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Abstract In this study, a new expansion of planetary disturbing function is developed for describing the
resonant dynamics of minor bodies with arbitrary inclinations and semimajor axis ratios. In practice, the
disturbing function is expanded around circular orbits in the first step and then, in the second step, the
resulting mutual interaction between circular orbits is expanded around a reference point. As usual, the
resulting expansion is presented in the Fourier series form, where the force amplitudes are dependent on
the semimajor axis, eccentricity and inclination, and the harmonic arguments are linear combinations of
the mean longitude, longitude of pericenter and longitude of ascending node of each mass. The resulting
new expansion is valid for arbitrary inclinations and semimajor axis ratios. In the case of mean motion
resonant configuration, the disturbing function can be easily averaged to produce the analytical expansion
of resonant disturbing function. Based on the analytical expansion, the Hamiltonian model of mean motion
resonances is formulated, and the resulting analytical developments are applied to Jupiter’s inner and co-
orbital resonances and Neptune’s exterior resonances. Analytical expansion is validated by comparing the
analytical results with the associated numerical outcomes.
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1 INTRODUCTION

Expanding the planetary disturbing function as a power
series in orbital elements is an essential and fundamental
issue in the development of perturbation theories in celes-
tial mechanics. To understand the dynamics of resonances
and secular evolutions, it is a key step to study the prop-
erties of the planetary disturbing function experienced by
the object of interest (Murray & Dermott 1999). In history,
there are various types of expansions for the planetary
disturbing function: (a) Laplace-type expansions where
the force amplitudes are expressed in terms of Laplace
coefficients (Brouwer & Clemence 1961; Ellis & Murray
2000; Murray & Dermott 1999; Morais & Namouni 2013;
Namouni & Morais 2017, 2018), (b) Legendre-type ex-
pansions where Legendre polynomials are used in
the derivation (Kaula 1962), (c) asymmetric and local
expansions where the disturbing function is expanded
around a specific resonant center (Ferraz-Mello 1987;
Ferraz-Mello & Sato 1989; Yokoyama 1994; Roig et al.
1998), (d) Taylor-type expansions where the disturbing
function is expanded around an artificially chosen refer-

ence point in Taylor series (Páez & Locatelli 2015; Morais
1999; Petrovskaya 1970, 1972; Beaugé 1996), and (e)
semianalytical expansions where the force amplitudes are
determined by numerical Fourier analysis (Klioner 2000).
Among these expansions, the Laplace- and Legendre-
type expansions are classical and they are widely used in
previous studies.

The Laplace-type expansion of the planetary disturb-
ing function started fromPeirce(1849), who derived a
sixth-order expansion. As an extension,Newcomb(1895)
performed a seventh-order expansion.Brown & Shook
(1933) provided a clear and detailed derivation for the
expansion up to the second-order in terms of the classical
orbital elements.Brouwer & Clemence(1961) formulated
a third-order expansion for the planetary disturbing
function, which has been widely adopted as a standard and
low-order expansion. In more recent times, higher-order
explicit expansions of the planetary disturbing function can
be found inEllis & Murray (2000) andMurray & Dermott
(1999), who expanded the disturbing function as a power
series in eccentricities and inclinations of the objects
involved. Particularly,Ellis & Murray (2000) presented a
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new algorithm for the determination of the terms associat-
ed with a certain argument in the expansion of planetary
disturbing function. Recently,Morais & Namouni(2013)
and Namouni & Morais(2017, 2018) have made further
extensions of the classical expansions to retrograde orbits,
polar orbits and orbits with arbitrary inclinations. Due
to the choice of the reference orbit as a coplanar
circular orbit, the classical expansions are valid in low-
inclination and low-eccentricity configurations. However,
the Laplace coefficients and their derivatives with respect
to the semimajor axis ratio arising in the Laplace-type
expansions are divergent when the semimajor axis ratio is
approaching unity. This results in the fact that the Laplace-
type expansions are divergent for co-orbital configurations.

Concerning the Legendre-type expansion,Kaula
(1962) expanded the disturbing function as a power series
of the semimajor axis ratio (α) between two objects in
triple systems. Please refer toMurray & Dermott (1999)
for explicit expansions of such an expansion. Obviously,
the Legendre-type expansion is applicable for objects with
arbitrary inclinations but with semimajor axis ratio much
smaller than unity. It has been widely applied to varieties
of triple systems with hierarchical configurations (Kozai
1962; Beaugé et al. 2006; Naoz et al. 2011, 2013; Naoz
2016; Lei et al. 2018; Lei 2019a). However, when the
configuration of system is not highly hierarchical, the
disturbing function needs to be truncated at a high enough
order in the semimajor axis ratio in order to achieve
a certain precision and, in this case, the convergence
becomes very slow. In particular, when the semimajor axis
ratio is close to unity, the Legendre-type expansion fails to
converge.

According to the aforementioned discussions, both
the Laplace- and Legendre-type expansions of planetary
disturbing function are valid for the resonant dynamics
in these configurations where the semimajor axis ratio is
not close to unity. Concerning this issue, we may ask: is
there an expansion valid for minor bodies with arbitrary
semimajor axis ratios? To this end, a new expansion
is developed in this study. Based on such a ‘general’
expansion, it becomes possible to analytically explore
dynamical structures of minor bodies located inside the
interior, co-orbital and exterior mean motion resonances
at arbitrary inclinations.

The structure of the remaining part is organized as
follows. In Section2, the disturbing function for the minor
bodies in planetary triple systems is briefly introduced,
and the new expansion of planetary disturbing function
is developed in Section3. In Section 4, the resonant
disturbing function are presented under the assumption
that the perturber is moving in a circular orbit and then
the analytical results obtained by the new expansion
are compared with numerical integration results. The

Hamiltonian dynamics are discussed in Section5 and the
practical applications of the analytical developments to the
interior, co-orbital and exterior resonances are reported
in Section 6. Finally, conclusions are summarized in
Section7.

2 PLANETARY DISTURBING FUNCTION

The planetary system considered in this study is composed
of a central body with massm0 (i.e. a central star), a planet
with massmp and an asteroid with massm. Usually, the
mass of the asteroidm is much smaller thanm0 andmp,
so that it is reasonable to approximate the asteroid as a test
particle.

To describe the orbits, we introduce an inertial
coordinate system originated at the central body, where
the x–y plane is aligned with the invariant plane of the
system, thex-axis points towards an arbitrary direction
in the invariant plane, and thez-axis goes along the
angular momentum vector of the planet moving around the
central body. Under this reference frame, the state of the
asteroid (or planet) is characterized by orbital elements:
the semimajor axisa (ap), eccentricitye (ep), inclination
I (Ip), longitude of the ascending nodeΩ (Ωp), argument
of pericenterω (ωp) and the mean anomalyM (Mp) or the
true anomalyf (fp). Unless otherwise stated, in the entire
study we will adopt the notations without any subscript to
stand for the elements of the asteroid and use the ones with
subscriptp to represent the elements of the planet.

The dynamical model taken in this investigation can
be treated as a perturbed Keplerian problem, in which the
motion of the asteroid moving around the central body
is perturbed by the gravitational attraction of the planet.
The disturbing function, governing the evolution of the
asteroid, can be written as (Murray & Dermott 1999)

R = Gmp

(

1

∆
− r

r2p
cosψ

)

, (1)

whereG is the universal gravitational constant,r andrp
are, respectively, the radial distances of the asteroid and
planet relative to the central body. The distance between
the asteroid and planet,∆, is determined by

∆ =
(

r2 + r2p − 2rrp cosψ
)1/2

,

whereψ is the separation angle between the asteroid and
planet relative to the central body, given by

cosψ = sin2
I

2
cos (f + θp + ω − Ω)

+ cos2
I

2
cos (f − θp + ω +Ω)

(2)

with θp = fp+ωp+Ωp as the true longitude of the planet.
Usually, the disturbing function can be separated into

the direct part standing for the direct gravitational attrac-
tion from the planet and the indirect part corresponding to
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the perturbation of the planet to the origin of the selected
coordinate system, given by (Ellis & Murray 2000)

R = Gmp (RD +RI) , (3)

whereRD andRI are

RD =
1

∆
, RI = − r

r2p
cosψ. (4)

3 A NEW EXPANSION OF PLANETARY
DISTURBING FUNCTION

Before expanding the planetary disturbing function, it is
necessary to introduce two small parameters with the same
order of magnitude as the eccentricities of the asteroid and
planet, given by (Murray & Dermott 1999; Ellis & Murray
2000)

ε =
r

a
− 1 ∼ O(e), εp =

rp
ap

− 1 ∼ O(ep). (5)

With these two small parameters, the direct part of
disturbing function can be expanded aroundε = εp =
0 (i.e. around circular orbits) as a formal series in the
following form:

RD =
N
∑

n=0

n
∑

m=0

εmεn−m
p

n!
aman−m

p

dn

damdan−m
p

(

1

∆0

)

=
N
∑

n=0

n
∑

m=0

(r − a)m(rp − ap)
n−m

n!

dn

damdan−m
p

(

1

∆0

)

,

(6)

where N specifies the truncated order in terms of
max (ε, εp) ormax (e, ep), and the term1

∆0

is given by

1

∆0
=

[

a2 + a2p − 2aap cosψ
]− 1

2 . (7)

Obviously, the term 1
∆0

stands for the mutual interaction
between two inclined circular orbits.

It is to be noted that, in the classical Laplace-type
expansions, the first step is to expand the disturbing
function around a prograde or retrograde coplanar
orbit (Murray & Dermott 1999; Ellis & Murray 2000;
Morais & Namouni 2013) or around an inclined reference
orbit (Namouni & Morais 2017, 2018) as a power series
of inclination and then, in the second step, the disturbing
function is expanded around circular orbits as power
series of eccentricities. Thus, the step of series expansion
represented by Equation (6) is in accordance with the
second step of the traditional Laplace-type expansions.
Through this step of expansion, the disturbing function
between two elliptic orbits transforms into a summation
of disturbing functions between circular orbits.

Observing Equation (6), we can find that the difficulty
of expanding the direct part of disturbing functionRD lies

in the expansion of the term1
∆0

. Let us remind that, in

the classical Laplace-type expansions, the term1∆0
given

by Equation (7) is expanded by using two-dimensional
Laplace coefficients as follows (Namouni & Morais 2018):

1

∆0
=

1

ap

1
√

1 + α2 − 2α cosψ

=
1

ap

∑

−∞<j,k<∞

mod (j+k,2)=0

1

4
b
jk
1/2

(α, I) cos [j (Ω− λp) + k (f + ω)],

whereα = a/ap is the semimajor axis ratio between
asteroid and planet andbjk1/2(α, I) are the two-dimensional
Laplace coefficients. In practical simulations, the Laplace
coefficients bjk1/2(α, I) are approximated by series ex-
pansions inα up to orderNα. It is known that the
Laplace coefficients are divergent whenα is approaching
unity (α = 1 corresponds to co-orbital configuration).
Therefore, the resulting expansions of disturbing function
based on Laplace coefficients are divergent in co-orbital or
nearly co-orbital configurations.

To describe all types of configurations including the
interior (α < 1), exterior (α > 1) and co-orbital (α = 1)
resonances, it is required to develop a ‘general’ expansion
for the planetary disturbing function which can be used
for configurations with arbitrary semimajor axis ratios. To
this end, we introduce a new small parameter to make it
be possible to perform Taylor expansion for the planetary
disturbing function whose convergence depends on the
magnitude of the introduced small parameter solely. In
the entire process, we avoid to use Laplace coefficients,
making the new expansion of disturbing function be easy
to realize in computer code.

For convenience, we organize Equation (7) in the
following form:

1

∆0
=

1

a+ ap

[

1− 2aap

(a+ ap)
2 (1 + cosψ)

]− 1

2

=
1

a+ ap
[1− x]−

1

2 ,

(8)

where the variablex is given by

x =
2aap

(a+ ap)
2 (1 + cosψ) . (9)

Evidently, the domain of definition ofx is x ∈ [0, 1].
In particular, the variablex is equal to zero when the
separation angle isψ = π, and the variablex is equal to
unity whenψ = 0 anda = ap (the condition withψ = 0
anda = ap corresponds to collision points for two circular
inclined orbits). Obviously, Equation (8) is an increasing
function ofx, so that the direct part of disturbing function,
RD, is also an increasing function ofx, meaning that there
is a positive correlation betweenRD andx. Thus, for a
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Fig. 1 Accuracy analysis for the Taylor expansion of the functionf(x) = 1√
1−x

in the case of the reference point at

xc = 0 (left panel) andxc = 2α0

(1+α0)
2 (right panel).∆f(x) stands for the relative deviation off(x) (please see the text for

its definition). Thered points stand for the location of reference points. We take the 3:1 MMR as an example (α0 = 0.48)
to do this analysis.

given pair of(a, ap), when the two objects involved are
located on the opposite sides of the central star (ψ = π),
the disturbing functionRD takes the minimum and, when
the two objects are located on the same side (ψ = 0), the
disturbing functionRD takes the maximum.

Considering the domain of definition ofx, we can
perform Taylor expansion for Equation (8) around the
origin x = 0 as follows:

1

∆0
=

1

a+ ap

kmax
∑

k=0

(2k − 1)!!

(2k)!!
xk,

wherekmax specifies the truncated order of the expansion
in terms ofx. Except for the collision point at whichx = 1,
such a Taylor expansion is uniformly convergent.However,
when the variablex is relatively large or close to unity, the
convergence of the Taylor expansion becomes very slow.
Thus, this is not an ideal expansion.

Observing the expression given by Equation (9), we
find that the variablex oscillates around a fixed value for
two circular orbits specified by a given pair of semimajor
axes(a, ap). Naturally, this fixed value, denoted byxc, can
be taken as a reference point forx and then Equation (8)
can be expanded in the vicinity ofx = xc as a Taylor series
in the following form:

1

∆0
=

1

a+ ap

kmax
∑

k=0

(2k − 1)!!

(2k)!!

(x− xc)
k

(1− xc)
1/2+k

, (10)

wherekmax specifies the truncated order of the expansion
in terms of the deviation ofx relative to its reference point,
namelyδx = x− xc.

Obviously, the accuracy of the Taylor expansion is
determined by the magnitude ofδx and the truncated order
kmax. A better choice of the reference pointxc results in a
smaller magnitude ofδx, implying that a lower truncated
orderkmax is required to achieve a given accuracy. Thus,

the current difficulty lies in the determination of the
reference point. Observing the expression of Equation (9),
we can find a good choice for the reference point, given by

xc =
2a0a0p

(

a0 + a0p
)2 =

2α0

(1 + α0)
2 , (11)

where the initial semimajor axis ratio,α0, is defined by
α0 = a0/a0p, wherea0 anda0p are, respectively, the initial
values of the semimajor axes of the asteroid and planet. It
is not difficult to observe that the deviation ofx relative to
its reference pointxc is

δx = x− xc =
2α

(1 + α)
2 (1 + cosψ)− 2α0

(1 + α0)
2

≈ 2α

(1 + α)
2 cosψ

which satisfiesδx ∈ [−0.5, 0.5] regardless of the values
of semimajor axis ratios and inclinations, ensuring that
the Taylor expansion given by Equation (10) is uniformly
convergent. Remember that this is a key feature of our
expansion method, making the final expansion be valid for
arbitrary inclinations and semimajor axis ratios.

In particular, when the asteroid is located inside the
p0:q0 mean motion resonance with respect to the planet,
the reference point forx can be approximated as

xc =
2
(

q0
p0

)2/3

[

1 +
(

q0
p0

)2/3
]2 . (12)

In practical simulations, we take the reference point at
xc = 0.45 when the value ofxc is greater than 0.45.

In order to validate the Taylor expansion performed by
Equation (10), in Figure1 we make an accuracy analysis
for the Taylor expansion of the functionf(x) = 1√

1−x

(Eq. (8) shows 1
∆0

= 1
a+ap

f(x)) truncated at orders
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kmax = 10, 20, 30 in the case of the reference point at
xc = 0 (origin) andxc = 2α0

(1+α0)
2 . The relative deviation

is defined by

∆f(x) =
|fapprox − faccurate|

faccurate
,

where fapprox is the magnitude obtained by Taylor
expansion andfaccurate stands for the exact value off(x).
From Figure1, we can see that, at the same truncated order,
the expansion aroundxc = 2α0

(1+α0)
2 has better accuracy

than that aroundxc = 0. This is in agreement with our
expectation.

Substituting Equation (9) into Equation (10) and performing Newton’s binomial expansion to the result can lead to
the following expression:

1

∆0
=

kmax
∑

k=0

k
∑

q=0

q
∑

l=0

2q (2k − 1)!!

(2k)!!
(−1)

k−q

(

k

q

)(

q

l

)

xk−q
c

(1− xc)
1/2+k

aqaqp

(a+ ap)
2q+1 cos

lψ, (13)

where
(

i
j

)

is the binomial coefficient, defined by
(

i
j

)

= i!
j!(i−j)! . For the sake of brevity, we denote the function associated

with the semimajor axesa andap by

fq(a, ap) =
aqaqp

(a+ ap)
2q+1 (14)

and define the differential operator with respect to the semimajor axes of the asteroid and planet as

Dk1,k2
=

dk1+k2

dak1dak2

p

. (15)

Through some mathematical derivation, the high-order partial derivatives offq(a, ap) with respect toa andap can be
calculated by

Dk1,k2
fq =

k2
∑

l2=0

k1
∑

l1=0

(−1)l2+l1 (2q + l2 + l1)!

(a+ ap)
2q+1+l2+l1 (2q)!

(

k2
l2

)(

k1
l1

)[

dk1−l1

dak1−l1
aq
] [

dk2−l2

dak2−l2
p

aqp

]

. (16)

Replacing Equation (13) in Equation (6) and combining the differential operator defined by Equation (15), we can
obtain the direct part of disturbing function as follows:

RD =
N
∑

n=0

n
∑

m=0

kmax
∑

k=0

k
∑

q=0

q
∑

l=0

2q (2k − 1)!!

(2k)!!
(−1)k−q

(

k

q

)(

q

l

)

xk−q
c

(1− xc)
1/2+k

× (r − a)
m
(rp − ap)

n−m

n!
[Dm,n−mfq (a, ap)] cos

lψ,

(17)

where the termcoslψ can be expanded to be

coslψ =

l
∑

t=0

t
∑

t1=0

l−t
∑

t2=0

1

2l

(

l

t

)(

t

t1

)(

l − t

t2

)

sin2(l−t)(I/2)cos2t(I/2)

× cos [(l − 2t1 − 2t2) (f + ω) + (l − 2t+ 2t1 − 2t2) (θp − Ω)]

(18)

and the terms(r − a)
m and(rp − ap)

n−m can be expanded as follows:

(r − a)
m

=

m
∑

t3=0

(−1)
m−t3am

(

m

t3

)

( r

a

)t3
,

(rp − ap)
n−m

=

n−m
∑

t4=0

(−1)
n−m−t4

(

n−m

t4

)

an−m
p

(

rp
ap

)t4

.

(19)

By substituting Equations (18) and (19) into Equation (17), the direct part of disturbing function becomes

RD =
N
∑

n=0

n
∑

m=0

kmax
∑

k=0

k
∑

q=0

q
∑

l=0

l
∑

t=0

t
∑

t1=0

l−t
∑

t2=0

m
∑

t3=0

n−m
∑

t4=0

κ [Dm,n−mfq] a
man−m

p

sin2l (I/2)

tan2t (I/2)

×
( r

a

)t3
(

rp
ap

)t4

cos [(l − 2t1 − 2t2) (f + ω) + (l − 2t+ 2t1 − 2t2) (θp − Ω)] ,

(20)
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whereκ is given by

κ =
2q−lxk−q

c (2k − 1)!!

(1− xc)
1/2+kn! (2k)!!

(−1)
n+k−q−t3−t4

(

k

q

)(

q

l

)(

t

t1

)(

l − t

t2

)(

l

t

)(

m

t3

)(

n−m

t4

)

.

The trigonometric functions related to the true anomaly arising in Equation (20) can be transformed into the forms of the
mean anomaly by the following relation (Kaula 1961, 1962):

( r

a

)t3
(

rp
ap

)t4

cos [(l − 2t1 − 2t2) (f + ω) + (l − 2t+ 2t1 − 2t2) (θp − Ω)]

=

∞
∑

s1=−∞

∞
∑

s2=−∞
Xt3,(l−2t1−2t2)

s1 (e)Xt4,(l−2t+2t1−2t2)
s2 (ep)

× cos [s1M + s2Mp + (l− 2t1 − 2t2)ω + (l − 2t+ 2t1 − 2t2) (̟p − Ω)] .

(21)

The mathematical expression given by Equation (21) has been used in previous studies (Murray & Dermott 1999;
Ellis & Murray 2000; Beaugé & Michtchenko 2003; Beaugé et al. 2006; Lei et al. 2019; Lei 2019a,b). The Hansen
coefficientXa,b

c (e) arising in Equation (21) is a function of the eccentricitye, given byHughes(1981)

Xa,b
c (e) = e|c−b|

∞
∑

s=0

Y a,b
s+t,s+ue

2s,

wheret = max(0, c− b), u = max(0, b − c), andY a,b
s+t,s+u is the Newcomb operator calculated in a recurrence manner

(Hughes 1981; Murray & Dermott 1999; Ellis & Murray 2000). As for the Hansen coefficientXa,b
c (e), its lowest power in

eccentricity is|c− b|. It should be mentioned that the expansion given by Equation(21) is convergent under the condition
that the eccentricities (e andep) are smaller than the critical valueec = 0.6627 (Wintner 1941).

Substituting Equation (21) into Equation (20), we can organize the direct part of the disturbing functionas a Fourier
series in terms of the classical anglesM ,Mp, Ω, ω and̟p in the following form:

RD =

N
∑

n=0

n
∑

m=0

kmax
∑

k=0

k
∑

q=0

q
∑

l=0

l
∑

t=0

t
∑

t1=0

l−t
∑

t2=0

m
∑

t3=0

n−m
∑

t4=0

∞
∑

s1=−∞

∞
∑

s2=−∞
κ× [Dm,n−mfq]

× aman−m
p Xt3,(l−2t1−2t2)

s1 (e)Xt4,(l−2t+2t1−2t2)
s2 (ep)

sin2l (I/2)

tan2t (I/2)

× cos [s1M + s2Mp + (l − 2t1 − 2t2)ω + (l − 2t+ 2t1 − 2t2) (̟p − Ω)] .

(22)

For the indirect part, its Fourier series form can be easily derived to be

RI = − a

a2p

∞
∑

s1=−∞

∞
∑

s2=−∞
X1,1

s1 (e)X−2,1
s2 (ep)

×
[

sin2 I
2 cos (s1M + s2Mp + ω +̟p − Ω)

+cos2 I
2 cos (s1M − s2Mp + ω −̟p +Ω)

]

.

(23)

Finally, we arrive at the final literal expansion of the planetary disturbing function in the following form:

R =Gmp

N
∑

n=0

n
∑

m=0

kmax
∑

k=0

k
∑

q=0

q
∑

l=0

l
∑

t=0

t
∑

t1=0

l−t
∑

t2=0

m
∑

t3=0

n−m
∑

t4=0

∞
∑

s1=−∞

∞
∑

s2=−∞
κ

× [Dm,n−mfq] a
man−m

p Xt3,(l−2t1−2t2)
s1 (e)Xt4,(l−2t+2t1−2t2)

s2 (ep)
sin2l (I/2)

tan2t (I/2)

× cos

[

s1λ+ s2λp + (l− 2t1 − 2t2 − s1)̟
+(l − 2t+ 2t1 − 2t2 − s2)̟p + (2t+ 4t2 − 2l)Ω

]

− Gmp

ap

(

a

ap

) ∞
∑

s1=−∞

∞
∑

s2=−∞
X1,1

s1 (e)X−2,1
s2 (ep)

×
{

sin2 I
2 cos [s1λ+ s2λp + (1− s1)̟ + (1− s2)̟p − 2Ω]

+cos2 I
2 cos [s1λ− s2λp + (1− s1)̟ − (1− s2)̟p]

}

,

(24)

where̟ = ω+Ω and̟p = ωp +Ωp are the longitudes of pericenter, andλ =M +̟ andλp =Mp+̟p are the mean
longitudes of the asteroid and planet, respectively. It should be mentioned that the expansion given by Equation (24) is
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convergent whene < 0.6627 andep < 0.6627 are satisfied due to the convergence of the transformation between mean
and true anomalies given by Equation (21).

In the final expansion, the harmonic arguments are linear combinations of the mean longitudes, longitudes of
pericenter and longitudes of ascending node of the asteroidand planet, denoted by

ϕ = k1λ+ k2̟ + k3Ω+ k4λp + k5̟p + k6Ωp,

where the coefficientski(i = 1, 2, ...6) are all integers. As a result, the expansion of disturbing function can be written in
an elegant form:

R =
∑

k

Ck (a, e, I, ap, ep) cosϕ, (25)

wherek = {k1, k2, k3, k4, k5} and the explicit expressions of the force amplitudesCk (a, e, I, ap, ep) can be directly
derived from Equation (24). Observing the literal expansion given by Equation (24), we can summarize the following
properties:

– The expansion of the planetary disturbing function contains only cosine terms of argumentϕ.
– The coefficientk6 is zero, meaning that the perturber’s longitude of ascending node vanishes from the disturbing

function. This is due to the choice of the reference plane as the orbit of the perturber (i.e. the inclination of the
perturber’s orbit is zero).

– The d’Alembert relation holds for the coefficients in the cosine arguments, namely
∑

i

ki = 0.

– The coefficient of the longitude of ascending nodeΩ is always an even number.
– In the expression of the force amplitude, the power ofsin(I/2) (or cos(I/2)) is always an even number, indicating

that the force amplitude is an even function with respect to the mutual inclination.
– The relationship between the coefficient ofΩ and the power ofsin( I2 ) holds |2t+ 4t2 − 2l| ≤ 2(l − t) (see the

expression of the direct part), meaning that the power ofsin( I2 ) arising in the force amplitude is greater than or equal
to the absolute value of the coefficient ofΩ in the cosine argument (such relationship also holds for theindirect part).

Regarding the expression of the Hansen coefficient, we can determine its lowest order terms in eccentricity as
Xa,b

c (e) = O
(

e|b−c|). Applying this property to the coefficients appearing in Equation (24) yields

Xt3,(l−2t1−2t2)
s1 (e) = O

(

e|l−2t1−2t2−s1|
)

,

Xt4,(l−2t+2t1−2t2)
s2 (ep) = O

(

e|l−2t+2t1−2t2−s2|
p

)

,

X1,1
s1 (e) = O

(

e|1−s1|
)

, X−2,1
s2 (ep) = O

(

e|1−s2|
p

)

.

Thus, it is not difficult to observe that, in the expansion given by Equation (24), the lowest powers ofe andep arising in
the force amplitude are the absolute values of the coefficients of̟ and̟p, respectively (i.e.|k2| and|k5|). According to
this property, it is possible to see that (a) the amplitude ofa certain harmonic argument has positive correlation with the
eccentricitye (ep) if the numberk2 (k5) is not equal to zero, and (b) when the eccentricitye (ep) becomes zero, the terms
associated with the argumentsϕ with non-zerok2 (k5) would vanish from the disturbing function.

In particular, when the inclinations and eccentricities are small (in this situation the classical Laplace-type expansion
works very well), it is possible to reserve the lowest-orderterms ofe (ep) andsin(I/2) in Equation (24) to approximate
the disturbing function:

R ≈
∑

k

C̃k (a, ap) e|k2|e|k5|
p sin|k3|(I/2) cos (k1λ+ k2̟ + k3Ω+ k4λp + k5̟p), (26)

which has a similar formal expression to the ones given in previous studies (Murray & Dermott 1999; Morbidelli 2002).
Especially, when the planet is assumed to move around the central body in a circular orbit (i.e.ep = 0), the resulting

dynamical model, describing the motion of the asteroid, reduces to the circular restricted three-body problem (CRTBP)
(Szebehely 1967). In this case, the Hansen coefficientsXt4,(l−2t+2t1−2t2)

s2 (ep) in the expansion given by Equation (24)
are different from zero only whens2 is equal tol − 2t+ 2t1 − 2t2, and the coefficientsX−2,1

s2 (ep) are different from
zero only whens2 is equal to unity. Consequently, the disturbing function for describing the motion of asteroids in the
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CRTBP can be simplified to be

R =
Gmp

ap

N
∑

n=0

kmax
∑

k=0

k
∑

q=0

q
∑

l=0

n
∑

m=0

l
∑

t=0

t
∑

t1=0

l−t
∑

t2=0

∞
∑

s=−∞
κ0X

m,(l−2t1−2t2)
s (e)

αn

n!

× [Dnfq(α)]
sin2l

(

I
2

)

tan2t
(

I
2

) cos

[

sλ+ (l − 2t+ 2t1 − 2t2)λp
+(l − 2t1 − 2t2 − s)̟ + (2t− 2l + 4t2)Ω

]

− Gmp

ap

(

a

ap

) ∞
∑

s=−∞
X1,1

s (e)

{

sin2(I/2) cos [sλ+ λp + (1− s)̟ − 2Ω]
+cos2(I/2) cos [sλ− λp + (1− s)̟]

}

,

(27)

whereα is the semimajor axis ratio between the asteroid and planet (i.e.α = a/ap) andκ0 is

κ0 =
(−1)

n−m+k−q
2q−l (2k − 1)!!

(2k)!!

(

k

q

)(

q

l

)(

n

m

)(

t

t1

)(

l − t

t2

)(

l

t

)

xk−q
c

(1− xc)
1/2+k

.

In practical simulations, the upper limit of|s| arising in the summations is also taken as 20. In Equation (27), the functions
associated withα are denoted by

fq(α) =
αq

(1 + α)
2q+1 , Dnfq(α) =

dn

dαn
fq(α),

where the high-order derivatives are calculated by

Dnfq(α) =

n
∑

m=0

(−1)m
(2q +m)!

(2q)!

(

n

m

)

(1 + α)−2q−1−m

[

dn−m

dαn−m
αq

]

.

Remember that, in Equation (24) or (27), there are two numbers characterizing the truncated orders of series
expansion:N andkmax. The first numberN specifies the maximum order in terms of the small parameter:max (ε, εp).
As discussed before,ε andεp have the same order of magnitude as the eccentricities of theasteroid and planet, thus the
numberN corresponds to the order in terms ofmax (e, ep). The second numberkmax determines the maximum order of
the Taylor expansion in the deviation ofx relative to its reference point, namelyδx = x− xc.

Note that the convergence of the new expansion developed in this study is not restricted by the mutual inclination
and the semimajor axis ratio between the asteroid and planetbecause the small parameter arising in the series expansion
always satisfiesδx ∈ [−0.5, 0.5] regardless of the mutual inclination and the semimajor axisratio. Thus, it becomes
possible to use such a ‘general’ expansion of the disturbingfunction to formulate dynamical models in describing the
interior (α < 1), co-orbital (α ≈ 1) and exterior (α > 1) mean motion resonances of minor bodies with arbitrary
inclinations in planetary systems.

4 RESONANT DISTURBING FUNCTION

In this section, we assume that the planet moves in a circularorbit around the central body (the model corresponds to the
well-known CRTBP). In this case, the disturbing function given by Equation (27) can be utilized to formulate resonant
models. Regarding an asteroid located inside thep0:q0 mean motion resonance with respect to the planet, there is more
than one critical argument (with differentk0), given by

σp0:q0
k0

= q0λ− p0λp + (p0 − q0)Ω + k0ω, (28)

where k0 has the same parity ofp0 + q0. In previous works, several special resonances associatedwith p0:q0
resonances have been discussed, such as the pure eccentricity (or inclination) resonances and retrograde resonances
(Murray & Dermott 1999; Morais & Namouni 2013; Namouni & Morais 2018). Whenk0 = p0 − q0, the angle defined by
Equation (28) becomes the critical argument of pure eccentricity resonance, denoted byσ1 = q0λ− p0λp + (p0 − q0)̟.
Whenk0 = 0 (it requires thatp0 + q0 is even), the angle defined by Equation (28) represents the critical argument
of pure inclination resonance, denoted byσ2 = q0λ − p0λp + (p0 − q0)Ω (it is noted that, whenp0 − q0 = 1,
the pure inclination argument is defined byσ2 = 2(q0λ − p0λp + (p0 − q0)Ω)). Whenk0 = −p0 − q0, the angle
defined by Equation (28) corresponds to the critical argument of the retrograde (pure eccentricity) resonance, denoted
by σ3 = q0λ − p0λp + (p0 − q0) Ω − (p0 + q0)ω. It is known that, for the minor bodies located on coplanar ornearly
coplanar orbits, the pure eccentricity resonance withσ1 as the critical argument has the dominant strength and, for the
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bodies moving in retrograde coplanar orbits, the retrograde resonance withσ3 as the critical argument has the dominant
strength. However, when the minor bodies moves on an inclined orbit, the force amplitudes of the argumentsσp0:q0

k0

with differentk0 arising in the disturbing function may have comparable amplitudes, indicating that it is not suitable to
use a single critical argument in describing the resonant behavior. Please refer to figure 16 inLei (2019b) for detailed
discussions on single critical argument and characteristic angle for a certain mean motion resonance.

Among all the critical arguments of thep0:q0 resonance, there is a common part, given byσ = q0λ − p0λp +
(p0 − q0)Ω, which corresponds to the special case withk0 = 0 in Equation (28). In Lei (2019b), the common angleσ is
defined as the characteristic angle of thep0:q0 resonance (notice that the expression ofσ is determined by the numbersp0
andq0).

According to the mathematical expression ofσ, the mean longitude of the minor body can be expressed by means of
σ, λp andΩ as

λ =
1

q0
[σ + p0λp − (p0 − q0)Ω] .

As a result, the disturbing function given by Equation (27) becomes a function of the anglesσ, ω, Ω andλp. For a minor
body located inside a mean motion resonance, the associatedresonant angle (σ) becomes a semi-secular angle variable
compared toλp. In addition, it is known that the anglesω andΩ are slow variables in the timescale of mean motion
resonance (Gallardo 2019, 2020). Thus, among all these angles (σ, ω, Ω, λp), only the mean longitude of the planet (λp)
is a fast variable. Usually, the terms in the disturbing function involving the fast angleλp produce short-term influences
upon the motion of the minor body. During the long-term evolution of the minor body, it is often to remove those short-
term effects by means of averaging technique. Such an averaging process is called “secular approximation” (Naoz et al.
2013). Alternatively, the short-period effects can be averagedout by means of von Zeiple’s method (Brouwer 1959) or the
Hori–Deprit method (Hori 1966; Deprit 1969). As a result, filtering out the short-term effects (i.e. averaging the disturbing
function overλp) can be achieved by

R∗ (a, e, I, σ, ω) =
1

2q0π

2q0π
∫

0

R (a, e, I, σ, ω,Ω, λp) dλp, (29)

which leads to the resonant disturbing function. After averaging the disturbing function overq0 orbital periods of the
planet, both the angle variablesλp andΩ disappear from the averaged expression, so that the number of degree of freedom
is reduced by two. As a result, the resonant model determinedbyR∗ (a, e, I, σ, ω) is of two degrees of freedom. However,
there is only one integral of motion (Hamiltonian of system), showing that the resulting two degree-of-freedom dynamical
model determined byR∗ (a, e, I, σ, ω) is not integrable.

Replacing Equation (27) in Equation (29), we can easily obtain the resonant disturbing functions associated with the
interior (p0 > q0 andα < 1), co-orbital (p0 = q0 andα ≈ 1) and exterior (p0 < q0 andα > 1) mean motion resonances
for minor bodies with arbitrary inclinations. According tothe number ofp0, there are two cases for the resonant disturbing
function:p0 = 1 andp0 6= 1. Whenp0 = 1, the resonant disturbing function for describing the 1:q0 resonances becomes

R∗ =
Gmp

ap

N
∑

n≥0

kmax
∑

k≥0

k
∑

q≥0

q
∑

l≥0

n
∑

m≥0

l
∑

t≥0

t
∑

t1≥0

l−t
∑

t2≥0

κ0 ×X
m,(l−2t1−2t2)
q0(2t−l−2t1+2t2)

(e)
αn

n!

× [Dnfq(α)]
sin2l

(

I
2

)

tan2t
(

I
2

) cos

{

(2t− l − 2t1 + 2t2)σ
+ [(l − 2t1 − 2t2)− q0 (2t− l − 2t1 + 2t2)]ω

}

− Gmp

ap

(

a

ap

){

X1,1
q0 (e) cos2(I/2) cos [σ + (1− q0)ω]

+X1,1
−q0 (e) sin

2(I/2) cos [σ − (1 + q0)ω]

}

,

(30)

whereσ = q0λ − λp + (1− q0)Ω and, whenp0 6= 1 (in this case, the indirect part has no contribution to the resonant
disturbing function), the resonant disturbing function can be organized as
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R∗ =
Gmp

ap

N
∑

n≥0

kmax
∑

k≥0

k
∑

q≥0

q
∑

l≥0

n
∑

m≥0

l
∑

t≥0

t
∑

t1≥0

l−t
∑

t2≥0
mod [(2t−l−2t1+2t2),p0]=0

κ0

× αn

n!
[Dnfq(α)]X

m,(l−2t1−2t2)
q0

p0
(2t−l−2t1+2t2)

(e)
sin2l

(

I
2

)

tan2t
(

I
2

)

× cos

{

1

p0
(2t− l − 2t1 + 2t2)σ +

[

(l − 2t1 − 2t2)−
q0
p0

(2t− l − 2t1 + 2t2)

]

ω

}

,

(31)

wheremod(A,B) = 0 means thatA is divisible byB. It is noted that the expansion of resonant disturbing function
given by Equation (30) or (31) can be easily realized in computer language. By the way, direct numerical integration
of Equation (29) can produce numerical results of the resonant disturbing function, as adopted byGallardo(2006, 2019,
2020) in their studies. In the direct numerical integration, theoriginal form of the disturbing function given by Equation (1)
can be used. In the current work, we will take the numerical integration results as references in order to validate our
analytical expansion.

Obviously, the resonant disturbing functionR∗ given
by Equation (30) or (31) is a function ofa, e, I, σ and
ω. For the sake of brevity, the resonant disturbing function
can be denoted by an elegant form,

R∗ (a, e, I, σ, ω) =
∞
∑

k=0

∑

k1

CR
k,k1

(a, e, I) cos (kσ + k1ω),

(32)
wherek1 ∈ Z and it has the same parity ofk(p0+ q0). The
coefficientsCR

k,k1
(a, e, I) are derived from the resonant

disturbing function given by Equation (30) or (31).
To validate the new expansion shown by

Equations (30) and (31), it needs to discuss the precision
of the analytical developments truncated at different
orders. To this end, the new expansion is truncated at
ordersN = 2, 3, 4 in eccentricity andkmax = 30 in δx
and they are used to approximate the resonant disturbing
function associated with Jupiter’s interior 3:1 and 2:1
resonances. In simulations, the truncated order ofδx is
assumed atkmax = 30, the eccentricity is fixed ate = 0.3,
the inclination is taken asI = 60◦ and the argument
of pericenter is taken asω = 90◦ (these parameters are
chosen artificially). The precision off(= R∗) is measured
by the relative error, defined by

∆f =
|fapproximate − faccurate|

|faccurate|
,

wherefapproximate and faccurate represents the approxi-
mate and accurate values off , respectively.fapproximate

is computed by analytical expansion andfaccurate is
produced by direct numerical integration. The relative
errors ofR∗ are reported in Figure2, which shows that,
in general, the series expansion truncated at a higher
order N in eccentricity has a lower relative error (or
higher precision) than the lower-order expansions. This is
expected by us.

Then, we compare the analytical results obtained
by the new expansion truncated at orderN = 4 in

eccentricity andkmax = 30 in δx with the numerical
results obtained through direct numerical integration.
Concerning the resonant disturbing function associated
with Jupiter’s inner 3:1 and 2:1 resonances as well as
Jupiter’s exterior 1:2 and 1:3 resonances, in Figure3
we make a direct comparison between the numerical
results with the analytical results obtained by the new
expansion. Please refer to the caption of Figure3 for
the detailed setting of other parameters. From Figure3,
we can observe: (a) our new expansion could catch the
peak and valley positions of resonant disturbing function
accurately in comparison to the numerical results (notice
that the valley and peak positions correspond to the stable
and unstable equilibrium points of the resonant model and
the difference of resonant disturbing function evaluated at
the peak and valley positions,∆R∗, showing the resonant
strength, is positively correlated to the resonant width,
as discussed inGallardo(2020)); (b) from a quantitative
viewpoint, the analytical results obtained by the new
expansion are in coincident with the numerical results in
the entire interval ofσ.

Finally, we apply the new expansion truncated at
orders N = 4 and kmax = 30 to the co-orbital
resonances with Jupiter (α = 1), as shown in Figure4. The
numerical results are also provided for the convenience
of comparison. In Figure4, the domain ofσ is marked
in shadow if the minimum distance between the asteroid
and planet is smaller than three times of the Jupiter’s Hill
radiusRH . From Figure4, it is observed that (a) in the
shadow area the analytical developments underestimate the
resonant disturbing function, this is because the analytical
results are always smaller than the numerical results in
the shadow region, and (b) outside the shadow area the
analytical results produced by the new expansion are in
good agreement with the numerical results. It is known
that, when the asteroid is located in the shadow area, the
perturbation theory usually fails to work due to the strong
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Fig. 2 Relative errors of the new expansion truncated at differentorders in eccentricity for approximating the resonant
disturbing function. Relative errors are measured by taking the numerical results produced by direct numerical integration
as the accurate value of resonant disturbing function. The new expansion is truncated at ordersN = 2, 3, 4 in eccentricity
and, in each case, the expansion order inδx is fixed atkmax = 30. The left panel is for Jupiter’s inner 3:1 resonance
and the right one is for Jupiter’s inner 2:1 resonance. In simulations, the eccentricity is fixed ate = 0.3, the inclination
at I = 60◦, the argument of pericenter atω = 90◦ and the semimajor axis is taken as the value at the resonant center
(simulations with other parameters can be performed in a similar manner).
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Fig. 3 Comparisons of the numerical results obtained by direct numerical integration and the analytical results obtained
by the new expansion for computing the resonant disturbing function associated with the Jupiter’s inner 3:1 and 2:1
resonances (upper panels) and exterior 1:2 and 1:3 resonances (bottom panels). The numerical results are taken as
references for measuring the accuracy of our analytical developments. The new expansion is truncated at the fourth
order in eccentricity (i.e.N = 4) and at orderkmax = 30 in δx. In simulations, the eccentricity is assumed ate = 0.3, the
inclination is fixed atI = 60◦, the argument of pericenter is set asω = 90◦ and the semimajor axis is taken as the value
of the resonant center.

perturbation coming from the planet. Thus, when we are
using perturbation theory to study the long-term dynamical
behaviors we need to ensure that the asteroids considered
are located outside the shadow area.

In summary, the comparisons made in Figures3 and4
strongly support the conclusion that the new expansion is
valid for minor bodies located inside the interior, co-orbital
and exterior resonances (for better accuracy it is required
that the minimum distance between the asteroid and planet
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Fig. 4 Resonant disturbing function for co-orbital motion in the Sun–Jupiter system under different settings ofω (ω is
taken as0◦, 45◦, 90◦ and135◦ from the top left panel to the bottom right panel), computed by means of analytical and
numerical approaches. The numerical results are shown inblue dotted lines and the analytical results obtained by the
new expansion truncated at orderN = 4 in eccentricity andkmax = 30 in δx are shown inred lines. In simulations, the
eccentricity is assumed ate = 0.3, the inclination atI = 60◦ and the semimajor axis is taken as the value at the resonant
center. Theregions in shadow represent the minimum distance between the orbits of the asteroid and planet is smaller
than3RH whereRH is the Hill radius of the planet. It is observed that outside the shadow region the analytical results
agree well with the numerical results.

is greater than3RH ). In the coming section, we will use
our analytical developments to formulate the Hamiltonian
model for mean motion resonances.

5 HAMILTONIAN MODEL OF MEAN MOTION
RESONANCES

For convenience of studying the Hamiltonian dynamics,
we adopt a set of modified Delaunay variables, given by
(Morbidelli 2002)

Λ =
√
µa, λ =M +̟,

P =
√
µa

(

1−
√

1− e2
)

, p = −̟,

Q =
√

µa (1− e2) (1− cos i) , q = −Ω,

Λp, λp =Mp +̟p,
(33)

where µ =
√
Gm0 is the gravitational parameter of

the central mass,Λp is the conjugate momentum of the
mean longitude of planetλp. With such a set of canonical
variables, the Hamiltonian of planetary system can be
written as (Morbidelli 2002)

H = − µ2

2Λ2
+ npΛp −R (Λ, P,Q, λ, p, q, λp) , (34)

where np is the mean motion of the planet and the
disturbing functionR (Λ, P,Q, λ, p, q, λp) is equal to
R (a, e, i, σ, ω), given by Equation (27). In order to
describe the dynamics associated with thep0:q0 resonance,
we introduce a linear canonical transformation, given by

Σ1 =
1

q0
Λ, σ1 = q0λ− p0λp − (p0 − q0) q = σ,

Σ2 = −P, σ2 = q − p = ω,

Σ3 = −P −Q− p0 − q0
q0

Λ, σ3 = −q = Ω,

Σ4 = Λp +
p0
q0

Λ, σ4 = λp,

(35)
which can be realized by the following generating
function:

S = [q0λ− (p0 − q0) q − p0λp] Σ1

+ (q − p)Σ2 − qΣ3 + λpΣ4.

As a result, the Hamiltonian can be written as follows:

H = − µ2

2(q0Σ1)
2 + np (Σ4 − p0Σ1)

−R (Σ1,Σ2,Σ3,Σ4, σ1, σ2, σ3, σ4) .

(36)
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Fig. 5 Level curves of the resonant Hamiltonian (phase-space structures) shown in the space spanned by the characteristic
angleσ and semimajor axisa for Jupiter’s 3:1 and 2:1 resonances. In both plots, the eccentricity is assumed ate = 0.3,
the inclination atI = 60◦ and the argument of pericenter atω = 0◦. The green lines stand for the orbits numerically
propagated under the Sun–Jupiter–asteroid dynamical model. The lines shown in red correspond to the dynamical
separatrices passing through saddle points and theblue dots stand for the locations of resonant centers. The resonant
half width, measuring the distance between the separatrix and the resonant center evaluated atσ = σs, is denoted by
∆a = asep − a0. The mathematical expression of∆a is given by Eq. (47).

In the new set of canonical variables,σ1 = σ corresponds
to the characteristic angle of thep0:q0 resonance, andσ2 =
ω corresponds to the argument of pericenter. It should
be mentioned that the canonical transformation given by
Equation (35) is valid for all the interior (p0 > q0), co-
orbital (p0 = q0) and exterior (p0 < q0) resonances.

In particular, when the minor body is located inside a
mean motion resonance, the disturbing function is replaced
by the resonant disturbing function given by Equation (32).
Consequently, the averaged resonant Hamiltonian becomes

H∗ = − µ2

2(q0Σ1)
2−p0npΣ1−R∗ (Σ1,Σ2,Σ3,Σ4, σ1, σ2) ,

(37)
where the constant termnpΣ4 is eliminated from the
Hamiltonian and the canonical equations of motion can be
written as

σ̇1 =
∂H∗

∂Σ1
, Σ̇1 = −∂H

∗

∂σ1
,

σ̇2 =
∂H∗

∂Σ2
, Σ̇2 = −∂H

∗

∂σ2
,

(38)

which correspond to a dynamical system with two
degrees of freedom (σ1 and σ2 are the associated
angular coordinates). In the resonant model specified by
Equation (37), σ3 and σ4 are cycle coordinates, so that
their conjugate momentaΣ3 andΣ4 become integrals of
motion, given by

Σ3 = −P −Q− p0 − q0
q0

Λ =
√
µa

[

√

1− e2 cos I − p0
q0

]

= const
(39)

and

Σ4 = Λp +
p0
q0

Λ = Λp +
p0
q0

√
µa = const. (40)

The integral of motion given by Equation (39) shows that
there are coupled oscillations among semimajor axis ratio,
eccentricity and inclination of the test particle, meaning
that exchange between the Keplerian energy (K = − µ

2a )
and the angular momentum along thez direction (H =
√

µa(1− e2) cos I) occurs in the long-term evolution.
In terms of the classical elements, the averaged

resonant Hamiltonian given by Equation (37) can be
further expressed as

H∗ =− µ

2a
− np

p0

q0

√
µa −R∗ (a, e, i, σ, ω)

=− µ

2a
− np

p0

q0

√
µa −

∞
∑

k=0

∑

k1

CR

k,k1
(a, e, I) cos (kσ + k1ω),

(41)

where the resonant disturbing functionR∗ (a, e, i, σ, ω) is
given by Equation (32). It should be noted that the form
given by Equation (41) is analogous to the one given by
Gallardo(2020) (see eq. (5) in his work). The difference
is that the resonant disturbing function in the present work
is produced by analytical developments while, inGallardo
(2020), the resonant disturbing function is obtained by
means of direct numerical integration.

If we are only interested in the dynamics during the
timescale of mean motion resonances, the argument of
pericenterω can be assumed as a constant (Gallardo 2006,
2019, 2020; Lei 2019b), so that the dynamical model
reduces to a system with a single degree of freedom,
specified by the resonant Hamiltonian

H∗ = − µ

2a
− np

p0
q0

√
µa

−
∞
∑

k=0

[Ck (a, e, I, ω) cos kσ + Sk (a, e, I, ω) sin kσ],

(42)
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Fig. 6 Resonant widths for Jupiter’s inner 3:1 resonance as functions of the mutual inclinationI. In the left panel,
analytical results of resonant width are reported for the cases ofω = 0◦, 30◦, 60◦, 90◦. The resonant width in terms of
the variation of semimajor axis is marked. In the right panel, a comparison is made between the analytical and numerical
results of resonant width for the case ofω = 90◦. In both plots, the eccentricity is fixed ate = 0.3.
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Fig. 7 Resonant widths for Jupiter’s inner 2:1 resonance as functions of the mutual inclinationI. In the left panel,
analytical results of resonant width are reported for the cases ofω = 0◦, 30◦, 60◦, 90◦. The resonant width in terms of
the variation of semimajor axis is marked. In the right panel, a comparison is made between the analytical and numerical
results of resonant width for the case ofω = 90◦. In both plots, the eccentricity is fixed ate = 0.3.

where the coefficients are given by

Ck (a, e, I, ω) =
∑

k1

CR
k,k1

(a, e, I) cos (k1ω),

Sk (a, e, I, ω) = −
∑

k1

CR
k,k1

(a, e, I) sin (k1ω).

In the single degree-of-freedom resonant model, the
equations of motion are

σ̇1 =
∂H∗

∂Σ1
, Σ̇1 = −∂H

∗

∂σ1
, (43)

which can be written in an equivalent form:

dσ

dt
= 2q0

√

a/µ
∂H∗

∂a

=
q0
√
µa

a2
− npp0 − 2q0

√

a/µ
∂R∗

∂a
,

da

dt
= −2q0

√

a/µ
∂H∗

∂σ
= 2q0

√

a/µ
∂R∗

∂σ
.

(44)

The second equation of Equation (44) indicates that the
dependence of the resonant disturbing functionR∗ (or

HamiltonianH∗) onσ determines the dynamical behavior
of semimajor axis, as pointed out inGallardo (2020).
Under the resonant model, the equilibrium points can be
obtained by solving the frozen equation:

dσ

dt
=

da

dt
= 0. (45)

The first equationdσdt ≈ q0λ̇ − p0λ̇p = 0 shows that
the equilibrium points are approximately located at

a = a0 =

(

q20
p20

µ

n2
p

)
1

3

.

The stability condition of equilibrium points requires that
the second derivative ofH∗ with respect toσ evaluated at
the considered point is smaller than zero, expressed by

∂2H∗

∂σ2
=

∞
∑

k=1

k2 [Ck (a, e, I, ω) cos kσ + Sk (a, e, I, ω) sinkσ] < 0,

(46)
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Fig. 8 Analytical and numerical results of the location of libration center (left panel) and the associated resonant width
(right panel) for Jupiter’s 1:1 resonance. In simulations, the eccentricity is fixed ate = 0.3 and the argument of pericenter
is atω = 0◦. The points inside shadow regions stand for the parameters at which the minimum distance between the
asteroid and planet is smaller than three times of the planet’s Hill radius (i.e.,Rmin < 3RH). The resonant width in terms
of the variation of semimajor axis is marked. It is observed from the right panel that inside the shaded area the resonant
width is significantly underestimated by the analytical developments due to the underestimation of resonant disturbing
function at the saddle points, as shown in Fig.4.

meaning that the stable equilibrium points correspond to
the local maxima of the resonant Hamiltonian (or local
minima of the resonant disturbing function). Usually, the
stable equilibrium points, denoted by(a0, σs), correspond
to the resonant centers and the unstable ones, denoted by
(a0, σu), correspond to saddle points. The level curves
of the resonant Hamiltonian passing through the saddles
points provide the dynamical separatrices, which divide
the phase space into libration and circulation regions.
According to the discussion inGallardo (2020), the
libration region is specified by the so-called resonance’s
half width ∆a = asep − a0 (asep is defined by the
separatrix), calculated by

∆a = asep − a0

=
2
√
6

3n
[H∗ (a0, e0, I0, σs, ω0)−H∗ (a0, e0, I0, σu, ω0)]

1

2

=
2
√
6

3n
[R∗ (a0, e0, I0, σu, ω0)−R∗ (a0, e0, I0, σs, ω0)]

1

2

=
2
√
6

3n

{

∞
∑

k=0

[Ck (cos kσu − cos kσs) + Sk (sin kσu − sinkσs)]

} 1

2

(47)

which is in agreement with the expression derived from
Hamiltonian approach byGallardo (2020) (see eq. (18)
in his work) and in agreement with the expression of
resonance’s half width derived from the multi-harmonics
pendulum model byLei (2019b) (please refer to eq. (26)
in his work). Remind that the resonant disturbing function
in Gallardo (2020) is produced by means of direct
numerical integration and, in the present work, the
resonant disturbing function (or resonant Hamiltonian) can
be obtained by means of both the analytical expansions
and numerical integration. In Section6, we will use

Equation (47) to produce the analytical and numerical
resonant widths in terms of∆a and compare them in order
to validate our analytical developments.

6 APPLICATIONS

In this section, we will apply the analytical developments
performed in Sections4 and5 to Jupiter’s inner and co-
orbital resonances and to Neptune’s exterior mean motion
resonances. In particular, we will make direct comparisons
between analytical and numerical results.

6.1 Jupiter’s Inner and Co-orbital Resonances

The resonant Hamiltonian given by Equation (42) shows
that the resonant model is specified by a pair of pseudo
conjugate variables(a, σ) (notice that there is a one to
one correspondence between the semimajor axis and the
conjugate variable ofσ). Thus, it is possible to understand
the global dynamics of mean motion resonances by
plotting the level curves of the resonant Hamiltonian in
the space spanned bya andσ, which correspond to the
so-called (pseudo) phase-space structures.

In Figure 5, we report the phase-space structures
associated with Jupiter’s inner 3:1 and 2:1 resonances. For
Jupiter’s inner 3:1 resonance, the characteristic argument
is defined byσ = λ − 3λp + 2Ω and, for Jupiter’s
inner 2:1 resonance, the characteristic argument is defined
by σ = λ − 2λp + Ω. In simulations, the eccentricity
is fixed at e = 0.3, the inclination at60◦ and the
argument of pericenter atω = 0◦ (notice that the
phase structures with other settings of elements could
be produced in a similar manner). In the phase-space
structures, the resonant centers (corresponding to stable
equilibrium points in the resonant model) are marked
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Fig. 9 Analytical and numerical results of the location of libration center (left panels) and the associated resonant width
(right panels) for Neptune’s exterior 1:2 resonance. In the upper panels,the eccentricity is fixed ate = 0.1 and, in the
bottom panels, the eccentricity is assumed ate = 0.2. The resonant width in terms of the variation of semimajor axis is
marked.

in blue dots, and the level curves passing through the
saddle points stand for the dynamical separatrices shown
in red lines, which divide the total space into two types of
regions: circulation and libration. For the 3:1 resonance,
the resonant center is located atσ = λ − 3λp + 2Ω = π
and, for the 2:1 resonance, the resonant center is located
at σ = λ − 2λp + Ω = 0. In addition, the resonant half
width measures the distance betweenasep anda0, which is
explicitly marked by∆a. The mathematical expression of
∆a is provided by Equation (47).

To validate the phase portraits obtained from our new
expansion of the planetary disturbing function, orbits with
the same initial conditions are numerically propagated
under the Sun–Jupiter–asteroid system and they are shown
in the green lines, as shown in Figure5. The periodic
oscillations are caused by the short-period effects arising
in theN -body model. Evidently, the numerical trajectories
could follow closely along the level curves of resonant
Hamiltonian, showing that our expansion of the planetary
disturbing function is valid to predict resonant dynamics of
asteroids.

As stated in Section5, the resonant disturbing function
arising in Equation (47) can be produced by means
of direct numerical integration (the associated resonant
width and center are called numerical results in the

following discussions) and by means of the new expansion
represented by Equation (30) or (31) (the associated
resonant width and center are called analytical results).

Regarding Jupiter’s inner 3:1 and 2:1 resonances with
e = 0.3, Figures6 and7 present the analytical resonant
widths as functions of the mutual inclinationI for the cases
of ω = 0◦, 30◦, 60◦, 90◦ in the left panels and provide a
direct comparison between the analytical and numerical
results of the resonant width for the case ofω = 90◦

in the right panels. The resonant full width in terms of
the variation of the semimajor axis (it is equal to2∆a) is
explicitly marked.

From Figures6 and 7, it is observed that (a) the
influence ofω upon the resonant width is significant,
(b) when the mutual inclination is zero (prograde) or
π (retrograde), the resonant widths with differentω are
coincident (this is because, at inclination ofI = 0 or
I = π, only the prograde or retrograde pure eccentricity
resonance dominates the dynamics, as discussed in
Section 4), and (c) the comparisons made in the right
panels show that the analytical results agree well with
the numerical ones. It is worth mentioning thatGallardo
(2020) has studied the influence ofω upon mean motion
resonances by introducing the index of fragility: the index
is higher, the associated resonance is more fragile (i.e., the
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Fig. 10 Analytical and numerical results of the location of libration center (left panels) and the associated resonant width
(right panels) for Neptune’s exterior 1:3 resonance. In the upper panels,the eccentricity is fixed ate = 0.2 and, in the
bottom panels, the eccentricity is assumed ate = 0.3. The resonant width in terms of the variation of semimajor axis is
marked.

resonant structure is more easy to be broken by changing
ω).

Whenω = 90◦, we can observe from the right panels
of Figures6 and 7 that (a) the dynamical separatrices
associated with the 3:1 resonance have a gourd shape with
three necks and it is found that the resonant center switches
between0 andπ passing through each neck (it is noted that
around the first neck there is a small interval of inclination
I ∈ [37◦, 42◦] at which there are two pairs of dynamical
separatrices corresponding to two resonant centers located
at σ = 0 and σ = π), (b) the dynamical separatrices
associated with the 2:1 resonance have a complicated
shape and it is found that, in the interval ofI ∈ [54◦, 137◦],
there are two pair of dynamical separatrices bounding two
different resonant centers located atσ = 0 andσ = π
and, in the remaining interval, there is only one resonance
center at eitherσ = 0 or σ = π, and (c) for the 2:1
resonance, the resonant widths atI = 0 andI = π are
slightly underestimated by the analytical developments.

Regarding Jupiter’s inner 3:1 and 2:1 resonances with
ω = 0◦ and ω = 90◦, Lei (2019b) has developed
a multi-harmonics pendulum model for describing the
resonant dynamics and reported the curves of dynamical
separatrices (see the bottom-left panels of figures 5, 11, 18
and 20 in his work), which are in perfect agreement with

the analytical (and numerical) results shown in Figures6
and 7 (it is noted that, inLei (2019b), the Laplace-type
expansions of disturbing function are used for formulating
the resonant model).

For Jupiter’s 1:1 resonance, the characteristic argu-
ment is defined byσ = λ − λp (this argument is also
called the synodic angle between the asteroid and planet in
previous studies). In practical applications of our analytical
developments to this case, we fix the argument of the
pericenter atω = 0◦ and the eccentricity ate = 0.3
(simulations with other parameters can be performed in a
similar manner). It is known that, for the 1:1 resonance,
there are asymmetric libration centers, one of them is
located aroundσ = 60◦ (usually called theL4 point) and
the other one is located aroundσ = −60◦ (usually called
the L5 point). These asymmetric libration centers are
symmetric with respect toσ = π, and they have the same
dynamical behavior. Thus, in the practical discussions,
we only focus on the one around the usualL4 point.
In Figure 8, the location of the resonant center as a
function of mutual inclination is shown in the left panel
and the associated resonant width is presented in the
right panel. In both plots, the analytical results are shown
in red and the numerical results are shown in black. In
particular, the shadow region covers those parameters at
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Fig. 11 Analytical results of the resonant width associated with Neptune’s exterior 2:3, 3:5, 4:7, 3:7, 2:5 and 3:8
resonances. The eccentricity is fixed ate = 0.2 and the argument of pericenter is fixed atω = 0◦.

which the minimum distance between the asteroid and
planet is smaller than three times of Jupiter’s Hill radius
(i.e.Rmin < 3RH ). As discussed in Section4, the resonant
disturbing function is underestimated by the analytical
developments when the asteroid is located inside the
shadow region, resulting in the fact that the resonant width
is also underestimated by the analytical developments, as
shown in the right panel of Figure8. However, when
the asteroid in located outside the shadow region, the
analytical results are in good agreement with the numerical
ones. From the left panel of Figure8, the asymmetric
libration center exists if and only if the inclination is
smaller than155◦ and, in this region, it is observed from
the right panel of Figure8 that there are two pairs of

dynamical separatrices bounding the asymmetric libration
center. When the inclination is greater than155◦, the
asymmetric libration center disappears and is replaced by
the symmetric libration center atσ = 0 and, in this region,
there is one pair of dynamical separatrices bounding the
libration center, as shown in the right panel of Figure8.

6.2 Neptune’s Exterior Resonances

The analytical developments discussed in Section5 are
applied to the Sun–Neptune system for studying the
resonant dynamics of exterior mean motion resonances
with Neptune, including the 1:2, 1:3, 2:3, 3:5, 4:7, 3:7, 2:5
and 3:8 resonances.
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Regarding Neptune’s exterior 1:2 and 1:3 resonances,
their characteristic arguments areσ = 2λ − λp − Ω and
σ = 3λ − λp − 2Ω, respectively. Figure9 presents the
locations of libration center and the associated resonant
width as functions of the mutual inclination for the 1:2
resonance, and Figure10 shows the corresponding results
for the 1:3 resonance.

For the case of the 1:2 resonance as shown in Figure9,
two cases withe = 0.1 ande = 0.2 are taken into account.
It is observed from the left panels that the asymmetric
libration centers exist when the inclination is smaller than
140◦ and, when the inclination is greater than140◦, the
asymmetric libration centers disappear and are replaced by
the symmetric libration center located atσ = π. It is noted
that in the intervalI ∈ [0◦, 140◦) there are two asymmetric
libration centers which are symmetric with respect toπ. In
our study, we only consider one of them (smaller thanπ)
because the other one has the same dynamical behavior.
From Figure9, we can observe: (a) for both cases with
e = 0.1 and e = 0.2, the analytical results could be in
good agreement with the numerical results for the location
of libration center and the associated resonant width, (b)
with inclination changing from0◦ to 140◦, the σ of the
libration center first decreases and then increases up to
σ = π which is the location of the symmetric libration
center, (c) in the interval ofI ∈ [0◦, 140◦), there are two
pairs of dynamical separatrices (corresponding to the inner
and outer boundaries) bounding the asymmetric libration
center, (d) when the inclination is greater than140◦, there
is only one pair of separatrices bounding the symmetric
libration center, and (e) the resonant widths associated
with e = 0.2 are greater than the ones associated with
e = 0.1, because there is a positive correlation between
the force amplitude in the expansions and the eccentricity
as discussed in Section3.

For the case of the 1:3 resonance as shown in
Figure10, two cases withe = 0.2 ande = 0.3 are taken
into consideration. It is observed from the left panels of
Figure 10 that, for the case ofe = 0.2, the asymmetric
libration centers disappear when the inclination is greater
than104◦ and, for the case ofe = 0.3, the asymmetric
libration centers disappear when the inclination is greater
than130◦. Similar to the case of the 1:2 resonance, only
one of the asymmetric libration centers is considered in
this study (the other one has the same dynamical behavior).
From Figure10, we can observe that (a) the analytical
results are in good agreement with the numerical ones,
(b) resonant width in the case ofe = 0.3 is greater than
that in the case ofe = 0.2, and (c) there are two pairs of
dynamical separatrices bounding the asymmetric libration
center and one pair of separatrices bounding the symmetric
libration center.

Then, our analytical developments are applied to
Neptune’s exterior 2:3, 3:5, 4:7, 3:7, 2:5 and 3:8
resonances with eccentricity ate = 0.2 and argument of
pericenter atω = 0◦. The resonant widths as functions
of the mutual inclination are reported in Figure11. For
these considered resonances, all of them have symmetric
libration center located atσ = π. From Figure11, it
is observed that (a) for the 2:3, 3:5 and 4:7 resonances,
the resonant width is a decreasing function of the mutual
inclination, (b) for the 3:7, 2:5 and 3:8 resonances, the
resonant width first increases and then decreases with the
inclination, and (c) when the inclination is close toπ,
the resonant widths of all the considered resonances are
approaching zero, indicating that their retrograde resonant
strengths are very weak (this point is different from that of
inner resonances, as shown in the previous subsection).

7 CONCLUSIONS

In this work, a new expansion of the planetary disturbing
function has been developed. In the first step, the original
disturbing function is expanded around circular orbits and
it is expressed as a formal series in the eccentricities of
the objects involved. After the first step, the disturbing
function becomes a summation of the terms associated
with the mutual interaction between circular orbits. In
the second step, we define a parameterx and expand the
core function (i.e. the mutual interaction between circular
orbits) around the reference pointxc as Taylor series of
δx = x − xc. The disturbing function is finally organized
as a Fourier series form, where the force amplitudes are
related to the semimajor axis, eccentricity and inclination
and the harmonic arguments are linear combinations of the
mean longitude, longitude of pericenter and longitude of
the ascending node of each mass. In the final expansion,
there are two numbers in specifying the orders of
expansion: the truncated order in eccentricities denoted by
N and the expansion order inδx denoted bykmax.

The advantages of the new expansion developed
in the present work lies in the following two aspects:
(a) in the process of expansion, Laplace coefficients
are not used, so that the convergence problem arising
from the series expansion of Laplace coefficients in
the semimajor axis ratio can be avoided, and (b) the
new expansion is convergent regardless of the values
of the mutual inclination and semimajor axis ratio, so
it becomes possible to utilize the new expansion of
planetary disturbing function to study the dynamics of
minor bodies located inside the interior, co-orbital and
exterior resonances at arbitrary inclinations.

Based on the new expansion of planetary disturbing
function, the resonant Hamiltonian is formulated through
the linear and canonical transformations of the modified
Delaunay variables. It shows that the resonant model
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corresponds to a dynamical model with two degrees of
freedom (σ and ω are angular variables of the system).
Considering the fact that the angleω is much slower
thanσ, it is possible to make an assumption thatω is a
constant during the timescale of mean motion resonances,
so that the dynamical model naturally reduces to a system
with a single degree of freedom (onlyσ is the angle
coordinate). Under this assumption, the level curves of
resonant Hamiltonian in the space (σ, a) correspond to
the (pseudo) phase-space structures, which show the global
dynamics of mean motion resonances. In the Hamiltonian
model of mean motion resonances, the expression of
resonant half width in terms of variation of semimajor axis
is provided.

The analytical developments are applied to Jupiter’s
inner and co-orbital resonances and Neptune’s exterior
resonances. As for Jupiter’s inner 3:1 and 2:1 resonances,
the analytical results of resonant width at differentω are
produced and, in particular, a direct comparison is made
between the analytical and numerical results for the case of
ω = 90◦, showing that the analytical and numerical results
are in good agreement. Regarding Jupiter’s co-orbital
resonance and Neptune’s exterior 1:2 and 2:3 resonances,
the location of asymmetric and symmetric libration centers
and the associated resonant width are produced by means
of analytical and numerical approaches, and comparisons
between the analytical and numerical results shows that
our new expansion is valid. Furthermore, the analytical
developments are applied to Neptune’s exterior 2:3, 3:5,
4:7, 3:7, 2:5 and 3:8 resonances and their resonant widths
as functions of mutual inclination are reported.
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