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Abstract Radio frequency interference (RFI) will pollute the weak astronomical signals received by radio
telescopes, which in return will seriously affect the time-domain astronomical observation and research. In
this paper, we use a deep learning method to identify RFI in frequency spectrum data, and propose a neural
network based on Unet that combines the principles of depthwise separable convolution and residual, named
DSC Based Dual-Resunet. Compared with the existing Unet network, DSC Based Dual-Resunet performs
better in terms of accuracy, F1 score, and MIoU, and is also better in terms of computation cost where the
model size and parameter amount are 12.5% of Unet and the amount of computation is 38% of Unet. The
experimental results show that the proposed network is a high-performance and lightweight network, and it
is hopeful to be applied to RFI identification of radio telescopes on a large scale.
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1 INTRODUCTION

With the increasing sensitivity of radio telescopes, large-
scale visits, and the use of low-power artificial broadband
signals, the signals received by radio telescopes produce a
lot of interference, which seriously affects the research of
astronomical observation data. To reduce radio frequency
interference (RFI), radio telescope sites are usually located
in radio-quiet zones, and a series of hardware optimization
designs, such as improvement of grounding shield and
band-pass filter, are needed to avoid mutual inductance
coupling induction, common impedance induction, field-
induced induction and other main paths of RFI generation.
In addition, post-processed of the observed data is required
to remove RFI.

In the early days, astronomers manually marked RFI
by visual inspection, which can be done in standard astro-
nomical imaging software. However, with the emergence
of higher spectral and temporal resolution, astronomy
has ushered in a new stage of development, i.e., the
full-band-large-sample-massive information period, where
the amount of data is getting larger and larger, and
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manual marking suffers from many problems such as time-
consuming and human interference. The basic idea of
automatic RFI identification is to label RFI accurately
through statistical analysis of data, i.e., eliminating
RFI by the difference of morphological characteristics
between RFI signal and solar radio observation signal in
time-frequency two-dimensional map. The current post-
processing elimination methods can be divided into three
categories: 1) Threshold-based methods, such as cumu-
lative sum method and combined threshold sum method.
These methods define RFI as pixels in spectrum that
exceed certain thresholds. This kind of algorithm is simple
and efficient. Astronomical equipment such as LOFAR
(Cendes et al. 2014) uses this method to process RFI.
The biggest problem of this method is that it is difficult
to determine the threshold according to RFI source and
observation signal, especially for time-varying celestial
signal, where the selection of threshold is particularly
critical and sometimes the weak instantaneous signal
may be identified as RFI and removed; 2) Wavelet-based
methods. Since wavelet transform has the characteristics
of time-frequency localization and variable resolution,
the distribution characteristics of signal and noise are
different in wavelet domain, andMészárosová et al.(1999)
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proposed to use wavelet analysis to study two types of solar
radio bursts. However, the difference in time-frequency
characteristics of RFI from different sources makes it
very complex and difficult to model all types of RFI
signals. The method designed for a particular event is not
universally applicable to other cases. 3) Machine learning-
based methods. At present, more and more researchers
began to use this method to solve the RFI problems in
the field of astronomy. This is because machine learning
has made remarkable achievements in many fields, and in
the field of astronomy, there is enough data for training.
Initially, researchers tried to identify the characteristics
of RFI through linear methods, such as singular vector
decomposition (SVD) (Offringa et al. 2010) or principal
component analysis (PCA) (Zhao et al. 2013). If the RFI
pattern exhibits repetitive patterns in time and frequency,
these methods work well, but they cannot handle more
random signals, such as those caused by irregular satellites.
Later, they use traditional supervised machine learning
techniques. In literature (Wolfaardt 2016), RFI signals
are clustered based on K-nearest neighbor and Gaussian
mixture model to realize RFI labeling.Bethapudi & Desai
(2018) analyzed and evaluated the performance of four dif-
ferent supervised learning algorithms: an Artificial Neural
Network Multi-Layer Perceptron (ANN MLP), Adaboost,
Gradient Boosting Classifier (GBC), and XGBoost, for
the separation of pulsars from RFI and other sources of
noise. However, for these methods to achieve a sufficient
classification accuracy, a careful feature selection process
has to be performed prior to the application. With the
emergence of deep learning, algorithm can automatically
learn features from a large number of image data using
network structures of different scales and various learning
rules without prior knowledge and feature selection.
Some researchers tend to use deep learning methods
for RFI recognition research. Daniel (Czech et al. 2018)
demonstrated an approach to classifying the sources of
transient RFI (in time domain data) that use CNNs and
LSTMs. Akeret et al.(2017) employed a special type of
Convolutional Neural Network, the U-Net, that enables
the classification of clean signal and RFI signatures in 2D
time-ordered data.Dai et al.(2019) also used the Unet to
detect the RFI signals on Tianlai data.

It is not difficult to see from the above, the research
on using deep learning to identify RFI is relatively few
and not perfect.Akeret et al. (2017) mentioned above
used the original Unet (Ronneberger et al. 2015) for
medical image processing. In recent years, scholars have
made many improvements based on the original Unet.
However, these research results have not been used in RFI
identification. Zhang et al.(2020) mainly discussed the
influence of depth of Unet model on network performance.
Guan et al.(2018) improved the extraction of features by

replacing the original two ordinary convolutions with a
densely connected structure, which directly connects all
layers while ensuring the maximum information transfer
between layers in the network, reducing disappearance of
gradients and making the network deeper. At the same
time, it strengthens the feature transfer between layers
and the feature is used more effectively.Liu et al. (2020)
used another method, residual connection, to solve the
problem of degradation and gradient disappearance of deep
networks, which can make network converge faster and
get better results while deepening the network.Hu et al.
(2019) considered from the perspective of perceptual field
size of the neural network. They firstly used convolutional
kernels of different sizes to extract feature and then
feature fusion was performed. This increases the width
of network and the adaptability to feature size, and
achieves good results.Gong et al.(2020) also considered
the influence of the receptive field, and since computation
corresponding to the increases of convolution kernel grows
geometrically, they used expansion convolution to change
the size of the receptive field and convolution kernels
with different expansion coefficients in each convolution
layer. In addition, some scholars have added attention
mechanisms to network to improve network performance.
Huang et al.(2017) proposed a reverse attention structure
that generates a mask for each class to amplify the reverse
class response and learn the content that is not related to the
region of interest. Alternatively, a feature pyramid network
(Li et al. 2018) is introduced to generate attention signals
from different pyramid scales and performs a global
average pooling operation to provide global context as a
guide to low-level features to compute category location
details.Chen et al.(2021) introduced SE module into the
network which is a novel feature recalibrating strategy.
Specifically, the importance of each feature channel is
automatically obtained through learning and then valuable
features are promoted and features that are not useful
for the current task are suppressed according to this
importance.

Based on the experience of the above literature, and
according to the characteristics of RFI in the spectrum, the
authors proposed DSC Based Dual-Resunet in this paper.
DSC Based Dual-Resunet is based on the architecture
of Unet network, in which a dual Unet structure is
designed using Unets stacking, and a residual block is
designed to replace the standard convolution for better
extraction of image features. At the same time, depthwise
separable convolution is introduced to make the network
more lightweight and improve computational efficiency.
In addition, according to the unique characteristics of
time-frequency two-dimensional graph containing RFI,
the weight coefficient of jump connection is proposed to
better extract low-level features. For the problem that the
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Fig. 1 Unet network structure.

Fig. 2 DSC Based Dual-Resunet network Structure.

proportion of positive and negative samples in data varies
greatly, dice loss is used to avoid training failure.

This paper is organized as follows: in Section2, the
structure of the proposed neural network model and its
advantages are introduced. Section3 trains and tests the
proposed network model, and the model is evaluated with

performance metrics, compared with Unet, and analyzed.
Finally, summaries and conclusions are given in Section4.

2 NETWORK MODEL

In this section, the Unet model is introduced firstly,
and then the proposed network is described in detail.
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Fig. 3 Schematic diagram of the depthwise separable convolution principle.

The related principles such as residual connection and
depthwise separable convolution used in the network are
introduced. This network structure is named DSC Based
Dual-Resunet which is especially proposed according to
the characteristics of RFI that need to be identified. The
network can better extract the characteristics of RFI in
spectrum image and learn them, and output accurate
recognition results.

2.1 Unet Network Structure

Unet is a semantic segmentation model inspired by fully
convolutional networks (FCN) and designed for medical
images, which can learn image features using a small
amount of data, and it is a very robust model for edge
extraction and plays a significant role in biomedical image
segmentation. The structure of Unet is shown in Figure1.

The whole network structure is roughly divided into a
contraction path and an expansion path. Such a structure
is also called the encoder-decoder structure in some
literature. Because the whole network structure is similar
to the capital letter U, it is named Unet. The contraction
path is composed of convolution and pooling components
of the traditional convolution neural network. The size of
feature map is reduced by pooling, and feature dimension
is expanded by convolution to extract high-level features.
The expansion path uses 2×2 de-convolution instead of
pooling in the contraction path. After each de-convolution,
image size is doubled and concatenated with the original
feature map of same scale layer. De-convolutions also
make the edge information of segmentation image more
refined. In the last layer, the required classification results

are obtained by a convolution with a kernel size of 1×1
and activation function. There are 23 convolution layers in
the whole Unet structure.

Unet is very different from other common segmen-
tation networks: Unet uses a completely different feature
fusion method, concatenating. That is, the fusion of new
feature map in expansion path and feature map from
contraction path. Unet concatenates features together in the
channel dimension to form thicker feature maps, and the
same stage uses jump connection to connect. This ensures
that the final recovered feature map incorporates more low-
level features, and also ensures the fusion of features of
different scales, thus allowing multi-scale prediction and
deep supervision. This is one of the important reasons why
Unet is superior to other segmentation network models. In
contrast, the corresponding points are summed in FCN and
the feature maps do not thicken.

2.2 DSC Based Dual-Resunet Network Structure

Unet is mainly used for medical image segmentation, and
spectrum of post-processing data of a radio telescope is
similar to but not identical to a medical image, so the
network structure in Figure2 is designed according to its
characteristics.

As shown in Figure2, the network model consists
of two U-shaped network structures, each contains four
scale layers. The two U-shaped structures are connected
by a convolution layer and three jump connections.
In the structure, each scale layer contains a residual
block to extract image features, and each residual block
contains three depthwise separable convolutions. The scale
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Fig. 4 Residual block structure.

transformation between different scale layers is completed
by de-convolution or pooling. The difference between two
U-shaped structures is that a weight coefficient is added
to the jump connection in the latter structure. The network
ends with a sigmoid function to output results. The specific
structure and functions of these components are introduced
in the following sections.

2.2.1 Depthwise separable convolution

Depthwise separable convolution first appeared in a
Ph.D. thesis entitled “Rigid-motion scattering for image
classification”. However, what makes everyone familiar
with DSC are two well-known models, Xception (Chollet
2016) and MobileNet (Howard et al. 2017). They are two
important achievements from Google team in the same
period.

The detailed structure of DSC is shown in Figure3.
DSC is composed of two parts, namely, Depthwise
Convolution and Pointwise Convolution. The calculation
of Depthwise Convolution is simple, it uses a convolution
kernel for each channel of input feature map and then
concatenates outputs of each convolution to get its final
output. In Depthwise Convolution, only one convolution
kernel is used for each channel, so the number of output
channels is the same as the number of input channels.

Pointwise Convolution uses a specified number of 1×1
convolution kernels to convolute the output of Depthwise
Convolution, which plays two roles in DSC. The first is to
allow DSC to change the number of output channels freely;

Fig. 5 Four prediction results of the binary classification
problem.

Fig. 6 Fitting curve of relationship between weight
coefficient of jump connection and network performance.

the second role is to fuse feature map output by Depthwise
Convolution.

DSC is a substitute for ordinary convolution, in
which the number of convolution kernels is equal to the
number of input channels multiplied by the number of
output channels, and the size of convolution kernels is
n×n. But DSC only needs the same amount of 1×1
convolution kernels andn×n convolution kernels which
is equal to the number of input channels. Obviously,
its computational complexity is much lower than that of
ordinary convolution, especially whenn is very large.
So its most significant advantage is high computational
efficiency and it is often used to build lightweight models,
but the efficiency of DSC is at the cost of reducing network
accuracy. Designing high-efficiency and high-precision
DSC models is one of the hot research directions. In the
proposed model, all convolutions use DSC to get higher
computational efficiency.
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2.2.2 Residual block and residual connection

In the original Unet model, image features are extracted
by two convolutions in each scale layer. In the proposed
model, the residual blocks are used to extract features, and
the structure of residual block is shown in Figure4.

As shown in Figure4, a residual block contains three
convolution layers and two jump connections. The jump
connection here is the residual connection. The idea of
residual connection appeared in the early traditional neural
network. Srivastava et al.(2015) proposed the structure
of residual connection, thenHe et al. (2015) proposed
the residual network and promoted this structure. This
structure is also added to the proposed network, which
can improve the gradient dissipation problem in back-
propagation process and make network structure become
deeper, while preventing the degeneration of neural
networks, and accelerating convergence process.

In this structure, each residual block contains three
convolution layers but only two residual connections.
Setting the number of convolution layers to 3 is the result
of considering both network performance and efficiency.
The whole network contains 14 residual blocks, the
number of convolution layers in residual blocks has
a significant impact on the whole network. Reducing
the number of convolution layers will reduce network
performance. Increasing the number of convolution layers
will lead to an oversized network and may cause problems
such as memory overflow. According to experiments,
it is verified that three convolution layers are the best
choice. In traditional residual network, the number of
residual connections is always the same as the number
of convolution layers. However, this network only uses
two residual connections because the first convolution in
the block will change the feature dimension. So the two
ends of the first convolution cannot be directly connected.
If the structure needs three residual connections, it also
needs an additional convolution layer to make the feature
dimensions of both ends of the residual connection
consistent. This will increase the amount of computation,
and it is verified that three residual connections cannot
improve the performance of network.

2.2.3 Dice loss function

The most common loss function used by the neural
networks to solve binary classification problems is a
binary cross-entropy loss function, which is also used
by the original author of Unet. But for this paper, the
proportion of RFI is less than 5% in a time-frequency two-
dimensional image, which means that positive and negative
sample proportion of the binary classification problem is
very different. In this case, the binary cross-entropy loss
function is more likely to focus on samples with a large

Fig. 7 Training loss function curve.

Fig. 8 Training accuracy curve.

sample ratio, and the trained network model has a poor
resolution for samples with a small sample ratio. The
cross-entropy function with weight, dice loss, focal loss,
and other functions can be used to solve this problem. After
verification, the best dice loss is used in this paper.

Firstly, the dice coefficient is an ensemble similarity
measurement function, which is usually used to evaluate
the similarity of two samples, and the larger the value is,
the more similar it is. The value range is [0,1] and the dice
coefficient is expressed as:

s =
2|X

⋂
Y |

|X |+ |Y |
, (1)

where |X
⋂
Y | is the intersection betweenX and Y ,

|X | and |Y | indicate the number of elements ofX
and Y , respectively, where the coefficient of molecule
is 2, because the denominator repeatedly calculates the
common elements betweenX andY . So the dice loss is
expressed as:

dice = 1− s . (2)

For binary classification problems, the general pre-
dictive results are as follows: TP: true positive, TN: true
negative, FP: false positive, FN: false negative. They are
schematically shown in Figure5.
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Fig. 9 Network classification results. (a) is the observed TOD fromthe Bleien Observatory with RFI, (b) is the RFI mask
obtained from SEEK’s SumThreshold , (c) and (d) are the RFI mask from the proposed network and Unet, respectively.

The dice coefficient can also be written as follows:

s =
2TP

2TP+ FP + FN
. (3)

The precision, recall rate, and F1 are expressed as:

precision =
TP

TP + FP
, (4)

recall =
TP

TP + FN
, (5)

F1 = 2 ·
precision · recall

precision + recall
=

2TP

2TP+ FP + FN
= s.

(6)
It can be seen that the dice coefficient is equivalent

to F1 score. Dice coefficient is used to calculate similarity
between|X | and|Y |, but essentially contains two metrics,
precision and recall. Therefore, dice loss is an optimization
of F1 score, and F1 score is also used as one of the
reference metrics in the subsequent evaluation of network
performance.

Dice loss can be used to train network model with a
stable convergence process and has a better performance
compared with other loss functions, which can solve the
problem caused by extremely unbalanced ratio of positive
and negative samples.

2.2.4 Weight coefficient of jump connection

In the proposed network structure, a weight adjustment
coefficient is added to the jump connection of the second
U-shaped structure, which is named weight coefficient of
the jump connection. In essence, the double Unet structure
increases the number of convolutional layers compared to
a single Unet, and the whole network becomes deeper. It
is known that shallow network extracts low-level features
of image, and deep network extracts high-level features,
and as the number of network layers increases, the
influence of low-level features gradually weakens, which
is not conducive to the extraction of global features of
image. However, RFI in time-frequency two-dimensional
diagram is scattered, and its features are relatively simple
which is low-level features, so low-level features are more
important than high-level features. Moreover, the proposed
network structure is deeper, so the jump connection weight
coefficient is introduced to improve influence of low-level
features. This makes low-level features better transmitted
to the back-end of network, the larger the weight is, and the
greater the influence of front-end features have on back-
end.

To determine the optimal value of weight coefficient,
weight coefficients of different values is used to train the
proposed network, and F1 score is used as evaluation
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Fig. 10 Network classification results. (a) is the observed TOD fromSBRS with RFI, (b) is the classification results of
SEEK’s SumThreshold , (c) and (d) are the classification results of the proposed network and Unet, respectively.

metric to curve fit the experimental results as shown in
Figure 6, The results are judged according to the curve
fitting and combined with original value before fitting, and
finally w=1.8 is selected and achieved better results in the
experiment.

3 EXPERIMENT AND RESULTS ANALYSIS

3.1 Experimental Data

In order to compare the performance of the two networks,
firstly, we used the same data set asAkeret et al.
(2017), which is taken at Bleien Observatory. Then
we used the solar radio spectrum data observed by
Chinese Solar Broadband Radio Spectrometer (SBRS)
and specially selected some data containing burst. The
two groups of data sets were processed and tested by
the same method. The data sets was also labeled by
SumThreshold (Offringa et al. 2010) algorithm, which is a
variable threshold method for improving the classification
performance in which the sum of one or more samples is
used as the threshold criterion, and the basic principle to
judge whether a pixel exceeds the threshold is that if A
and B do not exceed the single sample thresholdX1, but
the average value of A and B exceeds the slightly lower
thresholdX2, they can still be marked, if not, they can
be combined with the third neighbor C and threshold at

X3. The more samples combined, the lower the sample
threshold is, and so on. The number of samples selected
for each judgment is called combination number.

The threshold for different combination numberi is
determined by two parameters,Xi (threshold of single
sample) andρ. Xi is represented by the following formula:

Xi =
X1

ρlog2
i
. (7)

According to the experience, the value ofρ = 1.5 is
suitable for most cases.

The specific implementation process is as follows:
first, the image is smoothed by one-dimensional Gaussian
filtering in two directions, and then the residual image
which contains systematic noise and RFI is obtained by
subtracting the smoothed data from the original data. The
residual image is then used to label RFI through the
combined threshold method mentioned above, so as to
avoid marking astronomical sources with high amplitude
visibility.

3.2 Performance Evaluation Metrics

In this paper, the proposed neural network model is to
identify RFI, which is essentially an image segmentation
problem and also a pixel-specific binary classification
problem. The evaluation metric for the classification
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Fig. 11 Network classification results. (a) is the observed TOD fromSBRS with RFI, (b) is the classification results of
SEEK’s SumThreshold, (c) and (d) are the classification results of the proposed network and Unet, respectively.

problem is firstly accuracy, but accuracy cannot fully and
objectively reflect the learning ability of neural networks
when the proportion difference between positive and
negative samples is too large, and the commonly used
evaluation metrics in the field of image segmentation are
F1 score and MIoU.

To comprehensively evaluate the classification perfor-
mance of models, it is necessary to check precision rate
and recall rate at the same time. Unfortunately, precision
rate and recall rate are often negatively correlated. In other
words, increasing precision usually reduces recall value.
F1 score is a metric used to measure the accuracy of
binary classification or multitask classification model in
statistics and takes into account both precision and recall
of classification model. It can be regarded as a weighted
average of precision and recall, with the maximum value
of 1 and the minimum value of 0. A larger value means
better classification performance.

Precision refers to the proportion of samples with a
predicted value of 1 and a true value of 1 in all samples
with a predicted value of 1. Recall refers to the proportion
of samples with a predicted value of 1 and a true value of
1 in all samples with a true value of 1. The calculation
methods of precision, recall and F1 score are given in
Equations (4), (5), (6) respectively.

In the field of image segmentation, MIoU value is
also an important metric to measure the accuracy of image
segmentation. MIoU can be interpreted as average cross-
union ratio, which means average of IoU value of each
category. It is a global-based evaluation. Among them:

IoU =
TP

TP + FP + FN
, (8)

MIoU =
1

k + 1

k∑

i=0

pii∑k

j=0 pij +
∑k

j=0 pji − pii

=
1

k + 1

k∑

i=0

TP

TP + FP + FN
.

(9)

To compare classification performance of neural
networks, accuracy, F1 score and MIoU are used as
the evaluation criteria, but for a network model, its
computation and model size are also important metrics,
both of which correspond to time complexity and space
complexity, respectively. The condition for implementa-
tion of algorithm model is to meet needs of business
scenarios such as memory occupation and computing
speed while ensuring the performance of algorithm. It is
very important for model deployment of mobile terminal,
so the size of model and the amount of computation have
an important impact on the practical application of model.
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Table 1 Comparison of Performance and Computing Cost of Network Model

Model Accuracy F1 MIoU FLOPs(G) Params(M) Model Size(MB)

Unet 0.98526 0.93267 0.93499 192.9 31.1 372.9
Proposed Network 0.98557 0.93958 0.94156 73.5 3.9 47.7

These two metrics and the number of parameters with
similar effect to the model size are also added to the
evaluation metrics.

3.3 Training and Testing

This section uses the dataset in Section3.1 to train and
verify networks. 60% of the dataset is taken as training
samples and the rest as test samples. The size of each
sample is 240×512. In the pre-training, it is found that
the loss of the training model tends to be stable after
150 epochs, so all models are set to 150 epochs for each
training. The initial weight value of each layer is random.
Dice loss is used as the loss function, Adam is used as
the optimizer, and the learning rate is set to 0.0001. In the
process of training, methods of data enhancement such as
translation and rotation are also used to expand diversity of
the data set and improve the learning efficiency of neural
networks.

The training and testing are implemented in the
software environment of Ubuntu 18.04+ python 3.6+
TensorFlow 1.15.0 with a hardware platform of an Nvidia
GTX3080 graphics card. The Unet and the proposed
network are trained and tested under the same conditions.
The results of experiment are averaged and analyzed.

3.4 Experimental Results and Analysis

After training and testing the neural networks under the
above conditions, a series of results are obtained. The
experimental results are summarized as mean values and
used for qualitative and quantitative evaluation of the
neural networks.

For training process, the training loss curve and the
training accuracy of each network are shown in Figures7
and8.

According to Figures7 and 8, it can be seen that
DSC Based Dual-Resunet converges faster during training
process, due to the design of the residual block, which
makes the network deeper and takes advantage of the
residual connection. While Unet does not use a residual
connection, so the performance of Unet is not as good as
the proposed network. At the same time, the performance
of the proposed network is also better for loss and accuracy
value in training.

Figure 9 shows examples for classification perfor-
mance comparison, in which the subgraphs from top
to bottom are the observed TOD from the Bleien

Observatory with RFI, the RFI mask obtained from SEEKs
SumThreshold the RFI mask from the proposed network,
and the RFI mask from Unet, respectively. It can be seen
that both Unet and the proposed network can identify most
RFI accurately, and only a small number of RFI are not
marked. But the proposed network is better than Unet. The
prediction result of the proposed network visually is closer
to the truth diagram, and the data statistical result is also
like this.

After multiple rounds of tests, all the test results are
averaged and summarized in the Table1. Among them,
floating-point operations (FLOPs), which represent the
amount of computation, is the multiplication and addition
required for a 240×512 sample to be processed once by a
neural network.

As can be seen from the Table1, DSC Based Dual-
Resunet has better network performance in terms of
accuracy, F1 score, and MIoU. As for the computation
cost of the models, DSC Based Dual-Resunet is far
superior to Unet in terms of model size and the amounts
of parameters and computation, due to the introduction
of depthwise separable convolution. The model size and
the number of parameters are 12.5% of Unet, and the
amount of computation is 38% of Unet. It can be
seen that the model size, the amounts of parameters,
and computation are greatly reduced. The amount of
computation determines the consumption of computing
resources and training time, and the model size determines
the memory occupied by model in application. For deep
learning network models, lightweight is one of the key
directions of research, that is, reducing size and parameters
of model as much as possible. Because the fewer the
amount of computation, the faster the computation speed,
and lightweight networks can be more easily applied in
mobile hardware. The network proposed in this paper
is a lightweight model, which has fewer parameters and
smaller model size than other models, and the computing
speed is greatly improved. In conclusion, compared with
Unet, DSC Based Dual-Resunet has better performance,
lower time complexity and space complexity, which means
that the model can save more computing resources and is
more efficient.

Figures10 and 11 also show examples for classifi-
cation performance comparison, in which the subgraphs
from top to bottom are the observed TOD from SBRS
with RFI to be predicted, the RFI mask obtained from
SEEK’s SumThreshold, the RFI mask from the proposed
network, and the RFI mask from Unet, respectively. The
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results showed that the proposed network can identify most
RFI in application and distinguish between burst and RFI
signals. The prediction results of the proposed network are
significantly better than Unet in burst areas.

4 CONCLUSIONS

In this paper, a new network structure DSC Based
Dual-Resunet is proposed according to the characteristics
of time-frequency two-dimensional images with radio
frequency interference. The network uses the residual
block as feature extraction part and combines the idea
of Unet architecture for two rounds of feature extraction.
Compared with other existing similar methods, it speeds up
convergence speed of the network, improves performance,
and can identify RFI well. At the same time, the addition of
depthwise separable convolution makes DSC Based Dual-
Resunet have fewer parameters and FLOPs than other
mainstream networks. The model size and parameters are
about 12.5% of Unet, and the amount of computation is
38% of Unet but it achieves higher segmentation accuracy.
This means that the network has characteristics of both
lightweight and high performance. In addition, from the
experimental results of SBRS, it can be seen that the
recognition effect of the network is better than traditional
algorithms such as SumThreshold when there are burst in
the image, and it is more flexible and accurate for RFI
recognition.

Although DSC Based Dual-Resunet has good perfor-
mance, there are still some aspects that can be improved.
In this paper, dice loss is used to solve the problem
caused by imbalance of positive and negative samples
in the network training process, but there is still a
small chance of training failure. Therefore, the influence
between loss function and characteristics of data set
deserves more in-depth research in the future. At present,
the network is only implemented in GPU. To better
utilize the advantages of computation amount brought by
depthwise separable convolution, the implementation of
mobile network structure can be studied. Therefore, the
optimization of the network itself and the realization of
mobile network constitute the directions of future research.
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