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Abstract The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is the largest single-dish
aperture telescope with a cable-driven parallel robot introduced to achieve the highest sensitivity in the
world. However, to realize the high-precision, mechanical equations of such a robot are always complicated,
so that it is difficult to achieve real-time control by the traditional iterative method. In this regard, this paper
proposes an approximately analytical solution method, which uses the approximately linear relationship
between the main parameters of FAST to bypass some iterations. With the coefficients of the relationship
extracted, static or quasi-static mechanical equations can be analytically solved. In this paper’s example,
this method saves at least 90% of the calculating time and the calculated values are consistent with the
experimental data. With such huge efficiency improvements, real-time and high-precision control of the
FAST will no longer be difficult work. Besides, all the work in this paper is expected to be used in the
FAST.
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1 INTRODUCTION

The Five-hundred-meter Aperture Spherical radio
Telescope (FAST) is the largest single-dish aperture
telescope with the highest sensitivity in the world.
To achieve it, the cable-driven parallel robot (CDPR)
was introduced (Tang & Yao 2011), which is mainly
composed of some cables and the end effector connected
to the cables. As shown in Figure 1, there are six cables
connected to the feed cabin in the center. The translation
and rotation of the feed cabin can be controlled by
adjusting the length of the cables. This kind of robot not
only has the advantages of high precision, high speed and
high load, but also has a large working space. Therefore,
CDRP is FAST’s perfect solution to solve the wide range
movement of the feed cabin. Besides, CDPR is not only
used in the FAST, but also in many fields. For example,
Kawamura et al. (1995) developed a robot for transport,
called Falcon; Abbasnejad et al. (2016) designed a robot
for gait rehabilitation; Bruckmann et al. (2012) also
invented a robot related to storage technology, and so on.

According to the study by Ming & Higuchi (1994),
CDPRs can be divided into three categories. Firstly, it is
assumed that the number of cables is m and the degree of
freedom of the end effector is n. Thus, if m = n + 1,
the system dynamics equation has a definite solution, so
it is called a completely restrained positioning mechanism
(CRPM). If m > n + 1, the driving forces of the cables
are redundant, and the system dynamic equation has no
definite solution, which is called a redundantly restrained
positioning mechanism (RRPM). Ifm < n+1, the system
constraints are insufficient. It is called an incompletely
rested positioning mechanism (IRPM), which need to
rely on external forces to maintain the stability of the
mechanism. As mentioned above, FAST’s feed cabin is
controlled by six cables. The degree of freedom of the feed
cabin is 6. Obviously, FAST is IRPM, so it needs to be
stabilized by gravity.

The research on the statics or dynamics of CDPRs
must focus on the theoretical model of the cable, which
determines the mechanical properties of the entire system.
In this regard, many scholars use the straight line as the
cable model (Cui et al. 2019; Gonzalez-Rodriguez et al.
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2017; Vafaei et al. 2011; Kawamura et al. 2000; Khosravi
& Taghirad 2013), only considering the elastic deformation
of the axial direction of the cables and ignoring the
weight influence of the cables. This model has analytical
expressions and can be solved fast, so it is ideal for CDPRs
with a small span. However, as for the case of FAST with
a large span, the weight influence of the cables cannot
be ignored, and the cable forces are extremely sensitive
to the length of the cables. Obviously, the straight-line
model is no longer applicable. In this regard, other scholars
(Kozak et al. 2006; Merlet 2019; Yuan et al. 2015)
introduced the catenary model derived by Irvine (1981).
It has been verified by Riehl et al. (2010) that the catenary
model has high accuracy. However, at the same time, the
catenary model needs to be solved by iteration due to its
complex nonlinear nature. In order to optimize the iteration
time, Merlet (2019) proposed to simplify the iteration
by changing variables based on the catenary model. In
contrast, Ferravante et al. (2019) abandoned the catenary
model and calculated it through finite element method.

However, by now the modeling and solving efficiency
of CDPRs has been low, because it is inefficient to use
the catenary model in real-time control. For example,
the CDPR control of FAST has to adopt the closed-loop
method to save time, which is not conducive to increasing
its control precision. This means that the previous methods
cannot achieve real-time and high-precision control at the
same time. This paper precisely has a breakthrough at this
point.

Based on the static catenary model, with FAST as
the research object, this paper proposes an approximately
analytical solution method. This method uses an approx-
imately linear relationship between the main parameters
for solution, which is found by numerical analysis. After
the coefficients of the relationship is extracted, static or
quasi-static equations of the CDPR can be simplified and
solved analytically, which greatly improves the calculation
efficiency of FAST.

The approximately analytical solution method for stat-
ic or quasi-static equations of CDPRs will be introduced in
detail. For the convenience of description, the following
approximately analytical solution method is abbreviated
as the AAS method. Firstly, the static equations of the
FAST cable model will be established, which is the
catenary model, and then the relationship between the
mechanism parameters and the solution parameters will
be analyzed. With this relationship, the CDPR’s equations
can be simplified and solved analytically. Finally, there are
some example comparisons between the AAS method and
the iteration method. The solution accuracy and time of the
AAS method are obtained. Also, there is an experiment
that compares the calculated values of the AAS method

with the measured values during the actual operation of
FAST to test the rationality of the AAS method.

2 COORDINATE SYSTEM AND PARAMETERS

This paper takes the FAST as the research object, which
controls the movement and attitude of the central feed
cabin by pulling six cables through six towers. It is a
typical CDPR, as shown in Figure 1.

Firstly, the global Cartesian coordinate systemO−xyz
is established. The lower vertex of the spherical reflection
surface is the origin O. The direction from the origin
O towards the tower B1 is the x-axis and the upward
direction perpendicular to the ground is z-axis, as shown
in Figure 1.

Simultaneously, the local Cartesian coordinate system
O′−x′y′z′ of the feed cabin is also established. The center
of the anchor points plane of the feed cabin is the origin
O′. The local Cartesian coordinate system is bound to the
feed cabin and rotates with the attitude of the feed cabin.
When the feed cabin is in the center, the local Cartesian
coordinate system is totally parallel to the global Cartesian
coordinate system.

Wherein, the anchor points A[i] of the feed cabin
are evenly distributed on the circle with the radius ra.
The center of the circle just is the origin O′ of the
local Cartesian coordinate system. The six towers B[i] are
evenly distributed on the circle with the radius rb and each
tower height is H . Every two towers are connected to an
anchor point by two cables, as shown in Figure 2.

Then, the local Cartesian coordinate system O′′ −
x′′y′′z′′ of every cable is established with the corre-
sponding anchor point A[i] as the origin O′′. For the
convenience of calculation, these coordinate systems are
always required to be parallel with the global Cartesian
coordinate system. In these coordinate systems, the
coordinates of the cable lower and upper end are set to the
origin O′′ and (X[i], Y [i], Z[i]), respectively, as shown in
Figure 3. So, the following geometric relationship can be
derived:X[i]

Y [i]

Z[i]

 =

rb cos(π(i− 1)/3)

rb sin(π(i− 1)/3)

H

−(R ·rA[i]+rp), (1)

where rA[i] is given by

rA[i] =

ra cos(π/6 + 2πb(i− 1)/2c/3)
ra sin(π/6 + 2πb(i− 1)/2c/3)

0

 . (2)

Among the formulas above, [i] represents the i-th
cable corresponding to the i-th tower, R is the rotation
matrix of the local Cartesian coordinate systemO′−x′y′z′
of the feed cabin relative to the global Cartesian coordinate
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Fig. 1 Schematic diagram of the FAST coordinate system.

Fig. 2 Schematic diagram of the FAST structure.

system O− xyz, rA[i] is the position vector of the anchor
point connected to the i-th cable in the local Cartesian
coordinate system O′ − x′y′z′ of the feed cabin, b c is a
mathematical symbol, which means rounding down, and
rp is the position vector of the origin O′ of the local
Cartesian coordinate system of the feed cabin in the global
Cartesian coordinate system.

For the specific values of the above and other
necessary parameters, please refer to Table 1.

3 CABLE MODEL AND DERIVATION

The cable model of this paper is the static catenary model,
and the coordinates are shown in Figure 3. Because the
equations of the six cables’ model are the same, for the
convenience, the cable number i is generally not specified
in this section unless it is necessary. Let the forces in the
three directions of the cable lower end be Fx, Fy and Fz ,
respectively, as shown in Figure 4.

Where the length of the cable is p, T is the cable
force at that point and s is the length of this cable without
tension, which is the original length of the cable. The
length of the cable p and the cable force T are both the
functions of the original length s. In addition, let ρ be the
linear density when tension is not applied to the cable, and

Fig. 3 Local coordinate system of the cable.

g be the acceleration of gravity. Then, according to the
equilibrium equation, the following can be obtained:

T
dx

dp
+ Fx = 0 , (3)

T
dy

dp
+ Fy = 0 , (4)

T
dz

dp
+ Fz + ρgs = 0 , (5)

where T is given by

T (s) =
√
F 2
x + F 2

y + (Fz + ρgs)
2
. (6)
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Table 1 Specific Values of Parameters

Symbol Significance Specific value(unit)

ra Feed cabin anchor point distribution radius 7.5(m)
rb Tower distribution radius 300(m)
H Tower height 270(m)
E Cable elastic modulus 1.6× 1011(Pa)
A Cable cross-sectional area with the cable not stressed 1.541× 10−4(m2)
ρ Cable linear density with the cable not stressed 11.718(kg m−1)
g the acceleration of gravity −9.8(m s−2)

re
Position vector from the origin O′ of the feed cabin

[0, 0, 0.5]T(m)local coordinate system to the feed cabin mass center
m Feed cabin mass 30 000(kg)
R Reflecting surface radius 300(m)
D Reflecting surface projection diameter 500(m)

Fig. 4 Schematic diagram of the cable force.

Fig. 5 Fl and Fz change with s0.

Fig. 6 Fz changes with Fl.

Then, according to the elastic equation, there is

T (s) = EA

(
dp

ds
− 1

)
, (7)

where EA is the cable elastic modulus multiplied by the
cross-sectional area when tension is not applied to the
cable.

Combined with Equations (3)–(7), the following can
be obtained:

dx

ds
= − Fx

EA

1 +
EA√

F 2
x + F 2

y + (Fz + ρgs)
2

 , (8)

dy

ds
= − Fy

EA

1 +
EA√

F 2
x + F 2

y + (Fz + ρgs)
2

 , (9)

dz

ds
= −Fz + ρgs

EA

1 +
EA√

F 2
x + F 2

y + (Fz + ρgs)
2

 .

(10)
According to the boundary conditions x(0) = 0,

y(0) = 0 and z(0) = 0, shown in Figure 4, the solutions
are Equations (11)–(13):

x(s) =− Fx

EA
s− Fx

ρg

sinh−1
 Fz + ρgs√

F 2
x + F 2

y


− sinh−1

 Fz√
F 2
x + F 2

y

 ,
(11)

y(s) =− Fy

EA
s− Fy

ρg

sinh−1
 Fz + ρgs√

F 2
x + F 2

y


− sinh−1

 Fz√
F 2
x + F 2

y

 ,
(12)

z(s) =− Fz

EA
s− ρg

2EA
s2

− 1

ρg

[√
F 2
x + F 2

y + (Fz + ρgs)
2

−
√
F 2
x + F 2

y + F 2
z

]
.

(13)
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Let the original length of the whole cable be s0,
and know that the coordinates of the cable upper end
are (X,Y, Z), then Equations (14)–(16) can be obtained,
where the unknown variables are Fx, Fy , Fz and s0:

X =− Fx

EA
s0 −

Fx

ρg

sinh−1
 Fz + ρgs0√

F 2
x + F 2

y


− sinh−1

 Fz√
F 2
x + F 2

y

 ,
(14)

Y =− Fy

EA
s0 −

Fy

ρg

sinh−1
 Fz + ρgs0√

F 2
x + F 2

y


− sinh−1

 Fz√
F 2
x + F 2

y

 ,
(15)

Z =− Fz

EA
s0 −

ρg

2EA
s20

− 1

ρg

[√
F 2
x + F 2

y + (Fz + ρgs0)
2

−
√
F 2
x + F 2

y + F 2
z

]
.

(16)

In the local coordinate system of the cable, let the
resultant force on the O′′ − x′′y′′ plane be Fl =√
F 2
x + F 2

y . Refer to Equations (14) and (15) and the
following can be obtained:

Fx =
−X√

X2 + Y 2
Fl , (17)

Fy =
−Y√

X2 + Y 2
Fl . (18)

If the cable is straight, the cable length must be√
X2 + Y 2 + Z2, and let k =

√
X2 + Y 2 + Z2. Because

EA is of a large magnitude, the actual original cable length
s0 generally does not exceed the interval [0.95k, 1.05k].
Now with the FAST as the object, when the feed cabin is
at a random position, by solving the numerical value of
Equations (14)–(16), the change trends of Fl and Fz can
be obtained with the cable length s0 in the interval above,
as shown in Figure 5.

There is an obvious feature in Figure 5. When the
cable length shrinks to a certain value, the sensitivity of
the cable force to the original length s0 of the whole cable
rises rapidly, but later it quickly remains stable. This is a
complex form of function, which leads to difficulties in
iteration. However, it is observed that the trends of Fl and
Fz are highly consistent, so another figure of Fz on Fl is
considered, as shown in Figure 6.

Obviously, Fz has a strong linear relationship with
Fl, which is much simpler than Fz’s case on s0. After a

massive calculation, taking all the positions of the feed
cabin’s working space in Figure 2, it is found that the
minimum value of the determination coefficient of this
linear relationship is 0.999999999750919, so the linear
relationship can be considered always to exist and be
independent of the original length s0 of the whole cable.

However, it should be noted that the linear relationship
is related to the spatial structure and physical properties
of the research object. For each research object, the
relationship needs to be verified by numerical calculation
in the CDPR’s workspace. In this paper, FAST has such a
good linear relationship.

Therefore, in the actual calculation, it is only
necessary to take two kinds of s0 in Equations (14)–(16).
For example, s0 = 0.99k and s0 = 1.01k. Then, the linear
expression of Fz about Fl can be determined:

Fz = aFl + b . (19)

However, FAST has six cables, so there are six groups
of Equations (14)–(16), which means there are a total of
24 unknown variables with only 18 equations. So, another
six equations are needed to solve the equation. Fortunately,
the feed cabin balance equations just meet this:

−
6∑

i=1

Fx[i] = 0 , (20)

−
6∑

i=1

Fy[i] = 0 , (21)

mg −
6∑

i=1

Fz[i] = 0 , (22)

6∑
i=1

(−ry[i]Fz[i] + rz[i]Fy[i]) +mgey = 0 , (23)

6∑
i=1

(rx[i]Fz[i]− rz[i]Fx[i]) +mgex = 0 , (24)

6∑
i=1

(−rx[i]Fy[i] + ry[i]Fx[i]) = 0 , (25)

where [i] represents the i-th cable and m is the feed cabin
mass, and [rx[i], ry[i], rz[i]]

T = R·rA[i]. ex and ey are the
projection distances of the position re shown in Table 1,
respectively in the x-axis direction and the y-axis direction.

Substitute Equations (17)–(19) into Equations (20)–
(25), which can be reduced to the following matrix form:

A · Fl = B , (26)

where A, Fl and B are given by Equations (27)–(29).
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A =



X[1]√
X[1]2+Y [1]2

· · · X[6]√
X[6]2+Y [6]2

Y [1]√
X[1]2+Y [1]2

· · · Y [6]√
X[6]2+Y [6]2

a[1] · · · a[6]
rz [1]Y [1]+ry [1]a[1]

√
X[1]2+Y [1]2√

X[1]2+Y [1]2
· · · rz [6]Y [6]+ry [6]a[6]

√
X[6]2+Y [6]2√

X[6]2+Y [6]2

rz [1]X[1]+rx[1]a[1]
√

X[1]2+Y [1]2√
X[1]2+Y [1]2

· · · rz [6]X[6]+rx[6]a[6]
√

X[6]2+Y [6]2√
X[6]2+Y [6]2

ry [1]X[1]−rx[1]Y [1]√
X[1]2+Y [1]2

· · · ry [6]X[6]−rx[6]Y [6]√
X[6]2+Y [6]2


. (27)

Fl =
[
Fl[1] Fl[2] Fl[3] Fl[4] Fl[5] Fl[6]

]T
. (28)

B =
[
0 0 (mg −

∑6
i=1 b[i]) (mgey −

∑6
i=1 ry[i]b[i]) (mgex −

∑6
i=1 rx[i]b[i]) 0

]T
. (29)

Therefore, it is easy to get the resultant forceFl of each
cable on the respective O′′ − x′′y′′ plane, which is also
on the global plane O − xy, because the local Cartesian
coordinate system O′′ − x′′y′′z′′ of each cable is parallel
with the global Cartesian coordinate system O − xyz.

Fl = A−1 ·B . (30)

Then according to Equations (17)–(19), the forces Fx,
Fy and Fz of the lower end of each cable can be obtained.

It can be seen that the form of Equation (26) is
very similar to the straight-line model’s. The difference
is in the matrix A and the array B. New parameters a[i]
and b[i] are introduced, so that the expression not only
corresponds to the geometric relationship, but also the
mechanical parameters of the cable and the attitude of the
feed cabin. In a sense, a[i] and b[i] are equivalent to the
correction parameters used to correct the error between the
linear model and the catenary model, which depend on the
mechanical and geometric properties of the entire system.

So far, the process of solving the static or quasi-
static equations of CDPRs by the approximately analytical
solution method (AAS) has been very clear, see Figure 7
for details.

Obviously, the process can solve all the required
parameters just in one loop. Compared to the traditional
iterative operation, there is no step of loop calculation and
selecting step size. For this reason, the AAS method can
greatly improve the static solution speed of the CDPR in
FAST.

4 EXAMPLES AND COMPARISON

In this section, a comparison between the approximately
analytical solution method and the traditional iterative

method will be shown, based on MAPLE programming.
Under the condition of the same feed cabin trajectory, the
same static or quasi-static equations of FAST’s CDPR are
solved by the two methods respectively. Finally, the cable
force values of the lower ends of the six cables and the time
required for the solution will be compared.

(1) The feed cabin is hovering at the lower vertex
(0, 0, 140m) of the working area, which means the feed
cabin remains stationary at point K1 in Figure 8. Because
the feed cabin is in the center, according to the principle of
symmetry, the six cables should be subjected to the same
force. Table 2 shows the calculation results.

In the case of high symmetry, the relative error
between the AAS and iteration method is very small. It can
be considered that the two methods have similar accuracy,
but the time cost of AAS is obviously much less than the
iteration method.

(2) The feed cabin is hovering at a point that is
not specific in the working area, such as the point K2

(42.65m, 33.73m, 149.52m), shown in Figure 8. This
point is closer to the B1, B2, B3 and B6 towers, so the
cable tension of the four towers should be larger. Table 3
shows the calculation results.

In the case of no special position, the relative error
of AAS with the iteration is still very small. It can be
considered that the two methods have similar accuracy.
AAS is obviously much faster than the iteration.

(3) The feed cabin slowly moves in a straight path
from G1 (50m, 0, 150m) to G2 (−50m, 0, 150m), as
shown in the blue line in Figure 8. Because the feed cabin’s
movement is very slow, it can be considered that the system
is quasi-static during the whole process. In the solution,
the trajectory is evenly divided into 101 nodes. The static
equations of the CDPR of each node are solved by the two
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Fig. 7 Process of approximately analytical solution method.

Fig. 8 Schematic diagram of the feed cabin trajectory for comparisons between the AAS and iteration method.

Table 2 Comparison with the Feed Cabin Hovering at the Lower Vertex of the Workspace

Method Cable force at the lower end/kN Time cost/s
1 2 3 4 5 6

Iteration 159.1762 159.1670 159.1587 159.1587 159.1670 159.1762 4.984
AAS 158.9899 158.9808 158.9725 158.9725 158.9808 158.9899 0.938

Relative error 0.1170% 0.1170% 0.1170% 0.1170% 0.1170% 0.1170% łł
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Table 3 Comparison with the Feed Cabin Hovering at a Point that is not Specific

Method Cable force at the lower end/kN Time cost/s
1 2 3 4 5 6

Iteration 181.5009 190.7462 200.7024 119.5531 119.8599 191.0149 4.594
AAS 181.3146 190.5478 200.6720 119.3861 119.6912 190.9943 0.969

Relative error 0.1026% 0.1040% 0.0151% 0.1397% 0.1407% 0.0108% łł

Table 4 Comparison with the Feed Cabin Moving Slowly in a Straight Line

Maximum relative error of cable force at the lower end Time cost/s

1 2 3 4 5 6 AAS Iteration

0.1140% 0.1020% 0.1020% 0.1140% 0.1197% 0.1197% 20.844 343.203

Table 5 Comparison with the Feed Cabin Moving Slowly in a Circular Path

Maximum relative error of cable force at the lower end Time cost/s

1 2 3 4 5 6 AAS Iteration

0.1308% 0.1016% 0.1017% 0.1308% 0.1308% 0.1308% 22.750 372.000

methods. Figure 9 shows the change of the forces of the six
cables in the whole process, and the abscissa is the distance
traveled by the feed cabin.

The cable forces solved by the two methods are almost
identical. Table 4 lists the maximum relative error of each
cable force during the calculation process and the solution
time. With the same solution accuracy, AAS takes much
less time than the iteration, which is important for FAST to
achieve real-time control and improve accuracy.

(4) The feed cabin slowly moves in a circular path with
the point (0, 0, 150m) as the center and 50m as the radius,
keeping the height unchanged from G1 (50m, 0, 150m)

to G2 (−50m, 0, 150m), see the red line in Figure 8. As
in the previous case, it can be considered that the entire
system is quasi-static, and the trajectory is divided into 101
nodes to solve one by one. Figure 10 shows the change of
the forces of the six cables in the whole process, and the
abscissa is the distance traveled by the feed cabin.

Like the case of the straight line, the cable forces
solved by the two methods are almost identical. Table 5
lists the maximum relative error of each cable force during
the calculation process and the solution time. With the
same solution accuracy, AAS is still much faster than the
iteration.

It can be seen from the comparison above that the
calculation accuracy of the AAS method for solving
FAST’s cable forces is comparable to the iterative method,
and the calculation time is greatly reduced. However,
because the applied catenary model is a static model, this
method is best applied to static or quasi-static situations.
Whether this theory can be applied to dynamic calculations

requires in-depth analysis combined with the actual model
and further research.

The following is a comparison between the AAS
method and the method currently used in the FAST.
By letting the feed cabin run the same trajectory, the
cable forces calculated by the AAS method are compared
with the cable forces measured by the sensors when the
FAST is actually controlled. These sensors are respectively
installed on six cables as close as possible to the
anchor points A[i] shown in Figure 2. The trajectory is
shown in Figure 11, with (0, 0, 156.73m) as the center,
71.11m as the radius, and making a full circle from
G3(0, 71, 11m, 156.73m) while maintaining the same
height. It should be noted that the running process is slow
and the system can be considered as quasi-static.

Figure 12(a) shows the theoretically calculated cable
forces as the feed cabin moves under this trajectory,
while Figure 12(b) shows the actual cable forces measured
during real-time control. The root mean square errors
between them are shown in Table 6. It can be seen
that the theoretical and experimental numerical trends are
consistent, but there are still considerable discrepancies.
Considering that the attitude change of the feed cabin has
a huge influence on the cable force, it is necessary to use
the feed cabin attitude measured in real-time control when
using the AAS method for calculation.

Figure 13(a) shows the cable forces calculated by
the AAS method after considering the measured attitude
of the feed cabin, while Figure 13(b) shows the relative
errors between these calculated cable forces and the actual
measured cable forces in Figure 12(b). The root mean
square errors between them are shown in Table 6. It can be



J.-N. Yin, P. Jiang & R. Yao: AAS Method for the CDPR in FAST 46–9

(a) Cable forces solved by AAS (b) Cable forces solved by the iterative

Fig. 9 Comparison with the feed cabin moving slowly in a straight line.

(a) Cable forces solved by AAS (b) Cable forces solved by the iterative

Fig. 10 Comparison with the feed cabin moving slowly in a circular path.

Fig. 11 Schematic diagram of the feed cabin trajectory for comparisons between the AAS and real measurement data.

(a) Cable forces solved by AAS (b) Cable forces measured during real-time control

Fig. 12 Comparison between the AAS method and the real-time control.
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Table 6 Root Mean Square Errors between AAS Method and the Real-time Control

Method Root mean square error of cable force/kN

1 2 3 4 5 6

AAS 22.554 17.517 20.078 18.687 17.167 18.190
AAS with actual attitudes 23.942 14.226 19.531 14.210 17.534 16.058

AAS with actual attitudes and corrected coordinates 20.060 12.683 16.422 10.018 16.457 12.053

(a) Cable forces solved by AAS with actual attitudes (b) Relative errors between AAS and real-time control

Fig. 13 Comparison between the AAS method with actual attitudes and the real-time control.

(a) Cable forces solved by AAS with actual attitudes and corrected coordinates (b) Relative errors between AAS and real-time control

Fig. 14 Comparison between the AAS method with actual attitudes and corrected coordinates and the real-time control.

seen that the theoretical and experimental numerical trends
are more consistent, but there are still some deviations.
After careful inspection, it was found that the mass center
coordinates of the feed cabin had a large deviation. After
iterative calculation, it is finally determined that the mass
center is near (0.22m, 0.11m, 0.5m), which is far away
from the theoretical coordinates (0, 0, 0.5m). This also
leads to larger deviations of cable forces. Therefore, it
is necessary to correct the mass center coordinates to
recalculate the cable forces by the AAS method.

Figure 14(a) shows the cable forces calculated by the
AAS method after considering the measured attitude of
the feed cabin and correcting the mass center coordinates,
while Figure 14(b) shows the relative errors between
these calculated cable forces and the actual measured
cable forces in Figure 12(b). The root mean square errors
between them are shown in Table 6. It can be found that
the theoretical and experimental numerical trends are very

close, and the relative errors are already acceptable. There
are still many reasons for these errors.

The first is the coordinate deviation of the mass center.
Even a slight error after correction can have a huge impact
on the cable forces. Moreover, the structure of the feed
cabin actually changes during operation, which also causes
the change in the mass center coordinates more or less.

The second is the fact that many wires and sensors
are added to the cables, which results that the cables are
not of uniform quality assumed by theory. This causes the
deviations in the cable forces.

Third, the object of comparison is the result of the
existing model combined with PID control. Although it has
been verified and can be used, it still has errors compared
with true values.

In addition, the sensors on the cables also have a
measurement error of about 3%, which causes deviations
in the cable forces as well.
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In summary, the theoretical values calculated by
AAS after considering the measured attitudes and the
corrected mass center are consistent with the trend of the
experimental data. It is expected to replace the existing
model of FAST in the future and combine with PID control
or even machine learning to achieve more efficient and
accurate control.

5 CONCLUSIONS

In this paper, a fast method, called AAS, for solving
the static or quasi-static equations of the CDPR of
FAST is proposed to achieve FAST’s real-time control.
By extracting the necessary geometric and physical
coefficients, the static or quasi-static equations can be
solved analytically. In the comparison example with the
traditional iterative method, AAS can save at least 75%
of the time in the calculation of single cables’ force at
a certain moment and even can save 90% of the time in
the calculation of single cables’ force as the CDPR slowly
moves. Also, it is verified through the experiment that the
values calculated by AAS are consistent with the measured
data. Obviously, the difficulty of using the catenary model
to control FAST in real-time is solved. Presumably in the
future, FAST can be controlled with higher precision and
can be more efficient to complete more and more difficult
observation tasks, and this method may be extended to
other CDPRs.

Acknowledgements This work was financially support-
ed by the National Natural Science Foundation of
China (Grant Nos. 11673039 and 11973062), the Youth
Innovation Promotion Association CAS, and the Open
Project Program of the Key Laboratory of FAST, NAOC,
Chinese Academy of Sciences.

References

Abbasnejad, G., Yoon, J., & Lee, H. 2016, Mechanism and
Machine Theory, 99, 1

Bruckmann, T., Lalo, W., Nguyen, K., & Sala, B. 2012, ASME
2012 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, 4,
771

Cui, Z. W., Tang, X. Q., Hou, S. H., & Sun, H. N. 2019,
Mechatronics, 59, 49

Ferravante, V., Riva, E., Taghavi, M., Braghin, F., & Bock, T.
2019, Mechanism and Machine Theory, 135, 54

Gonzalez-Rodriguez, A., Castillo-Garcia, F. J., Ottaviano, E., &
Rea, P. 2017, Mechatronics, 43, 18

Irvine, H. M. 1981, Cable Structures
Kawamura, S., Choe, W., Tanaka, S., & Pandian, S. R.

1995, Proceedings of 1995 IEEE International Conference on
Robotics and Automation, 1, 215

Kawamura, S., Kino, H., & Won, C. 2000, Robotica, 18, 13
Khosravi, M. A., & Taghirad, H. D. 2013, 2013 First RSI/ISM

International Conference on Robotics and Mechatronics, 331
Kozak, K., Zhou, Q., & Wang, J. 2006, IEEE Transactions on

Robotics, 22, 425
Merlet, J.-P. 2019, Mechanism and Machine Theory, 135, 271
Ming, A., & Higuchi, T. 1994, International Journal of The Japan

Society for Precision Engineering, 28, 131
Riehl, N., Gouttefarde, M., Baradat, C., & Pierrot, F. 2010, 2010

IEEE International Conference on Robotics and Automation,
4709

Tang, X. Q., & Yao, R. 2011, Journal of Mechanical Design, 133,
111012

Vafaei, A., Khosravi, M. A., & Taghirad, H. D. 2011, Intelligent
Robotics and Applications, 7101, 455

Yuan, H., Courteille, E., & Deblaise, D. 2015, Mechanism and
Machine Theory, 85, 64


	Introduction
	Coordinate system and parameters
	Cable model and derivation
	Examples and comparison
	Conclusions

