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Abstract We study the evolution of the configuration entropy of HI distribution in the post-reionization era
assuming different time evolution of HI bias. We describe time evolution of linear bias of HI distribution
using a simple formb(a) = b0a

n with different indexn. The derivative of the configuration entropy rate is
known to exhibit a peak at the scale factor corresponding to theΛ-matter equality in the unbiasedΛCDM
model. We show that in theΛCDM model with time-dependent linear bias, the peak shifts to smaller scale
factors for negative values ofn. This is related to the fact that the growth of structures in the HI density field
can significantly slow down even before the onset ofΛ domination in the presence of a strong time evolution
of the HI bias. We find that the shift is linearly related to theindexn. We obtain the best fit relation between
these two parameters and propose that identifying the location of this peak from observations would allow
us to constrain the time evolution of HI bias within the framework of theΛCDM model.
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1 INTRODUCTION

Our knowledge about the present day galaxy distribution
in the nearby Universe has been revolutionized by
modern galaxy surveys (SDSS,York et al. 2000; 2dFGRS,
Colless et al. 2001; 2MRS,Huchra et al. 2012) carried out
over the last few decades. Many cosmological observations
suggest that most of the mass in the Universe is in
the form of an unseen dark matter which is yet to
be directly detected by observations. The galaxies are
known to be a biased tracer of the underlying dark
matter distribution. On large scales, it is believed that the
fluctuations in the galaxy distribution and the dark matter
distribution are linearly related by a bias parameter (Kaiser
1984; Dekel & Rees 1987). The linear bias parameter is
known to be scale-independent on large scales (Mann et al.
1998) but is expected to evolve with time (Fry 1996;
Tegmark & Peebles 1998). The time evolution of the linear
bias parameter determines the evolution of the large scale
distribution of the tracer relative to the underlying mass
distribution. However, the galaxies have not always been
in place. They are the product of the non-linear evolution
of the cosmic density field. Thanks to the improvement
of computing power and algorithms, modern day N-
body simulations (Springel et al. 2005; Vogelsberger et al.
2014) can give us a clear idea about the emergence
of structures through non-linear evolution. In fact, the

understanding of the process of structure formation has
become so good that it has become a standard tool for
testing cosmological models.

Early measurements of the two point correlation
function for galaxies and galaxy clusters did not match,
indicating that both cannot be unbiased tracers of the
underlying matter distribution (Kaiser 1984). Various
statistical tools are applied to measure the linear bias
parameter from observations. One can employ the two-
point correlation function and power spectrum to de-
termine the linear bias parameter (Norberg et al. 2001;
Tegmark et al. 2004; Zehavi et al. 2011). The redshift
space distortions of the two-point correlation function
and power spectrum (Kaiser 1987; Hamilton 1992) can
be also utilized to measure the linear bias parameter
(Hawkins et al. 2003; Tegmark et al. 2004). The other
alternatives which have been successfully implemented
to compute the linear bias parameter are the three-point
correlation function and bispectrum (Feldman et al. 2001;
Verde et al. 2002; Gaztañaga et al. 2005), filamentarity
(Pandey & Bharadwaj 2007) and information entropy
(Pandey 2017a). It has been shown byPandey(2017a) that
measurement of bias using information entropy requires
only O(N) operations as compared toO(N2) or at
least O(N logN) operations required by the two-point
correlation function and the power spectrum.
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Galaxies do not exist at high redshift whereas neutral
hydrogen (HI) is present throughout the history of the
Universe since its formation after the recombination atz ∼

1100. The redshifted 21 cm line from neutral hydrogen
would reveal a wealth of information about the formation
and evolution of structures in the Universe. A number
of surveys (HIPASS,Zwaan et al. 2005; ALFALFA,
Martin et al. 2012) have been designed to map the HI
content of galaxies in the nearby Universe. A significant
effort has been also directed to detect the redshifted 21
cm signal by relying on different ongoing and upcoming
radio interferometric facilities (GMRT,Paciga et al. 2013;
LOFAR, van Haarlem et al. 2013; MWA Bowman et al.
2013; SKA, Mellema et al. 2013). The redshifted 21 cm
line can be used as a promising probe of the large scale
structures over a wide redshift range (Bharadwaj et al.
2001; Bharadwaj & Sethi 2001). Knowledge about the HI
bias and its time evolution is also important in under-
standing the uncertainties associated with the measured
intensity fluctuation power spectrum. Several studies have
been carried out to measure the HI bias (Martin et al. 2012;
Masui et al. 2013; Switzer et al. 2013) at low redshifts
(z < 1) but presently the evolution of HI bias with
redshift is not known. Some theoretical and observational
constraints on the evolution of HI bias over the redshift
range0 − 3.5 have been discussed inPadmanabhan et al.
(2015) and references therein.

Most of the HI resides in the intergalactic medium
during the epoch of reionization. The HI distribution
deviates from the dark matter distribution due to the
non-linear growth of ionized hydrogen (HII) bubbles and
formation of early galaxies during this epoch. The HI
distribution cannot be treated as a tracer of the underlying
matter density field during the epoch of reionization.
However, most of the HI settles in halos after reionization
and the HI distribution can be treated as a reliable tracer
of the total mass distribution in the post-reionization
era. The HI bias in the post-reionization era has been
studied in some works (Bagla et al. 2010; Sarkar et al.
2016) by populating HI in dark matter halos from N-body
simulations.

Recently, it has been suggested that measurement of
the configuration entropy (Pandey 2017b, 2019) of the
mass distribution in the Universe can be utilized to test
the different cosmological models (Das & Pandey 2019),
determine the mass density parameter and cosmological
constant (Pandey & Das 2019) and constrain the dark
energy equation of state parameters (Das & Pandey 2020).
In the present work, we propose a theoretical framework
based on the study of configuration entropy which may
allow us to probe the evolution of HI bias in the post-
reionization era from future redshifted 21 cm observations.

2 THEORY

2.1 Evolution of Configuration Entropy

We consider the HI distribution in the post-reionization era
which can be treated as a biased tracer of the underlying
dark matter distribution. We are interested in studying the
time evolution of the linear bias of HI distribution using
configuration entropy. Let us consider a large comoving
volumeV of the Universe and divide it into sub-volumes
dV . Let the density of HI in each of these sub-volumes at
time t beρHI(x, t) wherex is the comoving coordinate of
the sub-volume defined with respect to an arbitrary origin.
The configuration entropy of the HI density field can be
defined as (Pandey 2017b),

Sc(t) = −

∫

ρHI(x, t) log ρHI(x, t) dV. (1)

The definition of configuration entropy is motivated from
the definition of information entropy (Shannon 1948).

The mass distribution of the Universe is often treated
as an ideal fluid to a good approximation. The continuity
equation of this fluid in an expanding Universe can be
written as,

∂ρHI

∂t
+ 3

ȧ

a
ρHI +

1

a
∇ · (ρHIvHI) = 0. (2)

In Equation (2), a is the cosmological scale factor andvHI

is the peculiar velocity of the HI mass element. We can
combine Equation (1) and Equation (2) to get,

dSc(t)

dt
+ 3

ȧ

a
Sc(t) −

1

a

∫

ρHI(3ȧ+∇ · vHI) dV = 0. (3)

We rewrite Equation (3) as,

dSc(a)

da
ȧ+3

ȧ

a
Sc(a)− 3

ȧ

a

∫

ρHI(x, a) dV

−
1

a

∫

ρHI(x, a)∇ · vHI dV = 0,

(4)

where the variable of differentiation has been changed
from t to a. Here

∫

ρHI(x, a) dV = MHI is the total
mass of HI contained inside the comoving volumeV . The
density of HI at comoving locationx can be expressed
as ρHI(x, a) = ρ̄HI(1 + δHI(x, a)), whereδHI(x, a) is
the density contrast at locationx and ρ̄HI = MHI

V
is

the average density of HI. In linear perturbation theory,
one can writeδm(x, a) = D(a)δm(x) and∇ · vHI =

−a∂δHI(x,a)
∂t

. Here,D(a) is the growing mode andδm(x)

is the initial mass density perturbation at locationx. We
simplify Equation (4) applying these relations to get,

dSc(a)

da
ȧ+ 3

ȧ

a
(Sc(a)−MHI)−

ρ̄HI

a

∫

∇ · vHI dV

−
ρ̄HI

a

∫

δHI(x, a)∇ · vHI dV = 0.

(5)
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In the linear bias assumption,

δHI(x, a) = b(a)δm(x, a), (6)

whereb(a) is the scale-independent linear bias parameter
and δHI(x, a) and δm(x, a) are the density contrast
corresponding to HI and the underlying mass density field
respectively. So,

∇ · vHI = −aȧ

[

D(a)
db(a)

da
+ b(a)

dD(a)

da

]

δm(x). (7)

We combine Equation (7) and Equation (5) and simplify to
get,

dSc(a)

da
+

3

a
(Sc(a)−MHI)

+ ρ̄HIB(a)

∫

δ2m(x) dV = 0.

(8)

Here, B(a) = b(a)D(a)
[

D(a)db(a)
da

+ b(a) f(a)D(a)
a

]

where f(a) = a
D(a)

dD(a)
da

is the dimensionless linear
growth rate.

This equation governs the evolution of configuration
entropy of the HI distribution in the presence of time
evolution of HI bias. One can integrate Equation (8) to get

Sc(a)

Sc(ai)
=

MHI

Sc(ai)
+

[

1−
MHI

Sc(ai)

]

(ai
a

)3

−

(

ρ̄HI

∫

δ2m(x) dV

Sc(ai)a3

)

∫ a

ai

da′a′3B(a′). (9)

Hereai is some initial scale factor andSc(ai) is the initial
configuration entropy. In our analysis, we have chosen
ai = 0.05.

We find the evolution of the ratio of configuration
entropy to its initial value by numerically calculating the
integral in the third term for different time evolutions of
bias and substituting back into Equation (9). We set the
productρ̄HI

∫

δ2m(x) dV = 1 for simplicity. The choices
of Sc(ai) andMHI are arbitrary and in no way depend
on the cosmological model concerned. SelectingSc(ai) >

MHI or Sc(ai) < MHI causes a sudden growth or decay
in Sc(a)

Sc(ai)
near the initial scale factorai, respectively. We

have chosenSc(ai) = MHI in our analysis to ignore these
transients caused by the initial conditions. The integral
in the third term of Equation (9) involves evolution of
growing mode, time dependent bias and their derivatives.
We describe these in detail in the next two subsections.

2.2 Growth Rate of Density Perturbations

Cosmic microwave background radiation (CMBR) obser-
vations suggest that the Universe was highly isotropic at
z ∼ 1100, but the present day Universe is neither homoge-
neous nor isotropic on small scales. We find galaxies and

clusters of galaxies where huge mass is accumulated over
a small region whereas there are large empty regions or
voids with very little amount of mass. Linear perturbation
theory provides a theoretical framework to understand
the growth of structures from tiny fluctuations seeded
in a homogeneous and isotropic distribution in the early
Universe. In the currently accepted paradigm, gravitational
instability is the primary mechanism behind the formation
of structures in the Universe. CMBR observations indicate
that inhomogenities of very small magnitude were present
in the matter distribution at the time of recombination.
These tiny inhomogeneities get amplified by gravitational
instability over time. When the density contrast is much
smaller than1, its evolution can be described by the
following differential equation,

∂2δm(x, t)

∂t2
+ 2H(a)

∂δm(x, t)

∂t

−
3

2
Ωm0H

2
0

1

a3
δm(x, t) = 0.

(10)

Here we have considered perturbation to only matter
component.Ωm0 andH0 are the present value of density
parameter for matter and Hubble parameter, respectively.
This equation governs the growth of density perturbation
in the underlying matter distribution. The equation has
a growing mode solution in the formδm(x, t) =

D(t)δm(x). The growing mode solution can be expressed
as (Peebles 1980)

D(a) =
5

2
Ωm0X

1

2 (a)

∫ a

0

da′

a′3X
3

2 (a′)
, (11)

whereX(a) = H2(a)
H2

0

= [Ωm0a
−3 + ΩΛ0]. HereΩΛ0 is

the present value of the density parameter corresponding
to the cosmological constant.

The dimensionless linear growth ratef(a) =
d logD(a)
d log a

in a Universe with no curvature can be
approximated as (Lahav et al. 1991)

f(a) = Ωm(a)0.6

+
1

70

[

1−
1

2
Ωm(a)(1 + Ωm(a))

]

.
(12)

HereΩm(a) = Ωm0a
−3

X(a) . We have usedΩm0 = 0.3 and
ΩΛ0 = 0.7 throughout the present work.

2.3 Evolution of HI Bias

The time evolution of the HI bias parameter is expected
to affect the time evolution of the configuration entropy
of the HI density field. We consider a simple power law
of the form b(a) = b0a

n with different possible values
of n. The functional form is motivated byBagla et al.
(2010) where b(z) ∝ (1 + z)0.5 was reported to give
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Fig. 1 The top left panel in the figure displays the evolution of bias with scale factorfor different models. Thetop right
panel plots the evolution ofSc(a)/Sc(ai) with scale factor for different evolutions of bias within theΛCDM model. The
bottom left andright panels respectively depict the evolution ofdSc(a)/da andd2Sc(a)/da

2 with scale factor for the
same models. The results for the unbiased caseb = 1 are also shown in each panel for comparison.

a reasonably good description of the evolution of HI
bias in the simulated HI distributions from the N-body
simulations. We consider the following values ofn in our
analysis:n = −1,−0.75,−0.5,−0.25, 0.5, 1. We also
incorporate the unbiasedΛCDM model in this framework
by putting b(a) = b0. We setb0 = 1 in all the models
considered here.

3 RESULTS AND CONCLUSIONS

We display the evolution of the HI bias with scale factor
for different values ofn in the top left panel of Figure1.
The amplitude of the bias at any given scale factor depends
on the indexn. The HI bias monotonically decreases
with increasing scale factor for negativen. A negative
value ofn indicates that the HI density field was strongly
biased in the past which decreases with time and eventually
reaches unity at present. The decrease in bias corresponds
to an overall dilution in the clustering of the HI mass
distribution. The evolution ofSc(a)

Sc(ai)
with scale factor for

all these models is plotted in the top right panel of Figure1.

The evolution of the configuration entropy is primarily
governed by the growth of density perturbations which
in turn is affected by the dynamics of the expansion of
the Universe. Expansion of the Universe slows down the
growth of perturbations. Besides the expansion, the time
evolution of bias would also play an important role in
controlling the dissipation of the configuration entropy of
the Universe. For example, all the models with negative
n show a decrease in the configuration entropy at earlier
times. However, the dissipation slows down with time
and in some cases it may even reverse its behavior and
start to grow again with time. The time of reversal from
dissipation to growth depends on the indexn. A more
negative index leads to an early reversal in the behavior
of the configuration entropy.

The lower left panel of Figure1 features the entropy
rate as a function of scale factor in models with different
n. The entropy rate is decided by the functionB(a) =

b(a)D(a)
[

D(a)db(a)
da

+ b(a) f(a)D(a)
a

]

which consists of

two terms and the combined contribution from these two
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Fig. 2 The left panel displays the evolution of the first term inB(a) with scale factor for models with different time
evolution of bias. Theright panel plots the evolution of the second term inB(a) for the same models.

Fig. 3 Theleft panel displays the index (n) as a function of the location of the peaks in the derivative of entropy rate. The
right panel plots the index (n) as a function of the shift of peak in the derivative of entropy rate with respect to unbiased
ΛCDM model. We show together the best fit straight lines in boththe panels.

terms decides the behavior of the entropy rate at any given
time for any specific model. The two terms are separately
plotted as a function of the scale factor for different models
in the left and right panels of Figure2. Clearly, a growth in
entropy is expected whenB(a) is negative and a positive
B(a) is associated with entropy dissipation. For example,
B(a) is negative at all scale factors forn = −1 and this
implies that there will be no dissipation of entropy in this
model. On the other hand, the models withn = 1 and
n = 0.5 have positiveB(a) at all scale factors and there
is a continuous dissipation of entropy in these models.
All the other models considered here show dissipation of
entropy at some scale factors and growth of entropy at
some other scale factors. A zero up crossing in the entropy
rate corresponds to a local minimum in the configuration
entropy. Clearly this zero up crossing appears at a smaller
scale factor for more negative values ofn.

We plot the derivative of the entropy rate in these
models in the lower right panel of Figure1. The derivative
of the entropy rate exhibits a peak in all the models
with negativen. We find that the location of the peak
is sensitive to the indexn and it appears at a smaller
scale factor for models with smaller index. In an earlier
work, Pandey & Das(2019) noted that in the unbiased
ΛCDM model, this peak is located at the scale factor
corresponding to theΛ-matter equality. We have used
Ωm0 = 0.3 andΩΛ = 0.7 in theΛCDM model. So in the
unbiasedΛCDM model, the peak is expected to appear at
a = 0.754. This can be clearly seen in the result depicted
for the unbiasedΛCDM model in the same panel. Now
the location of this peak is shifted towards a smaller scale
factor when time evolution of bias is considered within
the ΛCDM model. The shift is measured with reference
to the location of the peak in the unbiasedΛCDM model.
The magnitude of the entropy rate slows down after the
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occurrence of this peak. In the unbiasedΛCDM model,
the structure formation starts to slow down after the onset
of Λ domination. The bias models with negative value
of n dilute the clustering and slow down the structure
formation even before theΛ-matter equality. This effect
would manifest in a more prominent way in the models
with more negativen. So, the peak in the derivative of the
entropy rate is expected to exhibit a larger shift in these
models. We measure the location of the peak in the models
with different negative index and find them to be linearly
related. The location and the shift of the peak are displayed
as a function of the index in the left and right panels of
Figure3 respectively. The best fit relations between these
parameters are also shown in the same figure.

We also consider two positive values ofn in the time
evolution of HI bias. A positive value ofn indicates that
the HI density field is anti-biased with respect to the
underlying mass density field and the bias slowly increases
from a very small positive value to unity at present. A
decrease in anti-biasing with time would enhance the
clustering of the HI leading to a continuous dissipation of
the configuration entropy. In these models, entropy initially
manifests a slower decrease than that of theΛCDM model
but then decreases quite quickly in the later part. We do
not observe the peak in the derivative of the entropy rate
in these models and they can be easily distinguished from
the models with negative values ofn. These models are
not realistic and we consider them only for the sake of
completeness.

In this work, we calculate the evolution of the
configuration entropy of HI distribution in the post-
reionization era assuming different time evolution of HI
bias. We consider the flatΛCDM model as the benchmark
model of the Universe and within it consider the time
evolution of HI bias asb(a) = b0a

n with different values
of the indexn. We demonstrate that the time evolution
of bias alters the position of the peak in the derivative of
the entropy rate. The peak shifts towards a smaller scale
factor for negative index and is absent when the index is
positive. We find that the shift is linearly related with the
indexn and a larger shift is observed for a smaller index.
We find the best fit relation between these two parameters
and propose that identifying the location of this peak from
observations would allow us to constrain the time evolution
of bias within the framework of theΛCDM model. We
note here that the best fit line does not exactly pass through
the points in each of the plots in Figure3 even though the
points we get are from theoretical calculations and hence
exact. The reason for that is that the linear fit is used as a
first approximation but it gives a pretty good fit. We also
note that if any of the future surveys provides us with a
suitable data set such that our method can be applied for

analysis, there may be error bars which may be as big as
the difference between the fit and the actual points. So, the
linear approximation can work well in that situation.

One may consider some other quantity in the form
∫

f(ρHI)dV and get another equation which might
be utilized to constrain the HI bias function. The
natural question that one can then ask is: why use
configuration entropy? Part of the answer may be found
in the Introduction where it was mentioned that this
quantity has previously been used to study different
cosmological problems. The Introduction also mentions
that measurement of bias using configuration entropy is
computationally advantageous compared to other methods.
It has previously been shown that in a flatΛCDM Universe
with only matter and cosmological constant with scalar
perturbation, the evolution of derivative of entropy rate
with scale factor displays a distinct peak at a scale factor
which is equal to the scale factor where matter-Λ equality
occurs in that particular model. We calculate the shifts in
the scale factor of the peak for a biased tracer from the
scale factor of the peak for the unbiased case and find its
correlation with the indices of the bias function. Since we
are comparing the unbiased case with the biased case, we
are compelled to use configuration entropy as the preferred
quantity for analysis.

One can also measure the HI bias by comparing
the two-point correlation function or power spectrum of
the HI distribution with that for the underlying mass
distribution. Combining these measurements at multiple
redshifts would provide the time evolution of HI bias.
However, such an analysis would require knowledge of
the distributions of dark matter density field at different
redshifts which can be obtained by employing N-body
simulations. Contrary to this, the proposed method in this
work does not require knowledge of the underlying mass
density field at any redshift. The evolution of HI bias can
be solely determined from the nature of evolution of the
configuration entropy for the HI distribution. This is a
remarkable advantage offered by the proposed method. It
may be noted here that we do use the evolution of growing
mode of dark matter to calculate entropy, but the evolution
equation of growing mode is obtained under very general
assumptions such as existence of scalar perturbation in
an expanding Universe with presence of dark matter and
cosmological constant with no interaction between dark
matter and dark energy. Finally, we conclude that the
method presented in this work provides an alternative
method to constrain the evolution of HI bias using
configuration entropy.
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