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Abstract The multi-messenger observation of coalescing compact binary systems promises great scientific
treasure. However, synthesising observations from both gravitational wave and electromagnetic channels
remains challenging. In the context of the day-to-week longemission from a macronova, the binary
neutron star merger GW170817 remains the only event with successful electromagnetic followup. In
this manuscript, we explore the possibility of using the early stage X-ray afterglow to search for the
electromagnetic counterpart of a gravitational wave event. Two algorithms, the simple and straightforward
sequential observation (SO) and the step-wise optimizinglocal optimization are considered and applied
to some simulated events. We consider the WXT from the proposedEinstein Probe as a candidate X-ray
telescope, which has a very wide field of view of 3600deg2. Benefiting from the large field of view and high
sensitivity, we find that the SO algorithm not only is easy to implement, but also promises a good chance of
actual detection.
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1 INTRODUCTION

The successful operation of ground-based gravitational
wave (GW) detectors like LIGO and Virgo has marked the
beginning of a new era of GW astronomy (Abbott et al.
2016). During the first to the third observing runs (O3a) of
LIGO and Virgo, a series of detections of compact binary
coalescence has been made, including binary black holes,
binary neutron stars and neutron star-black hole binaries
(Abbott et al. 2021b), and a large variety of characteristics
of the detected events, including their mass, mass ratio,
spin, and distance, has been inferred (Abbott et al. 2019,
2021a). The operation of GW observatories promises to
greatly deepen our understanding of the most dense objects
in the Universe.

⋆ These two authors contributed equally.

On 17 August, 2017, a GW signal from a binary
neutron star merger later denoted as GW170817 was ob-
served (Abbott et al. 2017b), and a gamma ray burst (GRB)
event GRB170817A was observed simultaneously from
the same location (Abbott et al. 2017a). Such synthetic
observations of both GW and electromagnetic (EM) waves
sparked huge interest among astronomers, leading to a
series of scientific discoveries, from confirming the link
between short GRBs and binary neutron star mergers,
to revealing their role in producing heavy elements
throughout the Universe (Abbott et al. 2017a).

However, it should be noted that due to the exceptional
nature of GRB170817A, which is the closest short GRB
detected to date, it is the only published event with multi-
messenger observations from both GW and EM channels.
It is also by far the weakest short GRB in terms of
intrinsic luminosity (Abbott et al. 2017a). Furthermore, no
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detection of an EM counterpart of the next confirmed
neutron star binary merger event GW190425 or the neutron
star-black hole mergers GW200105 and GW200115 was
made (Abbott et al. 2020). The status quo of multi-
messenger observation triggered by GW detections reflects
its intrinsic difficulty.

The EM counterpart of GW events can cover a
wide range of spectrum, but all face its own challenges.
The prompt emission of GRBs are powerful sources of
EM emission, but they are highly beamed. Only those
observers who are located in a small solid angle close
to their collimated jet could easily detect them (e.g.,
Sari et al. 1999). Furthermore, detections of gamma rays
sources are often accompanied with large uncertainties
(∼ degrees) in their sky locations, therefore, even if
the GRB is detected, the pinpointing of the location or
identifying the host galaxy is still a needle-in-a-haystack
search. Instead, the successful identification of a host
galaxy for GRB170817A relied on the much later stage
emission referred to as the kilonova or macronova, where
optical and infrared emission is powered by decay of
radioactive materials produced in the so-calledr-process
after the binary neutron star merger (Li & Paczynski
1998; Barnes & Kasen 2013). Compared with the prompt
emission of GRB, macronovae have the advantage of
a much wider viewing angle (Metzger & Berger 2012),
however, they suffer from lower luminosity. The fact that
no EM counterpart of GW190425 was detected reflected
the difficulty in the related searching.

In this work, we explore the X-ray afterglow emission,
to assist the rapid localization of a binary neutron star
merger. If on axis, the X-ray afterglow is expected
to happen much sooner compared with the macronova,
start emission. 10 s after the merger, enabling the
observation of earlier stage phenomena (Sari et al. 1998).
More importantly, the duration for GRB prompt emission
is too short to perform target of opportunity observation,
while the X-ray afterglow can last long enough to perform
such observations triggered by GW alerts. We aim to
study these target of opportunity observations under the
assumption that a trigger from GW observatories has been
issued, and no short GRB has been observed, in order
to investigate what observation strategy X-ray telescopes
should adopt, so that one can increase the probability
of observing the EM counterpart and pinpointing its sky
location. Specifically, we consider theEinstein Probe as
an example, which is scheduled to be launched by the end
of 2022, and the WXT module has a 3600deg2 field of
view, making it a encouraging facility to facilitate such
multi-messenger observations.

This paper is organized as follows. Section2 describes
the statistical framework we adopt. Section3 illustrates

the two algorithms we use for the observation strategy. We
show the results in Section4, and discuss future work and
provide a summary in Section5.

2 STATISTICAL FRAMEWORK

In order to optimize the observation strategy, we need to
first establish the appropriate statistical framework.

Throughout this work, we make certain assumptions
to simply the calculation. Readers are reminded that
some simplifications are designed for accelerating the
calculation, while others can be lifted while implementing
for a specific telescope. The later kind of simplifications
are assumed to preserve the generality of the outcome.
For example, we assume that the sky position and distance
of the GW events are independent of each other, so that
their joint probability distribution is simply the productof
each distribution. Adopting this assumption could boost
the computation efficiency, which is critical for the science
problem considered. We further highlight that triggers
from O3a demonstrated that many GW events do meet this
separation condition. We also assume that the telescopes
can point to any direction, ignoring the potential influence
from the Sun, the Moon, and the Earth, as was done
in Chan et al.e.g., 2017; Coughlin & Stubbse.g., 2016;
Coughlin et al.e.g., 2016, 2018. Notice that there are
works in the field that targets this issue, likeSinger et al.
e.g., 2016; Coughlin et al.e.g., 2018; Ghosh et al.e.g.,
2017; Rana et al.e.g.,2019; Coughlin et al.e.g.,2019, and
we refer the interested readers to these works. We haven’t
included these potential influence explicitly because we
aim to explore a totally different dimension of the work,
and we want to preserve the generality of the work. But
the actual implementation for a specific telescope should
take such effects into consideration. Currently, we will
restrict our attention to the proof of principle of the X-ray
afterglow followup strategy. Furthermore, since we discuss
the strategy for X-ray telescopes, which will operate in
space, the constraints from rising and setting, as seen
from different observing sites, is much less stringent.
Finally, we do not account for the overlap of different
fields, which will cause a multiple counts for certain
areas. By not considering this overlap, we can simplify
the calculation. Since this choice will make our conclusion
more conservative, we choose not to lift this simplification.

Since the luminosity of X-ray afterglows changes
rapidly, we define the detection as when multiple
observations reveal an obvious luminosity difference.
Notice that although the X-ray sky is much sparser than
the optical sky, one has to be cautious dealing with the EM
counterparts that merely pass the detection threshold. Due
to the large variance of the sources’ luminosity, we regard
multiple exposures to be necessary in order to lower the
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chance of false alarm. We useDag to denote the successful
detection of an afterglow. In order to confirm the existence
of an afterglow, we need to observe a significant change in
luminosity, so the probability ofDag is defined as when the
inferred flux has an obvious difference, or∆f > 0, and is
only meaningful when multiple observations are executed.
We note that the probability of detectionP (Dag) depends
on the field of view (FOV)ω, the pointing of the telescope
which determines the observed sky location(α, δ), and the
corresponding exposure time of the multiple observations
τ1 andτ2. The posterior probability of successful detection
can then be written as the probability that the first exposure
accumulates enough signal-to-noise ratio (SNR), times the
probability of observing an obvious change in flux in the
second exposure:

P (Dag|ω, pointing, τ1, τ2, I) =
P (N > N∗|ω, pointing, τ1, I)× P (∆f > 0|τ1, τ2, I).

(1)
Here,I is prior information that includes the parameters
of the selected telescope, such as its photon collecting
areaA to name one. The threshold count of received
photonsN∗ is the criterion for detection determined by the
expected SNR, the background noise, and the sensitivity
of the selected telescope. The SNR is defined as the
expected photon number from signal divide by the standard
deviation of noise photon number.

SNR =
Nsignal

σ(Nnoise)
=

Nsignal√
Nnoise

, (2)

hence,N∗ could be expressed as

N∗ = SNRthreshold ×
√

Nnoise. (3)

The number of photons received by the telescopeN

depends on multiple factors. The GW event is localised
by GW detectors with uncertainties, and one can compute
how likely a given sky area is to contain the GW source.
With the knowledge of the X-ray afterglow luminosityL
and the distanceR, one can estimate the distribution of
the expected fluxf , which can be later translated into the
distribution of detected photon numbers. Then the first part
of Equation (1) can be expanded as

P (N > N∗|ω, pointing, τ1, I) =
∫

∞

N∗

dN

∫

df

∫

dR

∫

ω

dαdδ

× p(N |f, τ1, I)p(f |I, R)p(α, δ, R|I, pointing).

(4)

p(N |f, τ1, I) is the probability of receivingN photons,
which is described by a Poisson distribution, given the flux
f of the source and observation timeτ1. Notice that the
intrinsic luminosity of the source could be accompanied
with large variance, but it explicitly follows the inverse

square law with the distance. And the formulation
we chose can treat the intrinsic variance and distance
dependence separately. Since we assume that the prior
distribution on the distance,R, to the target afterglow is
statistically independent of the prior distribution on itssky
location(α, δ), Equation (4) can be written as

P (N > N∗|ω, pointing, τ1, I) =
Pgw(ω, pointing)× Pag(τ1),

(5)

where

Pgw(ω, pointing) =

∫

ω

p(α, δ|I, pointing)dαdδ, (6)

Pag(τ1) =

∫

df

∫

dR

∫

∞

N∗

dN

× p(N |f, τ1, I)p(f |I, R)p(R|I)

=

∫

df

∫

∞

N∗

dNp(N |f, τ1, I)

×
∫

dRp(f |I, R)p(R|I).

(7)

Because the fluxf depends on not only the source
distanceR but also the underlying models as well relevant
parameters like interstellar medium density (Sari et al.
1998), it is not straightforward to derive thep(f |I, R)

theoretically. We can however obtain the distribution of
p(f |I, R) through the light-curve fitting of the observed X-
ray afterglow data1. Given the expected source distanceR,
we can approximate the likelihood function of the distance
distribution as Gaussian (Singer et al. 2016). We here just
use a delta function for bothp(f |I, R) andp(R|I) in order
to simplify the calculation. The first part of Equation (1)
only considers a single observation. As for the second part
of Equation (1),∆f is the difference in flux of the multiple
observations (denotedf1 andf2) at different times. These
fluxes can be approximated by a distribution depending on
the prior known fluxf ′, which is based on the afterglow
light curve model. The equation of this distribution can be
written as

P (f |f ′, τ) =

∞
∑

N=0

P (N |f ′, τ)× P (f |N, τ)

=

∞
∑

N=0

P (N |f ′, τ) × P (N |f, τ)P (f)
∫

∞

0
P (N |f0, τ)P (f0)df0

.

(8)

Here P (f) is the prior probability of the flux emitted
by afterglow.P (N |f, τ) can be approximated by Poisson
distribution with the mean valuēfτ , andf̄ is the average
flux during the period ofτ . Considering bothN and

1 https://www.swift.ac.uk/xrt_curves/

https://www.swift.ac.uk/xrt_curves/
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f̄τ to be very large, we can approximate it with a
Gaussian distribution using the central limit theorem. For
convenience of description, we refer to the probability in
Equation (7) asP1,

P1 = Pag(τ1) =

∫

df

∫

dR

∫

∞

N∗

dN

× p(N |f, τ1, I)p(f |I, R)p(R|I)

=

∫

df

∫

∞

N∗

dNp(N |f, τ1, I)

×
∫

dRp(f |I, R)p(R|I).

(9)

Similarly we refer to the second part of Equation (1) asP2,

P2 = P (∆f > 0|τ1, τ2, I). (10)

Thus Equation (1) could be written as

P (Dag|ω, pointing, τ1, τ2, I) = Pgw × P1 × P2. (11)

Equation (11) describes the probability of detecting the
afterglow of one field. In realistic observations where
multiple fields might be observed, one needs to also
include the number of fields into the calculation. Assuming
that the GW sky localization error region covers Sdeg2

and the size of the telescope FOV isΩ deg2, the number of
fieldsn needed for search can be roughly estimated asn .

S/Ω in the case of small FOV (Chan et al. 2017). However,
the GW sky localization error region is not generally a
regular shape, and more fields thanS/Ω may actually be
needed to properly cover the whole region. We will not
set a constrained total observation time at first, but the
observation time does have a natural constraint. For X-
ray afterglows, their luminosity will decay rapidly, and
soon we can no longer observe the object with enough
SNR. In other words,P1 will not increase after a certain
time. We mark this moment asTthreshold. When the time
has exceededTthreshold, we should no longer consider
performing any more first time observations for new fields.

3 MODELS

3.1 Tiling

We follow Chan et al.(2017) and use a greedy algorithm
to optimize the tiling of the observing fields. The pixels
within a certain confidence level, say 90%, are selected so
that the following computation is largely simplified. Then,
the observation field is optimized step-wise. Each time, the
field with the maximum GW event posterior probability
will be output and labeled in order from1 to n. Hence this
label indicates the rank of each field in terms of enclosed
GW probability.

In the following, we consider the proposed Einstein
Probe (EP,Yuan et al. 20152) as an example. Specifically,
we use its Wide-field X-ray Telescope (WXT module3) for
calculation, with a corresponding FOV of about 3600deg2

(Yuan et al. 2015). The exceedingly large FOV makes it an
ideal instrument to search for X-ray counterparts of GW
events.

3.2 Sequential Observation Algorithm

The tiling algorithm adopted determines where to look,
while we determine the observing time allocated to
different tiles with an observing algorithm. Firstly, we
consider a simple Sequential Observation (SO) algorithm.
As shown in Equation (5), the probability of detecting the
X-ray transient can be separated to two parts, depending on
the pointing directions and observation timeτ respectively.
Since the label of fields indicates their rank in terms of
enclosed GW probability, every time we look at a new
field, we start with the smallest label number.

In the SO algorithm, we intend to cover as many
first time observations as possible beforeTthreshold.
After the first round, we perform the second time
observation, following the same sequence as of the first
time observation. As for the time allocation, we take a
step-wise adjustment with a 1 second step. Notice that
the shifting between different tiles requires a certain slew
timeTs for the telescope, so we then make the comparison
between the two choices: additional probability gained
∆P1 by observing1 + Ts more seconds in the first time
observation, and the probability gained by observing 1
second in a new field. We continue observing the current
field until the the probability increment∆P1 is smaller
than the probability gained by observing a new field. For
the second time observation, we simply adopt the same
exposure time used for the first time observation.

Under such a construction, we find that the SO
algorithm prefers to accumulate largeP1 for the most
fields, and it will search as many new fields as possible,
when the signal is strong enough. The source is expected
to be much dimmer for the second time observation,
but since P2 depends on the difference between the
two observations, as long as the intensity of the first
observation and the second observation are different
enough theP2 would still be significant. We illustrate the
SO algorithm in Figure1.

2 http://ep.nao.cas.cn
3 http://ep.nao.cas.cn/epmission/epinstruments/

201909/t20190916_516240.html

http://ep.nao.cas.cn
http://ep.nao.cas.cn/epmission/epinstruments/201909/t20190916_516240.html
http://ep.nao.cas.cn/epmission/epinstruments/201909/t20190916_516240.html
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Field1

Field1

Field2

Field2

Field3

Field3

Field N
(if need)

Field N

Fig. 1 Illustration of observation sequence for the SO
algorithm. The algorithm try to cover as many first time
observations as possible.

Field1

Field1

Field2

Field2

Field3

Field3

Field N
(if need)

Field N

Fig. 2 Illustration of observation sequence for Local
Optimization algorithm. Notice that the actual observation
order is not fixed and depends on choice of light curve
model as well as the sky localisation.

3.3 Local Optimization Algorithm

The best way to allocate the observation time is certainly
through a global fitting scheme, ase.g. demonstrated in
Chan et al.(2017). However, it involves the optimization
over both observation order as well as observation time,
which makes it very time-consuming to perform. We are
therefore motivated to examine the Local Optimization
(LO) algorithm as a compromise of complexity and speed.

We illustrate the LO algorithm in Figure2. In this
algorithm, we need to optimize not only the observation
time, but also the order of observation. We first enumerate
all possible options for the next field to observe, which
could be the first-time observation of a new field, or the
second-time observation of an old field, including the
current tile so that the slew of telescope is no longer
required. Notice that we always look at tiles with the
smallest label number, to maximize thePgw. For each
option, a step-wise optimization is then performed, to pick
up the next tile to observe based on the gained probability
with extra time.

In principle, such freedom of choice for the next
fields introduces a great amount of possibility for the
order of observation. But certain cases can simplify the
optimization. For example, ifTthreshold is passed, no new
field would be considered to be explored and we would
stick to the second-time observation of the old fields.

Fig. 3 GRB afterglow observations and X-ray transient
observations are shown with data and fitted model curves.
The x-axis is the time after merger and the y-axis is the
luminosity of the source.

3.4 Light Curve Models

We use two different light curve model to test the
robustness of our algorithms. The first light curve model
shown in Figure3 is referred to as the GRB Afterglows
Model (GAM). It is fitted based on the observed X-
ray afterglow associated with short GRBs with known
distance4. These samples are expected to be associated
with relatively small viewing angles to the jet direction.
For later calculation, we fit the binned data with a two-step
linear function in logarithmic space.

The second model is shown in figure 3 fromXue et al.
(2019) andSun et al.(2019), which we refer to as the X-
ray Transient Model (XTM), which can also be produced
by binary neutron star mergers (Dai et al. 2006; Gao 2006).
These X-ray transients are more isotropic and may not be
related with GRBs (Zhang 2013; Sun et al. 2017). Both the
X-ray afterglows and the X-ray transients can be observed
if the merger leaves a magnetar and we are close to the
jet direction, while only X-ray transients are seen if the
line of sight is off the jet axis. Generally speaking, both
the two types of X-ray emissions can be regarded as the
X-ray counterparts of gravitational events, and we apply
the observation strategies to both models to test their
robustness. We remark that GRB X-ray afterglows can
be explained with various of mechanisms. The adoption
of this model is mainly motivated to demonstrate the
applicability of the method. Specifically the XTM model
demonstrates a relatively low luminosity plateau followed
by a fall, and it is interesting to compare the results on
vastly different afterglow light curve models.

4 https://www.swift.ac.uk/xrt_curves/, more details
about how the data were produced can be seen inEvans et al.(2007) and
Evans et al.(2009)

https://www.swift.ac.uk/xrt_curves/


308–6 M. Liu et al.: Strategy for X-ray Observation Triggered by GW Events

Fig. 4 The tilings of event ID 10968, 14011, and
12715, with 90% confidence level covering∼ 596, 1020,
and 1100deg2, respectively. Different colors represent
different covering tiles and the label number in each tile
indicates their rank in terms of enclosed GW probability.
EP will cover these sky localizations with 3, 6 and 7 fields
respectively.

4 RESULTS

In this section, we present the performance of our two
different algorithms by using the proposed EP to follow-
up a few simulated GW events. These events, simulated
by Singer et al.(2014) with different error region areas
as well as shapes, are selected as examples. Notice that
as it has been shown that sky localisations from realistic
data have trivial difference (Berry et al. 2015), and the
sky localisation pipeline studied is actually responsiblefor
generating the public alerts (Singer & Price 2016). Notice
that these data were generated assuming the O1 sensitivity,
which has already been surpassed by current detectors.
The same events if they were observed currently would
be expected to have higher SNR, and thus smaller sky

Fig. 5 Detection probability of the SO and LO algorithm
under the extremely fast fading light curve. Notice that
unlike the results for the GAM or XTM models, here the
two algorithms returns comparable detection probability,
and in one case the LO even outperform SO.

localisation error. In order to better mimic the realistic
scenario, we manually amplify the distance by a factor of
2. This leads to the changes in the distance range from
30− 100Mpc to60− 200Mpc.

Figure4 shows the optimized tiling of observing fields
obtained using the greedy algorithm approach for three
typical events. They correspond to event ID 10968, 14011,
and 12715 fromSinger et al.(2014), with 90% confidence
level covering∼ 596, 1020, and 1100deg2, respectively.
Despite the fact that EP’s WXT has a very large FOV of
about 3600deg2, since the sky localisation derived from
GW detectors is in a ring-like shape in sky, so multiple
observation fields are still needed to encapsulate the 90%
confidence level. The required number and location of
fields varies for different events. Among the three example
events, between 3 and 7 tiles would be needed to cover the
90% confidence level.

4.1 Observing Strategy

If the GRB afterglow model is adopted, we can observe
that the LO algorithm will require two consecutive
observations of the same field. This can be explained by
a combination of two factors: firstly, the LO algorithm
is dedicated to locally maximize the detection probability
with the next observation. Since the fields with smaller
index are associated with relatively higherPgw, the
strategy is more likely to observe the previous field
immediately. Secondly, compared with the exposure time,
the slew time for moving the viewing field of the telescope
is quite long, so the algorithm would thus tend to save
time by completing the second time observation before
observing a new field. For the SO algorithm, on the other
hand, the sequence is pre-determined, and we perform, for
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Table 1 Time Allocation for the Three Example Events

Event ID Algorithm
allocated observation time (s)

Field1 Field2 Field3 Field4 Field5 Field6 Field7

10968
SO 1 1 1 - - - -

LO(First time) 1 1 1 - - - -
LO(Second time) 15 1 53 - - - -

14011
SO 1 1 1 1 1 1 -

LO(First time) 1 1 1 1 1 4 -
LO(Second time) 1 1 1 35 194 109 -

12715
SO 1 1 1 1 1 1 1

LO(First time) 1 1 1 1 1 1 1
LO(Second time) 1 1 2 19 1 25 102

Table 2 Probability for the Three Example Events

Event ID Algorithm
Probability (%)

Field1 Field2 Field3 Field4 Field5 Field6 Field7

10968

P1(SO) 100.00 100.00 100.00 - - - -
P2(SO) 100.00 100.00 100.00 - - - -
P1(LO) 100.00 100.00 100.00 - - - -
P2(LO) 87.23 52.77 90.06 - - - -
Pgw 79.82 11.08 6.36 - - - -

14011

P1(SO) 100.00 100.00 100.00 100.00 100.00 95.59 -
P2(SO) 100.00 100.00 100.00 100.00 100.00 88.95 -
P1(LO) 100.00 100.00 100.00 100.00 100.00 100.00 -
P2(LO) 55.53 52.95 51.51 72.74 97.55 90.13 -
Pgw 30.19 26.06 23.16 15.01 4.11 1.16 -

12715

P1(SO) 100.00 100.00 100.00 100.00 100.00 100.00 100.00
P2(SO) 100.00 100.00 100.00 100.00 100.00 100.00 100.00
P1(LO) 100.00 100.00 100.00 100.00 100.00 100.00 100.00
P2(LO) 62.38 57.15 56.64 77.42 51.57 68.00 90.11
Pgw 45.00 23.12 18.96 8.44 1.91 1.67 0.54

all fields and in order, the first time observation followed
by the second.

In Table1 we present the optimized time allocation for
each simulated GW event under the two algorithms using
the GAM as the light curve model. Since both observations
for the SO algorithm use the same exposure time, only one
row is given for each event; for the LO algorithm on the
other hand, two lines are used to depict the exposure times
for the first and the second observation respectively. Notice
that for many fields, the observation time is assigned for as
small as one second. This is due to the fact that for the
earlier stage, when the afterglow is still quite bright, the
telescope can accumulate high enough SNR in a relatively
short time.

Notice that the isotropic equivalent X-ray afterglow
fluxes for short GRBs has large uncertainty between1044−
1047 erg s−1 (D’Avanzo et al. 2014). Therefore, for the
consideration of completeness, we also consider a model
where the luminosity three orders of magnitude lower than
the GAM, as shown in the Figure3, and we refer to it
as GRB Afterglow Model B (GAMB). As a comparison,
we adopt the GAMB to perform repeated calculations on
the three events of 10968, 14011, and 12715. The results
were shown in Table3. Here we assume that observations

begin 300 second after the binary merger. It can be seen
that because the luminosity in GAMB is lower, the first
observation requires more exposure time to obtain enough
SNR. Also, due to the fast-fading light curve and limited
by SNR, the number of observable fields is far less than the
result obtained by using GAM and XTM.

Notice that for the second time exposure of the
LO algorithm, there will be cases where a certain field
is assigned with a shorter exposure time compared
with the next tile, despite the fact that the algorithm
always starts from tiles with higherPgw, and we assume
that the X-ray counterpart is continuously weakening
in brightness. Under the assumption that the X-ray
counterpart is continuously weakening in brightness and
the LO algorithm always starts from tiles with higherPgw,
the observation time for the latter field should be longer
than the former. However, we could find that there are
some cases where former field’s second observation is
assigned with a longer exposure time compared with the
next fields. This can be explained when two consecutive
tiles have significant decrease inPgw, therefore a possible
but not decisive second time observation is outweighed
by the benefit from exploring of a new field. For the SO
algorithm, since the two observations of the same field
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Table 3 Time Allocation for the Three Example Events by
Using GAMB

Event ID Algorithm
allocated observation time (s)

Field1 Field2

10968
LO(First time) 119 -

LO(Second time) 94 -

14011
LO(First time) 112 -

LO(Second time) 86 -

12715
LO(First time) 4 38

LO(Second time) 118 26

are separated by a long enough time, the models predict
substantial change in the X-ray luminosity during this gap,
and a short exposure time is still sufficient to tell the
difference.

Let us dive into the details for the significant change
of the second exposure time for the LO algorithm. The
outcome might look counter-intuitive from the first glance,
but since we are dealing with fast-fading yet highly
uncertain light curve models, with a relatively short
exposure time, one can already gain some probability in
finding the X-ray signal if the source lies in the brighter
end of the probability distribution. However, orders of
magnitude more exposure time won’t buy significantly
larger probability. Move on the next field afterwards,
usually thePgw is again comparable, therefore we observe
an increase in exposure time. Together, this could explain
the observed deviation from monotonic increasing in
exposure time. Indeed, if we consider an extremely fast
fading light curve, with the luminosityL having a strong
dependence with time after mergert, as for example
L ∝ t−1.2, then the LO algorithm returns comparable
results with the SO algorithm, and in one situation, even
outperform the SO result, as demonstrated in Figure5.

4.2 Detection Probability Comparison

In this subsection, we present a comparison of the detec-
tion probabilityP (Dag) between the different algorithms
and the different models. As shown in Figure6, the
detection probabilities for the two algorithms are presented
for a total of 25 simulated events fromSinger et al.
(2014), assuming the GAM, and assuming the observations
start 1000 seconds after the binary merger, to mimic the
necessary time delay due to communication and processing
in real life.

We note that for all events, the SO algorithm (shown
as blue circles) consistently has a close-to-unity detection
probability. This is because the GAM predicts a very
bright signal in the early stage, and the SO algorithm
can essentially cover the entire sky area with first time
observations during this early stage – meaning, in other
words, that it can obtain a highP1. Meanwhile, since

(a) X-ray detection probability versus distance for the setof events,
simulated using the GRB afterglow model, considered in thisstudy.

(b) X-ray detection probability versus 90% sky localization error
region for the set of events, simulated using the GRB afterglow model,
considered in this study.

Fig. 6 Detection probabilities for the GAM model. For
each simulated event ablue circle corresponds to results
from the SO algorithm while ared square corresponds to
results from the LO algorithm. Thedashed lines connect
the results from the two algorithms for the same event.

by design there is a long time difference between the
first time observation and the second time observation for
the same field, it should be easy to detect an obvious
luminosity change, hence a highP2. These two factors
guarantee a high detection probability in general. On the
other hand, the detection probability of the LO algorithm
is consistently lower than 100%, which can be understood
in terms of the short exposure time for the second time
observations for certain fields, as well as the short interval
between the two time observations. The other factor
that prevents a high detection probability is that the LO
algorithm might require a long second-time exposure,
before moving to a new field. Therefore, when fields with
smallerPgw are observed, the expected luminosity might
have been significantly decreased, and thusTthreshold

might be approached before covering a sufficient number
of fields.
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Fig. 7 A comparison of the averagePem corresponding
to events with different numbers of observation fields
required to achievePgw ≥ 90%. Blue dots represent SO
algorithm and thered ones represent LO algorithm. Some
dots are shown in darker color due to overlap of multiple
events.

Fig. 8 Cumulative distribution of detection probability.
Different curves represent the results of two different
models using different algorithms. All four curves assume
that observations begin 1000 seconds after the binary
merger.

Figure 6 also plots the 90% sky localization error
region and source distance for each event. We notice that
for the LO results, the detection probability correlates
weakly with the 90% error region, while no obvious
relation with the source distance is observed. In fact, the
LO algorithm can detect a very far event with error region
of ∼ 600 deg2 with a probability of about 80%. We
further explore this relationship by looking at the detection
probability with the number of fields explored by the
algorithm. Due to the irregular shape of the error region,
smaller error regions might require a higher number of tiles
to cover them. However we can see from Figure7 that for
events that can be covered by a small number of tiles, the
LO can achieve better detection probability, while more
required tiles leads to a lower detection probability. Still,
unlike the SO algorithm, the results of LO never reach as
high as around 100% detection probabilities.

Fig. 9 Detection probability results using the same time
allocation and observation sequence but when the incorrect
model is assumed for the light curve. Thered circles
represent results from the SO algorithm, and theblue
squares represent results from the LO algorithm. Due to
the narrow numerical range of results for the SO algorithm,
these are shown in the enlarged inset in the upper right
corner of the figure.

The same two algorithms are also applied to the XTM
model, to check the robustness of their performance, and
the change of light curve model does not dramatically
affect the results. In Figure8, cumulative distributions
of detection probability over a total number of 25 events
are presented. Notice that for both the GAM and XTM
light curves, both the LO and SO algorithms have
robust performance, with SO maintaining a high detection
probability, while LO gives a detection probability ranging
from ∼ 50% to ∼90%. To conclude, under different
models, SO consistently outperforms Local Optimization.

The final robustness test we perform is to check how
the algorithms perform when the wrong model is assumed.
We apply the strategy obtained assuming the GAM model,
while the event actually follows the XTM model. As shown
in Figure9, the SO algorithm still returns a close-to-unity
detection probability, independent of the actual light curve
model the source follows. Meanwhile, although the LO
algorithm can reach as high as 90% detection probability
when assuming the correct model, the detection probability
drops to as low as only50%−60%when the wrong model
is adopted. This illustrates the fact that the LO strategy,
which is based on detecting the probability change in
a step-by-step way, depends strongly on the assumed
underlying model. Meanwhile, under the SO algorithm, the
first-time observations of all fields are performed all at the
beginning, and this can better ensure that the time interval
between two observations of the same field is long enough,
thus boosting the probability ofP2. Therefore, as long as
the strategy covers the most probable regions efficiently,
SO can promise a high detection probability, even for a
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mismatched assumption about the underlying light curve
model.

5 DISCUSSION AND CONCLUSION

In this work, we devised and compared two different
algorithms to optimize the probability of a successful
X-ray afterglow detection triggered by GW alerts. We
apply the EP’s WXT as a nominal telescope to assess
the outcome quantitatively. The large FOV guarantees an
efficient coverage of thePgw with a handful of fields,
which is very helpful in the rapid search and identification
of X-ray afterglows. We find that, interestingly, the
simpler strategy, SO, which is to finish the first time
observation of as many fields as possible initially,
consistently outperforms the more complicated algorithm,
Local Optimization. Indeed, immediately after the neutron
star binary merger, the X-ray afterglow is expected to be
bright enough that even a very short exposure time is
sufficient for detection, and the algorithm indicates that
the majority of time is actually spent on the slewing of the
telescope.

As a proof-of-principle study, we adopted a number of
simplifications throughout the calculation. Our threshold
for distinguishing the flux change used only the informa-
tion of integrated photon numbers, while X-ray telescopes
can register the arrival time of X-ray photons, which can
further help to distinguish a bright object from random
fluctuation of background flux. To some extent, the SO can
be treated as doing consecutive observations twice, that
is the result of LO. Here we have discussed how the SO
algorithm guarantees a sufficiently long interval between
the first and second time observations so that a largeP2 is
obtained. There are also some caveats in our calculation.
For example, we totally ignore the rising and setting of
sources. Although X-ray telescopes operate in the sky and
the horizon is a less stringent constraint than for ground-
based telescopes, the effect of the Sun, the Moon and
the Earth is still an issue, which we aim to explore in
followup studies. Also, the allocation of observation time
in our analysis can be as short as 1 second, which might
be not practical, and more realistic consideration of the
minimum observation time may be required before actual
implementation of our algorithm. We also assume that the
joint probability distribution of sky location and distance
is independent and we simply ignore the uncertainty of the
simulated source distanceR as well as the flux.

We refer the interested reader to strategies that
can perform prompt and automatic observation adopted
by some existing and future observatories, like e.g.,
Ghosh et al.(2016), Arcavi et al. (2017), Andreoni et al.
(2021), Ghosh et al. (2017) and Graham et al.(2020).
These algorithms can prioritize observations based on

existing galaxy catalogue information, or incorporating re-
alistic constraint into the tiling optimization. Based on the
search for optical counterparts during O3b,Coughlin et al.
(2020) points out that the telescope networks have the
advantages in increasing coverage of the localization and
thereby longer exposure times can be used, which finally
leads to a corresponding increase in detection efficiencies.
They explore a different dimension that we did not go in
depth in this work, and we aim to implement such realistic
strategies for specific telescopes in the future.

We expect a bright future for the detection of EM
counterpart of GW triggers, using X-ray telescopes to
search for the X-ray afterglows. With multiple telescopes,
one can expect to significantly improve the detection
capability. Some of the techniques developed for single
telescopes have already been extended to a telescope
network (e.g.,Coughlin et al. 2019). Also, space-borne
gravitational wave detectors like LISA and TianQin have
the potential of predicting the merger with very high
accuracy (Sesana 2016; Hu et al. 2017; Liu et al. 2020),
and a coordinated observation can better capture the very
early stage evolution of the event. All of these issues can
help shape a more realistic and more promising future for
successful multi-messenger astronomy.
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