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Abstract A filament is an important structure for studying star formation, especially intersections of
filaments which are believed to be more dense than other regions. Identifying filament intersections is
the first step in studying them. Current methods can only extract two-dimensional intersections without
considering the velocity dimension. In this paper, we propose a method to identify three-dimensional (3D)
intersections by combining Harris Corner Detection and Hough Line Transform, which achieve a precision
of 98%. We apply this method for extracting intersection structures of the OMC-2/3 molecular cloud and
to study its physical properties and obtain the associated PDF distribution. Results show denser gas is
concentrated in those 3D intersections.
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1 INTRODUCTION

Filamentary structures have been recognized in the
interstellar medium for well over a century (Clarke et al.
2016; Takahashi et al. 2013; Gómez et al. 2018). Filaments
are universal structures for dense molecular gas and they
are important in star formation (Schneider & Elmegreen
1979; Arzoumanian et al. 2011). In many cases, the
intersecting filaments are closely associated with multiple
or clustered cores or young stellar objects (Myers 2011;
Schneider et al. 2012; Wang et al. 2016; Lu et al. 2018;
Treviño-Morales et al. 2019), suggesting increased star-
forming activities therein. Schneider et al. (2012) asserted
that intersecting filaments are more closely related to
dense cores and young stars. Schneider et al. (2012)’s
target of interest was the Rosette Molecular Cloud. Around
the filament intersections, more dense core candidates
or stars are found, possibly since merged filaments have
yielded locally higher densities. Schneider et al. (2012)
confirmed a high degree of coincidence between high
column densities, filament intersections and the locations
of embedded infrared clusters. Although the intersections
are important for early-phase gas assembly and dense-core
formation, the physical connections between intersections

and dense cores, in particular those at early stages, are still
to be further explored.

As described above, the intersections would be
considerably important for inducing gas concentration
and star formation. Therefore, the next critical job is to
accurately locate all the intersections. There are two steps
to locate intersections, to identify filaments and to mark
out intersections of filaments.

There are already plenty of methods developed to
identify filaments, including Curvelet Transform (Starck
et al. 2003), HiFIVE (Hacar et al. 2013), Filfinder (Koch &
Rosolowsky 2016) and DisPerSE (Sousbie 2011). Curvelet
Transform has the advantage of enhancing contrast
(including elongated features) in the data. Filfinder is
capable of uniformly extracting the hierarchical filament
structures. It performs well even if the image has large
intensity variation. Although these methods have been
confirmed to be effective and are widely implemented,
lack of three-dimensional (3D) capacity has prevented
them from detecting filament intersections. The specialty
of HiFIVE is to find connected and aggregated gas
structures in PPV space. Its capability is demonstrated
well by the impressive results of intertwined filaments
(Hacar et al. 2013). However, HiFIVE is not focused on
resolving branched and intersected filaments. DisPerSE
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(Sousbie 2011) can sensitively extract the elongated
filamentary structures in any 3D data cube and resolve
the branched and intersected filaments. So, we choose to
utilize DisPerSE to extract filaments in 3D space.

For detecting intersections, manually marking inter-
sections is time consuming and error-prone, especially for
large data sets, which makes it almost impossible to be
done. Apparently, this job should rely on an automatic
way which can improve efficiency and eliminate the
uncertainties. There are automatic methods like Harris
Corner Detection1 which is widely applied in 2D space
scenarios, but it cannot be used in 3D space. We invent
a new automatic method to identify 3D intersections
and develop a procedure which integrates DisPerSE and
our algorithm into a pipeline to detect intersections of
filaments with favorable efficiency and completeness.

In this paper, we describe the details of the algorithm
and show preliminary results on its efficiency and
completeness by applying the algorithm to Orion A
filaments observed by ALMA. The workflow is presented
in Section 2. In Section 3 we explain the design of the
algorithm and architecture of the pipeline. We highlight
the performance of the algorithm in Section 3.3. Then,
we discuss ‘pseudo-intersections’ and study the probability
distribution function of density (PDF) of the filamentary
structures and intersections by the pipeline in Section 4. A
conclusion is provided in Section 5.

2 WORKFLOW

The detection of intersections in a filamentary structure is
not straightforward as the structure has a 3D representation
and does not have a regular shape. We design an algorithm
to address this problem. Its workflow is expressed below:

1. Extract the filamentary structures in the PPV space
(RA, Dec and radial velocity) by DisPerSE. Following
the previous studies (Arzoumanian et al. 2011;
Schneider et al. 2012), we adopt the 5σ level as the
threshold of intensity.

2. Project the 3D filaments to three orthogonal 2D planes
(RA-Dec, RA-radial velocity, DEC-radial velocity).
Apply Harris Corner detection on each plane to obtain
2D intersections. Then, acquire the corresponding
third dimension coordinates to get 3D candidate
intersections.

1 More details of this algorithm can be found at the
website: http://docs.opencv.org/3.0-beta/doc/py_
tutorials/py_feature2d/py_features_harris/py_
features_harris.html

3. Extract data cubes around each candidate intersection
and inspect these cubes by applying the Hough Line
Transform to eliminate false positive cases.

The workflow is illustrated in Figure 1, and the
architecture and design of the algorithm are described in
Section 3.

3 INTERSECTION DETECTION

Among the three steps to identify intersections, extracting
filaments using DisPerSE is already commonly utilized.
The other two steps are newly introduced and critical in
the pipeline.

3.1 Find Candidate Intersections in 3D Space

To identify intersections, we projected 3D filaments into
three two-dimensional (2D) planes to avoid overlap which
will lead to intersections being missed. Overlap happens
when two lines intersect in a plane perpendicular to the
projected plane. Figure 2(a) displays this situation. Line 1
and line 2 intersect in 3D space, but this situation cannot
be detected by only projecting onto the RA-Dec plane.

We introduce Harris Corner Detection which is a
general method applied to extract intersections in 2D
space. Mathematically, intersections are regions in an
image with large variation in intensity in all the directions.
Harris Corner Detection finds the difference in intensity
for a displacement in all directions to detect intersections.
We use it in step two of the workflow to detect candidate
intersections in a projected plane. For each 2D plane, we
provide the ‘2D filaments’ as input to the Harris Corner
Detection, calculate the 2D coordinates of intersections
(called projected intersections) and then convert the
projected intersections into 3D coordinates. For this step,
we need to consider false negative situations and remove
some points.

Candidate intersections detected in each 2D plane are
a subset of 3D candidates. After false positive elimination,
the complete set of 3D intersections is the union of
intersections detected in three 2D planes.

3.2 Remove False Positive Intersections

There are mainly two kinds of false positive intersections;
one is filaments which intersect on the sky-plane, but are
spatially separate along the velocity-axis. These filaments
look like they intersect merely due to the projection effect;
we call this situation “pseudo-intersection”. The other one
is endpoints, which can also be detected by Harris Corner

http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html
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Fig. 1 The workflow of extracting intersections of filaments in 3D space.

(a) (b)

(c)

Fig. 2 Three special situations. Solid lines are 3D lines and dotted lines are the projection of solid lines. (a) One plane
situation, (b) Pseudo-intersection situation, (c) pseudo and true intersection situation. These panels are described in the
text.

Detection. These cases arise because of large variation in
intensity in all directions.

Figure 2(b) displays an example of pseudo-
intersections. Line 1 and line 2 intersect on the projected
plane, but are actually spatially separated along the
velocity axis.

To exclude pseudo-intersections, with the assumption
that each filament has a distinct radial velocity, if over-
lapping filaments have two or more velocity components,
their intersection would be regarded as a pseudo one.
This means we can delete pseudo-intersections based
on whether projected intersections have more than one
velocity component. Here we adopt a threshold to
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Fig. 3 Examples of projections of a cube. The first two rows feature endpoints and straight lines but the algorithm can
discriminate and delete them. The last row shows real intersections and the algorithm can recognize them effectively by
the Hough Line Transform.

distinguish the different velocity components. Velocity
components within the threshold are treated as one
component, while those beyond the threshold are regarded
as pseudo-intersections.

However, there is an exception. Figure 2(c) illustrates
an example. Line 1 and line 2 intersect at point A, while
another line passes point A when projected on the sky-
plane (x, y). In this case, the intersection of line 1 and
line 2 is real there, but there are two components on the
velocity-axis, which will be wrongly excluded by only
use of the number of velocity components. This situation
can easily be confused with pseudo-intersections. We call
this situation ‘pseudo and true intersections’. In order to
solve these problems, the velocity components are further
examined.

For differentiating between the situation of ‘pseudo-
intersections’ and ‘pseudo and true intersections’ and
removing endpoints, we introduce the Hough Line

Transform2. Hough Line Transform is a popular technique
for detecting straight lines. It can detect a line even if
it is broken or distorted a little bit. Firstly, we select all
points which have the same position but different velocities
compared to projected intersections to form a new set of
intersections (called ‘candidate intersections’). Then, we
take a cube around each candidate intersection and project
the cube onto a plane to identify lines using the Hough Line
Transform. We recognize the candidate intersection as true
once there are two (or more) lines identified. To meet the
prerequisite of applying Hough Line Transform, the cube
should be small enough that curves can be regarded as
straight lines.

As described above, the threshold applied to differ-
entiate velocity components is an important parameter in
our algorithm. It is related to the velocity sensitivity and
average line width which need to be determined by real
data. For example, in the OMC-2/3 dense molecular cloud,

2 More details on this algorithm can be found at the website: http:
//docs.opencv.org/3.0-beta/doc/py_tutorials/py_
imgproc/py_houghlines/py_houghlines.html

http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
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(a) (b)

(c) (d)

Fig. 4 The intersections extracted by the algorithm. Blue points represent filaments (a part of Orion A), green points in
(a) and (c) are ‘candidate points’ and red points in (b) and (d) are real intersections (false positive intersections excluded).

the minimum value of threshold should be higher than
the velocity sensitivity of a high-resolution N2H+(1 − 0)

spectral cube observed with ALMA which is 0.1 km s−1

in this case. In the meanwhile, if the velocities of two
(or more) components are more than the average line
width of filaments, we think a candidate intersection
corresponds to multiple velocity components. In OMC-
2/3, the average line width of filaments is 0.5 km s−1, so we
choose 0.5 km s−1 as the velocity threshold in this work.

3.3 Experimental Results

To evaluate the performance of the algorithm, we applied
it to a high-resolution N2H+(1 − 0) spectral cube from
the dense molecular cloud OMC-2/3 observed by ALMA.
Figure 3 displays examples of projections of a cube.
The first two rows feature endpoints and straight lines
but the algorithm can discriminate and delete them. The
last row shows real intersections and the algorithm can
recognize them effectively by the Hough Line Transform.
Figure 4 plots the results of extracted intersections using
the algorithm. Blue points represent filament paths, green

points in (a) and (c) are ‘candidate points’ and red points
in (b) and (d) are the intersections which eliminated false
positives. Here we adopted a threshold of 0.5 km s−1 to
differentiate velocity components.

We consider intersections identified by human experts
as the perfect ground truth to evaluate the result produced
by the algorithm. We find accuracy is 93%, precision is
98% and recall is 95%.

4 DISCUSSION

4.1 Pseudo-intersections and Real Intersections

In this section, we present pseudo-intersections and real
intersections identified in a real astronomical scenario
which demonstrates a meaningful result obtained by our
algorithm.

In Figure 5, for each set of four panels that form
a square shape, the upper left panel is the integrated
N2H+(10 − 01) image (gray scale and contours). The
contour levels are 15, 30, 45, 60, 75 and 90 percent of the
local maximum. The colored dots represent the filament
structures modeled by DisPerSE, with the color scale
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(a)

(b)

Fig. 5 The gas distributions, spectral profile and position-velocity diagrams over two representative gas structures, (a)
pseudo-intersection and (b) real intersection. These images are described in the text.

indicating the radial velocity. The directions to plot the
Position-Velocity diagrams are signified with red and blue
arrows. The two directions are along the major and minor
axes of the filament. The upper right panel in each set is the
spectrum profile of intersection. The lower left and right

panels in each set are the Position-Velocity diagrams along
with the major and minor directions, respectively.

Figure 5(a) displays an example of pseudo-
intersections. Clearly, it is an intersection on the projection
plane, but there are two velocity components in the spectral
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Intensity (Jm beam    )-1

Fig. 6 The distribution of filaments and intersections. The blue and red lines represent the set of filaments (including
intersections) and the set of intersections. The black lines are obtained by Gaussian fitting. The values of the peaks are
0.33 Jy beam−1 and 0.72 Jy beam−1. The green line represents the distribution of uncertainty and the root mean square
(RMS) of original data is 0.02 Jy beam−1. (Note: The vertical axis is the number of pixels which are normalized.)

profile. The Position-Velocity diagrams along the major
and minor directions also depict two velocity components.
Our algorithm deletes this candidate correctly. Figure 5(b)
shows the real intersections which have only one velocity.

4.2 Physical Properties of Extracted Structures

After identifying the filaments and intersections by our
algorithm, we compare the different gas distributions of
filaments, intersections and the rest of the clouds. We
study the PDF of the gas pixel intensities in the extracted
structures. The PDF is estimated for three components
of our maps as plotted in Figure 6: (1) the white noise,
(2) filaments and (3) intersections. The PDF of the white
noise is sampled from a no-emission region, which we
chose from a 100×100 pixel square area in the data cube
without apparent N2H+ (1-0) emission. Since the extracted
filaments and intersections from DisPerSE are merely lines
and points, we need to identify pixels that belong to
the filaments or intersections for statistical comparison.
We classify pixels of filaments and intersections with the
following strategy: for each point A along a filament,
we look for the direction in which the intensity gradient
descends fastest. We locate a position B along this
direction where the intensity decreases to 80% of the peak
value, and take the distance between A and B as a radius,
to make a circle around A. All the pixels within the circle
are counted as filament pixels. As point A goes through the
whole filament, we mark all pixels for this filament. When
A is an intersection, the pixels within the radius will be

the intersection pixels. By this method, we collect filament
pixels in an area of 15 579 arcsec2 and interaction pixels in
an area of 3728 arcsec2 from our data cube. We utilize the
Kolmogorov−Smirnov test (K−S test) to check whether
the intensity datasets of filaments and intersections are
different. The resulting p-value of this test is 0, indicating
the two datasets differ significantly.

The green line in Figure 6 is the distribution of white
noise, with a Gaussian distribution that peaks close to
zero. The intensity PDF of the filaments peaks at S =

0.33 Jy beam−1. The intersection pixels take up a fraction
of 0.24 among the filament sample and 0.08 among the
entire data volume. The PDF of intersections peaks at
S = 0.78 Jy beam−1, which is comparable to the full
width at half-maximum (FWHM) of the filament PDF.
The offset between the peaks of PDF are obvious in
Figure 6 from noise to filaments, and to intersections. The
intersections have significantly higher pixel intensity than
the filaments at higher densities, with an obvious excess
at the densest end of the distribution. This suggests a
considerable fraction of the dense gas in the filaments tends
to be concentrated around intersections, which present
obvious overdensity.

4.3 The Limitation of Our Method

As mentioned before, there are two steps to locate intersec-
tions: to identify filaments and to mark out intersections.
Identifying filaments accurately is a precondition to
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intersection identification. The ability to extract filaments
will limit the quality of intersection detection.

Besides, threshold setting involves subjective factors.
If the threshold is too high, it will mix the multi-velocity
components into a single velocity component, and the
pseudo-intersection cannot be removed. If the threshold
is too low, the intersection may be mistaken as a pseudo-
intersection. A good threshold can improve the accuracy of
the result, which needs to be tried based on the properties
of data.

5 CONCLUSIONS

In summary, we develop a new procedure to identify
intersections of filaments in PPV space. The algorithm uses
Harris Corner Detection and Hough Line Transform to
extract intersections of filaments identified by DiSperSE,
and achieve a precision of 98%.

Our algorithm has two main steps. The first step
is getting candidate intersections applying Harris Corner
detection. The next is to delete all the false positive
intersections which include “pseudo-intersection” and
endpoints using Hough line transform. The sensitivity for
identifying false positive intersections can be adjusted by
setting a threshold, which is related the velocity sensitivity
and average line width of the observation.

In this paper, we also explore the use of our
algorithm to extract intersection structures of the OMC-2/3
molecular cloud, study its physical properties and obtain
the associated PDF distribution. We find a considerable
fraction of the dense gas in the filaments tends to be
concentrated around intersections, which present obvious
overdensity.

With the rapid development of new telescopes and
instrumentation technology, the data volume has grown to
a level that makes detecting intersections by eye almost
impossible. Our algorithm demonstrates its capacity for
extracting filament intersections automatically, especially

in PPV space, which is expected to have a better
performance for eliminating false positive intersections
than a 2D algorithm.
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