‖, r⊥). Meanwhile,
the measurement ofP s(k‖, r⊥) is as straightforward as
ξs(r‖, r⊥). Therefore working withP s(k‖, r⊥) directly is
a promising alternative toP s(k‖, k⊥) andξs(r‖, r⊥).

Equations (8), (9) and (11) then motivate us to
numerically investigate the moment generating function
G. We expect that this may provide new insight on the
RSD modeling. Furthermore, starting with the pairwise
velocity generating function instead ofp(v12|r) has certain
advantages. First, the parameterization ofp(v12|r) is not
straightforward and cannot be easily obtained by Taylor
expansion or other familiar tools. However,G andlnG can
be conveniently expanded into its Taylor series in which
coefficients are the pairwise velocity moments/cumulants.
Second, it is less studied compared top(v12|r) and
therefore there may be still useful information to be
revealed. Third, in RSD, we often decompose the peculiar
velocity into a large scale componentvL (bulk flow) and
a small scale componentvS (random motion) because the
two have different impacts on RSD. We can writev12 =

v12,L + v12,S wherev12,L and v12,S are independent to
each other. Then the PDF ofv12 is the convolution of the
PDFs ofv12,L andv12,S ,

p(v12|r) =

∫

p(v12,L|r)p(v12,S |r)

δD(v12,L + v12,S − v12)dv12,Ldv12,S .

(12)

In combination with Equation (10) and its inverse Fourier
transformation, we are then able to prove a potentially
useful relation

G(k‖, r) = GL(k‖, r)GS(k‖, r) . (13)

HereGL,S are the generating functions ofv12,L andv12,S
respectively. We show one example why this relation is
useful. By plugging it into Equation (11), we obtain

P s(k‖, r⊥) ≃

{
∫

[

(1 + ξ(r))GL(k‖, r)
]

eik‖r‖dr‖

}

×GS(k‖, r = (0, r⊥)) .
(14)

Fig. 1 The probability distribution function of the one-
dimensional velocity (vx,y,z), evaluated with a30723

simulation ofΛCDM cosmology atz = 0. The PDF is
clearly non-Gaussian, with a long tail of|v| ≫ σv and of
the asymptotic exponential PDF∝ exp(−|v|/v∗).

We can moveGS out of the Fourier transform, for two
reasons. First, this is a small scale velocity mode, whose
spatial correlation is weak and only exists below certainr.
Second, due tor⊥ 6= 0, only spatial correlation atr ≥ r⊥
contributes toP s(k‖, r⊥). Consequently, by appropriate
choice ofr⊥, we can setGS(k‖, r) = GS(k‖, r = (0, r⊥))

and obtain the above result.

3 NUMERICAL EVALUATION OF THE PAIRWISE
VELOCITY MOMENT GENERATING
FUNCTION

We analyze one of the CosmicGrowth simulation series
(Jing 2019), which was denoted J6620 in our previous
works (e.g., Chen et al. 2018). The simulation runs
with a P3M code (Jing et al. 2007), boxsizeLbox =

1200 h−1 Mpc, andNP = 30723 simulation particles. It
adopts the standardΛCDM cosmology, withΩm = 0.268,
ΩΛ = 0.732, Ωb = 0.044, σ8 = 0.83, ns = 0.96 and
h = 0.71. Figure1 shows the one point PDF of peculiar
velocity v‖ (namely vx,y,z in the simulation coordinate
system). The one point PDF clearly shows that the velocity
distribution is non-Gaussian, with a power-law like long
tail of high velocity v & 3000 km s−1. Furthermore,
as shown in the literature (e.g.,Scoccimarro 2004), the
pairwise PDF is asymmetric, reflecting the mean pairwise
velocity 〈v12〉 6= 0.

For Nk values of k‖ of interest, the brute force
measurement ofG takesO(N2

PNk) steps. This is too
time-consuming. So we design a fast evaluation method



28–4 J. Zhao & J. Chen: Pairwise Velocity Moment Generating Function

Fig. 2 Real part of generating function as the function
of kz (k‖ = kx,y,z). We select four differentr values
corresponds to lines with different colors. The dependence
on kz is complicated, meaning that simply leading order
Taylor expansion inG is not an excellent approximation.

with the aid of FFT.Step 1. First we assign particles by
the nearest grid point (NGP) method to uniform grid of
Nc = 10243 cells (cell sizeLc = 1.17 h Mpc−1). Each
cell then has an estimated overdensityδ̂ =

∑

i /n̄ − 1,
where the sum is over all particles within this cell.n̄ = 33

is the mean number of simulation particles per cell. For a
given k‖, we also have a field̂p =

∑

j exp(ik‖v‖,j)/n̄,
summing over the same particles. In the continuum limit,
this approaches(1 + δ) exp(ik‖v‖). We choose the line
of sight direction as either one of thex, y, z simulation
axes.Step 2. We evaluate〈δ̂1δ̂2〉 and〈p̂1p̂∗2〉 by FFTs. The
first FFT is δ̂(x) → δ̂(k). The second is an inverse FFT,
δ̂(k)δ̂∗(k) → 〈δ̂1δ̂2〉r. We perform the same for̂p and
obtain〈p̂1p̂2〉r. We then obtain

Ĝ(k‖, r) =
〈p̂1p̂

∗
2〉r

1 + 〈δ̂1δ̂2〉r

∣

∣

∣

∣

∣

FFT

. (15)

For eachk‖, it takes four FFTs to obtainG(k‖, r) at
Nc configurations ofr. The total computation reduces
to aO(Nc log2(Nc)Nk) process.Step 3. We then repeat
for other values ofk‖. To avoid spatial smoothing effect
caused by the grid assignment, the scale investigated must
satisfyr ≫ Lc. Therefore in this paper we only focus on
r & 7 h Mpc−1.

3.1 The Real Part of G and lnG

Since|G| ≤ 1, we plot1−Re(G) (the real part of1 − G)
in Figure2. The result shown is atz = 0, as a function

Fig. 3 Real part of generating function as the function
of kz. Comparing to 1−Re(G), Re(lnG) is better
approximated by∝ k2‖. Nevertheless, thek2‖ behavior is
only approximate.

of k‖ ≤ 0.4 h Mpc−1. G also depends on both the
amplitude ofr andur ≡ r‖/r. So we show four values
of r = 7.6, 25, 119 and 236 h−1 Mpc, and four values
of ur = 0.3, 0.5, 0.7, 0.9. Figure2 shows that1−Re(G)
has a complicated dependence onk‖, r andur. According
to Equations (6) and (7), 1−Re(G) only contains terms
k2n‖ (n ≥ 1) and the leading order term isk2‖. Figure2

shows that thek2‖ dependence is not a good approximation
at all. The slowdown of1−Re(G) at large k‖ means
that k4‖ term (with a sign opposite to thek2‖ term) will
become important.1−Re(G) in general decreases with
increasingr, for fixed k‖ and ur. This approaches the
limit of no spatial correlation inv1,2 whenr >∼ 100 Mpc.
The dependence onur is weak, although visible. This
dependence is caused by the anisotropy in the pairwise
velocity moments, whose leading order dependence on
u2r is 1 + u2r(ψ‖/ψ⊥ − 1). Sinceψ‖ andψ⊥ (the one-
dimensional velocity correlation for the cases ofr⊥ = 0

and r‖ = 0 respectively) do not differ significantly, the
dependence onur is weak in G. Figure 3 shows the
dependence of Re(lnG) onk‖. The dependence now looks
more regular, and Re(lnG) ∝ k2‖ is a better approximation
than that in1−Re(G). Nevertheless, closer investigations
show deviation beyond thek2‖ behavior.

3.2 The Imaginary Part of G and lnG

Figures4 and5 show the imaginary part ofG and lnG.
Thek‖ dependence is even more complicated. This differs
from ∝ k‖ (the first order Taylor expansion) significantly.
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Fig. 4 Same to Fig.2, but for the imaginary part.

The imaginary part ofG is caused by mean pairwise
velocity and other higher order odd pairwise velocity
moments. The complexity shown here demonstrates a
better understanding and modeling of these terms. The
Gaussian streaming model assumes a Gaussianp(v12),
which is equivalent tolnG = ik‖〈v12〉 − k2‖σ

2
12/2. Here

σ2
12 ≡ 〈v212〉 − 〈v12〉

2. The deviation of Re(lnG) from
thek2‖ dependence and the deviation of Im(lnG) from the
k‖ dependence clearly suggest the limitation of Gaussian
streaming model but it also suggests possible ways to
improve. This example demonstrates the usage of pairwise
generating function in RSD modeling.

4 DISCUSSIONS AND CONCLUSIONS

We highlight the connection between the pairwise velocity
generating functionG(k‖, r) and the power spectrum
P s(k‖, k⊥) (and the correlation function (ξs(r‖, r⊥)))
in redshift space. We also propose a hybrid statistics
P s(k‖, r⊥), and connect it withG. By directly evaluating
and understandingG in the context of RSD, we hope
to improve the RSD modeling. As a first attempt, we
developed a quick evaluation method ofG, and applied it
to a high resolution (30723 simulation particle) simulation.
The measuredG shows rich features in thek‖ and r

space. SinceG directly determines the RSD statistics,
these features must be well understood for accurate
RSD modeling. For example, Im(lnG) shows significant
departure from the lineark‖ dependence, suggesting
inaccuracy in the Gaussian streaming model widely used
in RSD data analysis. This is certainly an issue for future
investigation.

There are many important issues to be investigated
in future works. (1) We need to appropriately estimate

Fig. 5 Same to Fig.3, but for the imaginary part. The
deviation of Im(lnG) from the k‖ dependence leads to
inaccuracy of the Gaussian streaming model. But it also
suggests possible ways to improve.

the cosmic variance inG. We plan to use the three
CosmicGrowth simulations of30723 particles andLbox =

600 h−1Mpc (Jing 2019) for this purpose. Together
with three independent directions, we will have nine
independent samples to evaluateG and its cosmic variance.
(2) We will evaluate the redshift dependence ofG and
pay more attention toz ∼ 0.5 − 1.5 of great interest
for future spectroscopic redshift surveys such as DESI,
PFS, Euclid and SKA. (3) More importantly, we will
focus more on the halo/subhalo pairwise velocity moment
generating function. These are more closely related to the
observed galaxy RSD. The difference between the halo
pairwise velocityG and the dark matterG can be highly
non-trivial, due to the halo definition and the associated
inhomogeneous smoothing of the velocity field. (4) We
need to quantify the contribution from individual moments
(cumulants) toG (lnG). We also need to propagate errors
in G to errors inP s(k‖, k⊥) andP s(k‖, r⊥), so are those
in p(v12|r) andξs(r‖, r⊥).

Acknowledgements This work was supported by the
National Natural Science Foundation of China (Grant No.
11621303).

References

Abdalla, F. B., Bull, P., Camera, S., et al. 2015, Proceedings

of Advancing Astrophysics with the Square Kilometre Array

(AASKA14), 17
Amendola, L., Appleby, S., Avgoustidis, A., et al. 2016,

arXiv:1606.00180



28–6 J. Zhao & J. Chen: Pairwise Velocity Moment Generating Function

Bianchi, D., Guzzo, L., Branchini, E., et al. 2012, arX-

iv:1203.1545
Chen, J., Zhang, P., Zheng, Y., et al. 2018, ApJ, 861, 58
Davis, M., & Peebles, P. J. E. 1983, ApJ, 267, 465
de la Torre, S., & Guzzo, L. 2012, arXiv:1202.5559
DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016,

arXiv:1611.00036
Dodelson, S., Heitmann, K., Hirata, C., et al. 2016, arX-

iv:1604.07626
Guzzo, L., Pierleoni, M., Meneux, B., et al. 2008, Nature, 451,

541
Jain, B., & Zhang, P. 2008, Phys. Rev. D, 78, 063503
Jing, Y. 2019, Science China Physics, Mechanics, and

Astronomy, 62, 19511
Jing, Y. P., Suto, Y., & Mo, H. J. 2007, ApJ, 657, 664
Kaiser, N. 1987, MNRAS, 227, 1
Matsubara, T. 2008, Phys. Rev. D, 77, 063530
Okumura, T., & Jing, Y. P. 2011, ApJ, 726, 5
Okumura, T., Seljak, U., McDonald, P., & Desjacques, V. 2012,

J. Cosmol. Astropart. Phys., 2, 10
Peacock, J. A., Cole, S., Norberg, P., et al. 2001, Nature, 410,

169
Peebles, P. J. E. 1980, The Large-scale Structure of the Universe,

ed. Peebles, P. J. E.
Peebles, P. J. E. 1984, ApJ, 284, 439
Reid, B. A., Seo, H.-J., Leauthaud, A., et al. 2014, MNRAS, 444,

476
Reid, B. A., & White, M. 2011, MNRAS, 417, 1913
Reid, B. A., Samushia, L., White, M., et al. 2012, arX-

iv:1203.6641
Scoccimarro, R. 2004, Phys. Rev. D, 70, 083007
Seljak, U., & McDonald, P. 2011, J. Cosmol. Astropart. Phys.,

2011, 039
Song, Y.-S., Zheng, Y., Taruya, A., & Oh, M. 2018, J. Cosmol.

Astropart. Phys., 2018, 018
Taruya, A., Nishimichi, T., & Saito, S. 2010, Phys. Rev. D, 82,

063522
Tegmark, M., Blanton, M. R., Strauss, M. A., et al. 2004, ApJ,

606, 702
Wang, L., Reid, B., & White, M. 2014, MNRAS, 437, 588
White, M., Reid, B., Chuang, C.-H., et al. 2015, MNRAS, 447,

234
Zhang, P., Liguori, M., Bean, R., & Dodelson, S. 2007, Physical

Review Letters, 99, 141302
Zhang, P., Pan, J., & Zheng, Y. 2013, Phys. Rev. D, 87, 063526
Zheng, Y., & Song, Y.-S. 2016, J. Cosmol. Astropart. Phys.,

2016, 050
Zheng, Y., Song, Y.-S., & Oh, M. 2019, J. Cosmol. Astropart.

Phys., 2019, 013
Zheng, Y., Zhang, P., Jing, Y., Lin, W., & Pan, J. 2013,

Phys. Rev. D, 88, 103510


	Introduction
	The pairwise velocity moment generating function and its connection to RSD modeling
	Numerical evaluation of the pairwise velocity moment generating function
	The Real Part of G and lnG
	The Imaginary Part of G and lnG

	Discussions and conclusions

