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Abstract In this study, a new expansion of planetary disturbing fiomcits developed for describing the
resonant dynamics of minor bodies with arbitrary inclina and semimajor axis ratios. In practice, the
disturbing function is expanded around circular orbitstie first step and then, in the second step, the
resulting mutual interaction between circular orbits ip&xded around a reference point. As usual, the
resulting expansion is presented in the Fourier series,fadmere the force amplitudes are dependent on
the semimajor axis, eccentricity and inclination, and thenfonic arguments are linear combinations of
the mean longitude, longitude of pericenter and longituidassending node of each mass. The resulting
new expansion is valid for arbitrary inclinations and seigion axis ratios. In the case of mean motion
resonant configuration, the disturbing function can belgasiraged to produce the analytical expansion
of resonant disturbing function. Based on the analyticpb@sion, the Hamiltonian model of mean motion
resonances is formulated, and the resulting analyticatldpments are applied to Jupiter’s inner and co-
orbital resonances and Neptune’s exterior resonancedytsh expansion is validated by comparing the
analytical results with the associated numerical outcomes
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1 INTRODUCTION ence point in Taylor serie®@ez & Locatelli 2015Morais
1999 Petrovskaya 19701972 Beaugé 1996 and (e)
semianalytical expansions where the force amplitudes are

Expanding the planetary disturbing function as a poweEiFtermined by numerical Fourier analysigiéner 2000,

series in orbital elements is an essential and fundamentg\ :
. . . o mong these expansions, the Laplace- and Legendre-
issue in the development of perturbation theories in celes-

tial mechanics. To understand the dynamics of resonanct € expansions are classical and they are widely used in
. o previous studies.
and secular evolutions, it is a key step to study the prop*
erties of the planetary disturbing function experienced by  The Laplace-type expansion of the planetary disturb-
the object of interesturray & Dermott 1999. In history,  ing function started fronPeirce (1849, who derived a
there are various types of expansions for the planetargixth-order expansion. As an extensibdewcomb(1895
disturbing function: (a) Laplace-type expansions whereerformed a seventh-order expansidrown & Shook
the force amplitudes are expressed in terms of Laplac€l933 provided a clear and detailed derivation for the
coefficients Brouwer & Clemence 1961Ellis & Murray  expansion up to the second-order in terms of the classical
200Q Murray & Dermott 1999 Morais & Namouni 2013  orbital elementsBrouwer & Clemencg1961) formulated
Namouni & Morais 20172018, (b) Legendre-type ex- a third-order expansion for the planetary disturbing
pansions where Legendre polynomials are used ifunction, which has been widely adopted as a standard and
the derivation Kaula 1962, (c) asymmetric and local low-order expansion. In more recent times, higher-order
expansions where the disturbing function is expande@xplicit expansions of the planetary disturbing functianc
around a specific resonant centétefraz-Mello 1987 be found inEllis & Murray (2000 andMurray & Dermott
Ferraz-Mello & Sato 1989Yokoyama 1994 Roig etal. (1999, who expanded the disturbing function as a power
1998, (d) Taylor-type expansions where the disturbingseries in eccentricities and inclinations of the objects
function is expanded around an artificially chosen referinvolved. ParticularlyEllis & Murray (2000 presented a
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new algorithm for the determination of the terms associatHamiltonian dynamics are discussed in Secficend the

ed with a certain argument in the expansion of planetarypractical applications of the analytical developmentfito t
disturbing function. Recentlyyorais & Namouni(2013  interior, co-orbital and exterior resonances are reported
and Namouni & Morais(2017 2018 have made further in Section 6. Finally, conclusions are summarized in
extensions of the classical expansions to retrogradesorbitSection?.

polar orbits and orbits with arbitrary inclinations. Due
to the choice of the reference orbit as a coplana? PLANETARY DISTURBING FUNCTION

circular orbit, the classical expansions are valid in low- . S .
The planetary system considered in this study is composed

inclination and low-eccentricity configurations. However ) .
- . L . ?f a central body with mass, (i.e. a central star), a planet
the Laplace coefficients and their derivatives with respect . S
with massm,, and an asteroid with mass. Usually, the

to the semimajor axis ratio arising in the Laplace-type L

) . L . . mass of the asteroich is much smaller tham, andm,,
expansions are divergent when the semimajor axis ratio Isso that it is reasonable to approximate the asteroid as a test
approaching unity. This results in the fact that the Laplace PP

. ) . ) . article.
type expansions are divergent for co-orbital configuration P . . . . .
yp P 9 g To describe the orbits, we introduce an inertial

Concerning the Legendre-type expansiokaula  coordinate system originated at the central body, where
(1962 expanded the disturbing function as a power serieghe y—y plane is aligned with the invariant plane of the
of the semimajor axis ratioa between two objects in  gystem, ther-axis points towards an arbitrary direction
triple systems. Please refer kurray & Dermott (1999 iy the invariant plane, and the-axis goes along the
for explicit expansions of such an expansion. Obviouslygngular momentum vector of the planet moving around the
the Legendre-type expansion is applicable for objects withentral body. Under this reference frame, the state of the
arbitrary inclinations but with semimajor axis ratio much gsteroid (or planet) is characterized by orbital elements:
smaller than unity. It has been widely applied to varietieshe semimajor axis (a,), eccentricitye (e,), inclination
of triple systems with hierarchical configuratiori€ogai (I,), longitude of the ascending no€e(¢2,), argument
1962 Beaugé etal. 2006Naoz etal. 20112013 Naoz  f pericentetu (w,) and the mean anomaly (M,,) or the
2016 Leietal. 2018 Lei 20193. However, when the trye anomalyf (f,). Unless otherwise stated, in the entire
configuration of system is not highly hierarchical, thestdy we will adopt the notations without any subscript to
disturbing function needs to be truncated at a high enougktand for the elements of the asteroid and use the ones with
order in the semimajor axis ratio in order to aChieVesubscripgn to represent the elements of the planet.

a certain precision and, in this case, the convergence The dynamical model taken in this investigation can
becomes very slow. In particular, when the semimajor axige treated as a perturbed Keplerian problem, in which the
ratio is close to unity, the Legendre-type expansion fails t motion of the asteroid moving around the central body
converge. is perturbed by the gravitational attraction of the planet.

According to the aforementioned discussions, bothlhe disturbing function, governing the evolution of the
the Laplace- and Legendre-type expansions of planetagsteroid, can be written abl(rray & Dermott 1999
disturbing function are valid for the resonant dynamics 1 r
in these configurations where the semimajor axis ratio is R =gm, (Z T 2 Cos 1/1) ) (1)
not close to unity. Concerning this issue, we may ask: is P
there an expansion valid for minor bodies with arbitraryWhereg is the universal gravitational constantandr,
semimajor axis ratios? To this end, a new expansiof'e: respectively, the radial distances of the asteroid and
is developed in this study. Based on such a ‘generaIF)'anet relative to the central body. The distance between

expansion, it becomes possible to analytically explordh€ asteroid and planed, is determined by

dynamical structures of minor bodies located inside the A— ( 2 2 o\1/2

. . . . . = (r +rpf2rrpcosz/}) ,

interior, co-orbital and exterior mean motion resonances

at arbitrary inclinations. wherev is the separation angle between the asteroid and

The structure of the remaining part is organized aéolanet relative to the central body, given by

foIIo_ws._In Sectior?, thg disturbing fur_1ct|o!1 for t_he minor costb = sin?= cos (f + 0, + w — Q)

bodies in planetary triple systems is briefly introduced, 2 )
f'ind the new gxpansign of planeta-lry disturbing function +C082£COS (f =0, +w+Q)

is developed in Sectio8. In Section4, the resonant

disturbing function are presented under the assumptiowith 6, = f, +w, + Q, as the true longitude of the planet.
that the perturber is moving in a circular orbit and then  Usually, the disturbing function can be separated into
the analytical results obtained by the new expansiothe direct part standing for the direct gravitational attra
are compared with numerical integration results. Theion from the planet and the indirect part corresponding to
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the perturbation of the planet to the origin of the selectedn the expansion of the terrﬁ—o. Let us remind that, in
coordinate system, given billis & Murray 2000 the classical Laplace-type expansions, the tefmgiven
by Equation 7) is expanded by using two-dimensional

R =Gmy (Rp +Ri), (3) Laplace coefficients as followslamouni & Morais 2018
whereRp andR; are
11 1
RD:l, R[:*%COSMJ. (4) A_Oia_p\/lJranQacosw
A ™p 1 1k )
== > M@ Deos[(Q=X) +k(f +w),
P _ 7, o
3 ANEW EXPANSION OF PLANETARY mocfgjifc,z):o

DISTURBING FUNCTION
wherea = a/a, is the semimajor axis ratio between

Before expanding the planetary disturbing function, it is;gteroid and planet al’b@I;Q(a, I) are the two-dimensional

necessary to introduce two small parameters with the same,pjace coefficients. In’practical simulations, the Laplac

order of magnitude as the eccentricities of the asteroid angyefficients b{’;Q(a, I) are approximated by series ex-

planet, given byNlurray & Dermott 1999Ellis & Murray  pansions ina up to order N,. It is known that the

2000 Laplace coefficients are divergent wheris approaching
_r _ unity (¢« = 1 corresponds to co-orbital configuration).
S L~0e), &= a, Olep). () Therefore, the resulting expansions of disturbing fumctio

) . ased on Laplace coefficients are divergentin co-orbital or
With these two small parameters, the direct part otb P ¢

disturbing functi b ded & ~ " nearly co-orbital configurations.
ISIurbing function can be expanded arounc= <, = To describe all types of configurations including the
0 (i.e. around circular orbits) as a formal series in the.

. interior (o < 1), exterior (¢ > 1) and co-orbital & = 1)
following form: L . . ) .
resonances, it is required to develop a ‘general’ expansion
for the planetary disturbing function which can be used

N m_n— . . . . . . . .
Rp=3" i: emep ma7nan—7n ar (L) for configurations with arbitrary semimajor axis ratios. To
P n—m . . .
amom=o ™ da™day Ao this end, we introduce a new small parameter to make it
X Qg 1 b_e pos_sible to p_erform Taylor expansion for the planetary
- X% ZO nl damdal~™ \Ag )’ disturbing function whose convergence depends on the
n=uUm=

(6) magnitude of the introduced small parameter solely. In
the entire process, we avoid to use Laplace coefficients,
where N specifies the truncated order in terms ofmaking the new expansion of disturbing function be easy
max (&, &p) Or max (e, e,), and the termAl—U is given by to realize in computer code.
For convenience, we organize Equatior) {n the

1 1 . ]
A [a® + af} — 2aa, cos] 2. (7) following form:
_1
. . ! - 1 1 2 ’
Obviously, th(_a te_rmA—0 _stands for_ the mutual interaction o 1— aap (1 + cos )
between two inclined circular orbits. Ay a+ta (a+ap) (8)
It is to be noted that, in the classical Laplace-type 1

=

expansions, the first step is to expand the disturbing [1—al2,
function around a prograde or retrograde coplanar
orbit (Murray & Dermott 1999 Ellis & Murray 200q  Where the variable is given by
Morais & Namouni 201Bor around an inclined reference 2aa,
orbit (Namouni & Morais 20172018 as a power series T =
of inclination and then, in the second step, the disturbing
function is expanded around circular orbits as power Evidently, the domain of definition of is = € [0, 1].
series of eccentricities. Thus, the step of series expansidn particular, the variable: is equal to zero when the
represented by Equatior)(is in accordance with the separation angle i$ = w, and the variable: is equal to
second step of the traditional Laplace-type expansionsinity wheny) = 0 anda = a,, (the condition withy) = 0
Through this step of expansion, the disturbing functionanda = a, corresponds to collision points for two circular
between two elliptic orbits transforms into a summationinclined orbits). Obviously, Equatior8) is an increasing
of disturbing functions between circular orbits. function ofz, so that the direct part of disturbing function,
Observing Equationd), we can find that the difficulty R p, is also an increasing function of meaning that there
of expanding the direct part of disturbing functi®y lies  is a positive correlation betweeRp andz. Thus, for a

a—+ ap

ﬁ (1 -+ cos ’l/)) . (9)
a ap
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Fig.1 Accuracy analysis for the Taylor expansion of the functjgm) = \/1177 in the case of the reference point at
z, = 0 (Ieft panel) andz, = 220 (right panel). A f(z) stands for the relative deviation ¢fz) (please see the text for

(1+ag)?
its definition). Thered poi ntsstan(lj for the location of reference points. We take the 3:1R&4 an examplex = 0.48)
to do this analysis.

given pair of(a, a,), when the two objects involved are the current difficulty lies in the determination of the
located on the opposite sides of the central sfa( 7),  reference point. Observing the expression of Equa®yn (
the disturbing functiorR p, takes the minimum and, when we can find a good choice for the reference point, given by
the two objects are located on the same side< 0), the

0,0
disturbing functioriR , takes the maximum. Te = 2d7a, S = 2ag -, (11)
Considering the domain of definition af, we can (a®+4a9)”  (1+ao)

perform Taylor expansion for Equatio)(around the

o where the initial semimajor axis ratioy, is defined by
originz = 0 as follows:

ap = a’/af, wherea” anda are, respectively, the initial
i L Fme op )1 values of the semimajor axes of the asteroid and planet. It
il Z (2k — )"mk is not difficult to observe that the deviation ofelative to

Do atap =0 (2R its reference point.. is
yvherekmax specifies the truncgtgd ordgr of thg expansion 5. _ .. _ 2, = 2a (14 cos ) — 200 _
in terms ofz. Except for the collision point at which = 1, (14 a) (14 )
such a Taylor expansion is uniformly convergent. However, 2a
when the variable is relatively large or close to unity, the 0+ a)? cos
convergence of the Taylor expansion becomes very slow. o
Thus, this is not an ideal expansion. which satisfiesyz € [—0.5,0.5] regardless of the values

Observing the expression given by Equatié), (ve of semimajor axis ratios and inclinations, ensuring that
find that the variable oscillates around a fixed value for the Taylor expansion given by Equatiaty is uniformly
two circular orbits specified by a given pair of semimajorconvergent. Remember that this is a key feature of our
axes(a, a,). Naturally, this fixed value, denoted by, can expansion method, making the final expansion be valid for
be taken as a reference point formnd then Equatiorsj arbitrary inclinations and semimajor axis ratios.

can be expanded in the vicinity of= .. as a Taylor series In particular, when the asteroid is located inside the
in the following form: Po:qo Mean motion resonance with respect to the planet,
the reference point far can be approximated as
Km: k
max o B
AL B a—:a Z (Qka:)'l')” . zf/)2+k’ (10) 2(2_2)2/3
0 (wrt (1 —xe) Te = T (12)
wherek,.x specifies the truncated order of the expansion [1 + (Z—E’,) }
in terms of the deviation of relative to its reference point,
namelydz = z — .. In practical simulations, we take the reference point at
Obviously, the accuracy of the Taylor expansion is?c = 0-45 when the value of.. is greater than 0.45.
determined by the magnitude &f and the truncated order In order to validate the Taylor expansion performed by
kmax. A better choice of the reference pointresults ina  Equation €0), in Figure1 we make an accuracy anlaIyS|s
smaller magnitude ofz, implying that a lower truncated for the Taylor expansion of the functiofi(z) = —r—

1
atap

orderk.,.x is required to achieve a given accuracy. Thus(Eq. 8) shows A%, = f(x)) truncated at orders
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kmax = 10,20,30 in the case of the reference point at where fa,prox IS the magnitude obtained by Taylor
x. = 0 (origin) andz,. = (1+ . The relative deviation expansion ang,ccurate Stands for the exact value ¢fz).
is defined by From Figurel, we can see that, at the same truncated order,
the expansion around, = (1-2@%)2 has better accuracy
than that around:. = 0. This is in agreement with our
Af(l’) _ |fapprox - faccurate| expectation_

)

faccurate

Substituting Equationdj into Equation 10) and performing Newton’s binomial expansion to the resatt tead to
the following expression:

kmax k4 k— qq4

29 (2k — 1)! k—a (KN (q xie ala
Z ZZ 2kl _1) q( ) (l) 1/2+k SrTCos' Y, (13)
k=0 q=0 I= 4 (- ) (a+ap)

where(;) is the binomial coefficient, defined l(gz) For the sake of brevity, we denote the function associated

with the semimajor axes anda, by

‘(l J)‘

alal
fala,ap) = ——527 (14)
‘Z( P) (a+ ap)2q+1
and define the differential operator with respect to the s®ajor axes of the asteroid and planet as

dkl +ko

. 15
dakrdak? (13)

Dy by =

Through some mathematical derivation, the high-ordeiglaterivatives off,(a, a,) with respect ta: anda,, can be
calculated by

ko k1 12+11 k1—1 ko=l

(2q + 12+ 1) (ko (k) [ dP—h dm—=

Dkl szq Z Z 2q+1+l2+l1 (2(]) (12) (ll) |:dak1l1 aq] [d ka—l2 p:| (16)
lo= 011_0

Replacing Equation1(3) in Equation ) and combining the differential operator defined by Equafilb), we can
obtain the direct part of disturbing function as follows:

n kmax k g k—

21 (2k —1)! k—q (K (4 xy 7

E 95 35 95 3) sk -t ST (4 T B

n=0m=0 k=0 ¢=0 [=0 (1—x) (17)
r—a)"(r, —a,)" "

><( )" (:' ) [Donn—mfq (a,a,)] cosl,

where the terneos'+y) can be expanded to be

11111 [y R

t=0t1=01t5=0
X COS [(l*2t172t2) (f+w)+(l—2t+2t172t2) (OPfQ)]

and the termér — )™ and(r, — a,)"~ " can be expanded as follows:

o= e ()G

o n—m t (19)
n—m __ n—m—tyg (10— n—-m( T'p !
(=" = S (a2
t4=0
By substituting Equationdl®) and (L9) into Equation 17), the direct part of disturbing function becomes
n  Emax q l t -t m n-—-m .21
m_n—m S0 (1/2)
T 55 95 35 3) 35 35 3D b D) DIINAPETRE U
n=0m=0 k=0 q=0 =0 t=0 t1=01t2=0t3=0 t4=0 (20)

X (f)ts <7’_p>“ cos [(I — 2t1 — 2t2) (f +w) + (I — 2t + 2t — 2t2) (6, — Q)]

a ap
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wherek is given by

(0

The trigonometric functions related to the true anomalgiag in Equation20) can be transformed into the forms of the
mean anomaly by the following relatioK&ula 1961 1962):

s 1\

(5) 2 ) cos[(1 = 261 — 2t2) (f +w) + (1 = 2t + 241 — 2t2) (6, — )
P

i i Xto(-2-212) () xta (126420 -202) (o ) (21)

§1=—00 §2=—0OC
X COS [SlM + SQMp + (l — 2t1 — 2t2)w + (l — 2t + 2t1 — 2t2) (wp — Q)] .

The mathematical expression given by Equati@d) (has been used in previous studi®dufray & Dermott 1999
Ellis & Murray 200Q Beaugé & Michtchenko 2003Beaugé et al. 2006Lei et al. 2019 Lei 2019ab). The Hansen
coefficientX2:*(e) arising in EquationZ1) is a function of the eccentricity, given byHugheg1981)

a, b |c b| 2 a,b 25
X Yv&-i—t 5+u )

wheret = max(0,c — b), v = max(0,b — ¢), andYs‘Z;’;,SJru is the Newcomb operator calculated in a recurrence manner
(Hughes 1981Murray & Dermott 1999Ellis & Murray 2000. As for the Hansen coefficiedf 2 (e), its lowest power in
eccentricity isc — b|. It should be mentioned that the expansion given by EquBityis convergent under the condition
that the eccentricities:@nde,) are smaller than the critical value = 0.6627 (Wintner 194).

Substituting Equation(l) into Equation 20), we can organize the direct part of the disturbing functisra Fourier
series in terms of the classical anglés M, 2, w andwp in the following form:

n kmax kK g l t — m n—m = 00 oo
sin? (1/2) (22)

m  n—m yts,(l—2t1 —2t2) ta,(l—2t4+2t1 —2t2)
X a ap Xsf (6) X52 ( ( P) tan2t (1/2)

X COS [SlM + SQMp + (l — 2t1 — 2t2)w + (l — 2t + 2t1 — 2t2) (wp — Q)] .
For the indirect part, its Fourier series form can be eagiyved to be

Ri=— ;2 > ZX X35 (ep)
P sj=—00s9=—00 (23)
y [st%cos(slM—i—sQMp—i—w—i—wp—Q) }
+cos?L cos (s M — soM,, +w — @, + Q)

Finally, we arrive at the final literal expansion of the plerg disturbing function in the following form:

t m n—m

XYY Y Yo

t3 0t4 0&1——00&2——00

n kmax k

930333 3 3

n=0m=0 k=0 ¢=0 [=0 t=01

.21
m, n—m yts,(l—2t; —2ts ta,(1—2t42t, —2t, sin™ (1/2)
X [Dmn—mfqla™a, "X ( ) (e) Xl ) (ep) tanZ (1/2)
% @ 51)\+52)\p+(172t172t2751)w (24)
+ (1 =2t 4 2t1 — 2ty — s2) wp + (2 + 4ty — 21) Q

Qmp<g> Z Z X11 () X221 (ep)
ap ap §1=—00 §2=—0C
{ sin®Z cos [s1A + 520 + (1 — s1) @ + (1 — 82) @, — 20 }

+cos?L cos [s1A — s2), + (1 — s51) @ — (1 — 52) @)

wherew = w + 2 andw, = w, + 1, are the longitudes of pericenter, akd= M + w and\, = M, + w, are the mean
longitudes of the asteroid and planet, respectively. lukhbe mentioned that the expansion given by Equati#) is
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convergent whea < 0.6627 ande,, < 0.6627 are satisfied due to the convergence of the transformatinvele@ mean
and true anomalies given by Equati@1).

In the final expansion, the harmonic arguments are linearbatations of the mean longitudes, longitudes of
pericenter and longitudes of ascending node of the astarmiglanet, denoted by

gﬁ = k1>\ + kgw + ng + k4>\p + k5wp + kSQp,

where the coefficients; (i = 1,2, ...6) are all integers. As a result, the expansion of disturbimgfion can be written in
an elegant form:

R = ch (a,e,1,ap,ep)coso, (25)
k

wherek = {ki, ko, k3, ks, ks } and the explicit expressions of the force amplitudgga, e, I, ap,e,) can be directly
derived from Equation24). Observing the literal expansion given by Equati@d)( we can summarize the following
properties:

— The expansion of the planetary disturbing function corgtainly cosine terms of argumept

— The coefficientks is zero, meaning that the perturber’s longitude of ascendimde vanishes from the disturbing
function. This is due to the choice of the reference planehasotbit of the perturber (i.e. the inclination of the
perturber’s orbit is zero).

— The d’Alembert relation holds for the coefficients in theioesarguments, namely’ k; = 0.

3

— The coefficient of the longitude of ascending nétles always an even number.

— In the expression of the force amplitude, the powesiof7/2) (or cos(1/2)) is always an even number, indicating
that the force amplitude is an even function with respedaéonhutual inclination.

— The relationship between the coefficient@fand the power ofin(%) holds|2t + 4t, — 21| < 2(I — t) (see the
expression of the direct part), meaning that the powe'm(fé) arising in the force amplitude is greater than or equal
to the absolute value of the coefficient@fn the cosine argument (such relationship also holds foirttlieect part).

Regarding the expression of the Hansen coefficient, we ctarrdime its lowest order terms in eccentricity as
Xab(e)=0 (e‘b—c‘). Applying this property to the coefficients appearing in Btipn 24) yields

ta,(I—2t;—2t _ -2t — 2ty —s
Xsi( 1 2) (6)—0(6' 1 2 1\)7
X;;,(l72t+2t172t2) (e,) = O (6272t+2t172t2752|) 7
XL e) =0 (), X520 (e,) = 0 (e 7).

Thus, it is not difficult to observe that, in the expansioregivy EquationZ4), the lowest powers of ande,, arising in
the force amplitude are the absolute values of the coeftEigito andw,, respectively (i.e|ks| and|ks|). According to
this property, it is possible to see that (a) the amplituda oértain harmonic argument has positive correlation vhieh t
eccentricitye (e,) if the numberk; (k5) is not equal to zero, and (b) when the eccentrieify,) becomes zero, the terms
associated with the argumengsvith non-zerok; (k5) would vanish from the disturbing function.

In particular, when the inclinations and eccentricities small (in this situation the classical Laplace-type espam
works very well), it is possible to reserve the lowest-or@ems ofe (e,) andsin(I/2) in Equation g4) to approximate
the disturbing function:

R~ Ck(a,ap) e™lelfslsin®I(1/2) cos (k1A + kaw + ksQ + kady + ksw,), (26)
k

which has a similar formal expression to the ones given imipus studiesNlurray & Dermott 1999Morbidelli 2002).
Especially, when the planet is assumed to move around thieatbody in a circular orbit (i.ee, = 0), the resulting
dynamical model, describing the motion of the asteroidyuced to the circular restricted three-body problem (CRTBP)

(Szebehely 1967 In this case, the Hansen coefficients: ! 21 =2%2) (¢} in the expansion given by Equatiop4)
are different from zero only whesy, is equal tol — 2t + 2¢; — 25, and the coeI’“ficientQ(‘;Qv1 (ep) are different from
zero only whens, is equal to unity. Consequently, the disturbing functiondescribing the motion of asteroids in the
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CRTBP can be simplified to be

N Emax

gmp kK q n l t I—-t oo ot o am
SIILEESS S o

ap = =0 t,=01ty=0 s=—00

Il
=]
~

=0m
(4) SA+ (1 — 2t + 2t — 2t5) A,
 Dnfule)) { oy oo [ PRt M Q} 27)

- g:; . ( - ) i XHe) { iﬁg@zc)o Zii?si iij f@ 5)3 z;]m] }

wherea is the semimajor axis ratio between the asteroid and plaeet(= a/a,) andxg is

o= S = OO ) (L) O

In practical simulations, the upper limit pf] arising in the summations is also taken as 20. In Equafi@) the functions
associated witlx are denoted by

af dr
— D, -
1+ a)2q+1 ) fq(a) dan

where the high-order derivatives are calculated by

fale) = fa(e),

n

Do) = 32 (" LR (M) 1ot [ ]

Remember that, in Equatior24) or (27), there are two numbers characterizing the truncated srdeiseries
expansionN andk,.x. The first numbefV specifies the maximum order in terms of the small parametex: (¢, ¢,).

As discussed before,ande, have the same order of magnitude as the eccentricities afstteeoid and planet, thus the
numberN corresponds to the order in termsméx (e, e,,). The second numbét,,.. determines the maximum order of
the Taylor expansion in the deviation.ofelative to its reference point, namely = = — z..

Note that the convergence of the new expansion developdusrstudy is not restricted by the mutual inclination
and the semimajor axis ratio between the asteroid and ptevetuse the small parameter arising in the series expansion
always satisfiesx € [—0.5,0.5] regardless of the mutual inclination and the semimajor eadi®. Thus, it becomes
possible to use such a ‘general’ expansion of the disturhingtion to formulate dynamical models in describing the
interior (o < 1), co-orbital ¢ &~ 1) and exterior ¢ > 1) mean motion resonances of minor bodies with arbitrary
inclinations in planetary systems.

m=0

4 RESONANT DISTURBING FUNCTION

In this section, we assume that the planet moves in a ciroutararound the central body (the model corresponds to the
well-known CRTBP). In this case, the disturbing functiomegi by EquationZ7) can be utilized to formulate resonant
models. Regarding an asteroid located insidepihg, mean motion resonance with respect to the planet, thereie mo
than one critical argument (with differekg), given by

o ® = goA — porp + (Po — qo) Q + kow, (28)

where ko has the same parity ofy + ¢o. In previous works, several special resonances associaitd po:qo
resonances have been discussed, such as the pure ecgefdriénclination) resonances and retrograde resonances
(Murray & Dermott 1999Morais & Namouni 2013Namouni & Morais 2018 Whenky = po — qo, the angle defined by
Equation 28) becomes the critical argument of pure eccentricity resoeadenoted by = goA — poA, + (po — qo) @
Whenky, = 0 (it requires thaipy + qo is even), the angle defined by Equati@8) represents the critical argument
of pure inclination resonance, denoted &y = goA — poXp, + (Po — qo) ©? (it is noted that, wherpy — ¢o = 1,

the pure inclination argument is defined by = 2(goA — poA, + (Po — o) 2)). Whenky = —po — ¢o, the angle
defined by Equation28) corresponds to the critical argument of the retrogradeg(@ecentricity) resonance, denoted
by o3 = goA — porp + (Po — go) Q2 — (po + qo) w. It is known that, for the minor bodies located on coplananearly
coplanar orbits, the pure eccentricity resonance witlas the critical argument has the dominant strength andhéor t
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bodies moving in retrograde coplanar orbits, the retrogr@donance withr; as the critical argument has the dominant
strength. However, when the minor bodies moves on an irtloreit, the force amplitudes of the arguments @
with differentk, arising in the disturbing function may have comparable #@nniés, indicating that it is not suitable to
use a single critical argument in describing the resonahavier. Please refer to figure 16 irei (20190 for detailed
discussions on single critical argument and characte@stijle for a certain mean motion resonance.

Among all the critical arguments of th&:¢o resonance, there is a common part, givenoby= goA — poA, +
(po — qo) €2, which corresponds to the special case viigh= 0 in Equation 28). In Lei (2019h, the common angle is
defined as the characteristic angle of they, resonance (notice that the expression @f determined by the numbeps
andqp).

According to the mathematical expressiorvothe mean longitude of the minor body can be expressed bysr#an
o, Ap and() as

1
A= %[U‘i‘po)\p—(PO—QO)Q]-

As aresult, the disturbing function given by Equati@@)(becomes a function of the anglesw, {2 and,,. For a minor
body located inside a mean motion resonance, the assocegedant angles) becomes a semi-secular angle variable
compared to\,. In addition, it is known that the angles and(2 are slow variables in the timescale of mean motion
resonanceGallardo 20192020. Thus, among all these angles (v, 2, A,), only the mean longitude of the planet,j

is a fast variable. Usually, the terms in the disturbing tiorcinvolving the fast angle,, produce short-term influences
upon the motion of the minor body. During the long-term etiolu of the minor body, it is often to remove those short-
term effects by means of averaging technique. Such an angrpgpcess is called “secular approximatioNaoz et al.
2013. Alternatively, the short-period effects can be averam&idy means of von Zeiple’s methoBrpuwer 1959 or the
Hori—Deprit methodfflori 1966 Deprit 1969. As a result, filtering out the short-term effects (i.e.ragng the disturbing
function over\,) can be achieved by

2qom

R* (a,e,I,0,w) = /Raelawﬂ)\)d)\p, (29)

2q07r

which leads to the resonant disturbing function. After agang the disturbing function ovey, orbital periods of the
planet, both the angle variablgs and(} disappear from the averaged expression, so that the nurhtbegee of freedom
is reduced by two. As a result, the resonant model deternin@* (a, ¢, I, o, w) is of two degrees of freedom. However,
there is only one integral of motion (Hamiltonian of systegmowing that the resulting two degree-of-freedom dynaimic
model determined bR* (a, e, I, o, w) is not integrable.

Replacing Equation2{7) in Equation 29), we can easily obtain the resonant disturbing functiosseiated with the
interior (pg > qo anda < 1), co-orbital po = go anda =~ 1) and exterior fy < go anda: > 1) mean motion resonances
for minor bodies with arbitrary inclinations. Accordingttte number of), there are two cases for the resonant disturbing
function:py = 1 andpy # 1. Whenp = 1, the resonant disturbing function for describing th@ Xesonances becomes

N kmax k¢ t n

(LTS 35 35 3) 35 3 3D b PR Cilw e EEs

n>0 k>0 ¢>01>0 m>0t>01t1>0t2>0
21
sin” (§) (2t —1—2t, +2ts) 0
D,, - \2)
X [P fole)] a1y 08 { (1= 2ty — 2t5) — qo (2t — 1 — 261 + 2t)]w

Sl O | B SV S

(30)

—4q0

whereo = goA — X\, + (1 — qo) © and, wherpy # 1 (in this case, the indirect part has no contribution to tlsnant
disturbing function), the resonant disturbing function & organized as
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kK ¢ n l t l—t
222 2.2 > o
@>0 1>0 m>0 t>0 t1 >0 2>0
mod [(2t—1—2t1+2t2),po]=0

n s 20 (1 31)
« m,(1—2t, —2t5) s (2) (
X T [Dy fq(@)] X%(2t7l72t1+2t2) () tan?’ (1)

max

N k
R*:ng§

a

P opn>0k

>0

Po

wheremod(A, B) = 0 means thatd is divisible by B. It is noted that the expansion of resonant disturbing flonct
given by Equation30) or (31) can be easily realized in computer language. By the wagctlinumerical integration

of Equation 29) can produce numerical results of the resonant disturhingtfon, as adopted b@allardo(2006 2019
2020 in their studies. In the direct numerical integration, ¢higinal form of the disturbing function given by Equatid) (
can be used. In the current work, we will take the numericdgration results as references in order to validate our
analytical expansion.

1
xcos{—(Qtl2t1+2t2)J+ {(121512152)@(2t12t1+2t2)]w},
Po

Obviously, the resonant disturbing functi®t given  eccentricity andk,,.x = 30 in dx with the numerical
by Equation 80) or (31) is a function ofa, e, I, 0 and  results obtained through direct numerical integration.
w. For the sake of brevity, the resonant disturbing functionrConcerning the resonant disturbing function associated
can be denoted by an elegant form, with Jupiter’s inner 3:1 and 2:1 resonances as well as
oo Jupiter’s exterior 1:2 and 1:3 resonances, in Fig@re
R*(a,e,1,0,w) = > > CF5 (a,e,I)cos (ko + kiw), we make a direct comparison between the numerical
k=0 k1 results with the analytical results obtained by the new
(32) expansion. Please refer to the caption of Fig@réor
wherek, € Z and it has the same parity bfpo+ o). The  the detailed setting of other parameters. From Figire
coefficientsC/, (a, e, I) are derived from the resonant \ye can observe: (a) our new expansion could catch the
disturbing function given by EquatioB() or (31). peak and valley positions of resonant disturbing function
To validate the new expansion shown by accyrately in comparison to the numerical results (notice
Equations §0) and @1), it needs to discuss the precision ya the valley and peak positions correspond to the stable
of the analytical developments truncated at differentng ynstable equilibrium points of the resonant model and
orders. To this end, the new expansion is truncated ghe gifference of resonant disturbing function evaluated a
ordersN = 2,3,4 in eccentricity andi.x = 301N 62 the peak and valley positiondR*, showing the resonant
and they are used to approximate the resonant disturbingrength, is positively correlated to the resonant width,
function associated with Jupiter’s interior 3:1 and 2:154 giscussed iGallardo(2020); (b) from a quantitative
resonances. In simulations, the truncated ordefofs viewpoint, the analytical results obtained by the new

assumed at,,.. = 30, the eccentricity is fixed at = 0.3, expansion are in coincident with the numerical results in
the inclination is taken ag = 60° and the argument e entire interval ob.

of pericenter is taken as = 90° (these parameters are

chosen artificially). The precision ¢f(= R*) is measured Finally, we apply the new expansion truncated at

by the relative error, defined by orders N = . 4 anq Fmax = 30 t0 _the_ co-orbital
resonances with Jupitet (= 1), as shown in Figuré. The

Af = | fapproximate — faccurate| 7 numerical results are also provided for the convenience
| faccuratel of comparison. In Figuré, the domain ofs is marked

where fapproximate 8Nd faccurate represents the approxi- in shadow if the minimum distance between the asteroid
mate and accurate values pf respectively.fapproximate and planet is smaller than three times of the Jupiter’s Hill
is computed by analytical expansion anfd.curate IS radius Ry . From Figured4, it is observed that (a) in the
produced by direct numerical integration. The relativeshadow area the analytical developments underestimate the
errors of R* are reported in Figur@, which shows that, resonant disturbing function, this is because the anallytic
in general, the series expansion truncated at a higheesults are always smaller than the numerical results in
order N in eccentricity has a lower relative error (or the shadow region, and (b) outside the shadow area the
higher precision) than the lower-order expansions. This ignalytical results produced by the new expansion are in
expected by us. good agreement with the numerical results. It is known
Then, we compare the analytical results obtainedhat, when the asteroid is located in the shadow area, the
by the new expansion truncated at ord€r = 4 in  perturbation theory usually fails to work due to the strong
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«10% 3:1 resonance, e = 0.3, | = 60w = 90 %103 2:1 resonance, e = 0.3, | = 60w = 90
“4-N=2
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--N=3

Relative error
Relative error
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Fig. 2 Relative errors of the new expansion truncated at diffeoeders in eccentricity for approximating the resonant
disturbing function. Relative errors are measured by takie numerical results produced by direct numerical irattgn

as the accurate value of resonant disturbing function. Blaegxpansion is truncated at ordéfs= 2, 3, 4 in eccentricity
and, in each case, the expansion ordefaris fixed atk.,.. = 30. The left panel is for Jupiter’s inner 3:1 resonance
and the right one is for Jupiter’s inner 2:1 resonance. Iruktions, the eccentricity is fixed at= 0.3, the inclination
at I = 60°, the argument of pericenter at= 90° and the semimajor axis is taken as the value at the resonaigrce
(simulations with other parameters can be performed in dasimanner).

045 «104  3:1 resonance, e=0.3, I=60 , w = 90 o8 «10*4 2:1resonance, e=0.3, I=60 , w = 90
-=-Numerical result ~>-Numerical result
9.4 —New expansion with N = 4 9.6 —New expansion with N =4
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Resonant disturbing function
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e
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Fig. 3 Comparisons of the numerical results obtained by directarigal integration and the analytical results obtained
by the new expansion for computing the resonant disturbimgtion associated with the Jupiter’s inner 3:1 and 2:1
resonancesupper panels) and exterior 1:2 and 1:3 resonancést{om panels). The numerical results are taken as
references for measuring the accuracy of our analyticatldgwments. The new expansion is truncated at the fourth
order in eccentricity (i.eN = 4) and at ordek.,.,. = 30 in dzx. In simulations, the eccentricity is assumed at 0.3, the
inclination is fixed atl = 60°, the argument of pericenter is setias= 90° and the semimajor axis is taken as the value
of the resonant center.

perturbation coming from the planet. Thus, when we are  In summary, the comparisons made in Figi3esd4

using perturbation theory to study the long-term dynamicastrongly support the conclusion that the new expansion is

behaviors we need to ensure that the asteroids consideredlid for minor bodies located inside the interior, co-¢abi

are located outside the shadow area. and exterior resonances (for better accuracy it is required
that the minimum distance between the asteroid and planet
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Fig.4 Resonant disturbing function for co-orbital motion in thenSJupiter system under different settingswofw is
taken a®)°, 45°, 90° and135° from the top left panel to the bottom right panel), computgdrteans of analytical and
numerical approaches. The numerical results are shoviatuandotted lines and the analytical results obtained by the
new expansion truncated at ord€r= 4 in eccentricity andc,,,.x = 30 in Jx are shown irred lines. In simulations, the
eccentricity is assumed at= 0.3, the inclination af = 60° and the semimajor axis is taken as the value at the resonant
center. Theegions in shadow represent the minimum distance between the orbits of theza@dtand planet is smaller
than3Ry whereRy is the Hill radius of the planet. It is observed that outsige $shadow region the analytical results
agree well with the numerical results.

is greater thar3Ry). In the coming section, we will use where n, is the mean motion of the planet and the

our analytical developments to formulate the Hamiltoniandisturbing functionR (A, P, Q, \,p,q,A,) is equal to

model for mean motion resonances. R (a,e,i,0,w), given by Equation Z7). In order to
describe the dynamics associated withzihi@, resonance,

5 HAMILTONIAN MODEL OF MEAN MOTION we introduce a linear canonical transformation, given by

RESONANCES

1
Y= _Aa o1 = A— Ap — — = 0,
For convenience of studying the Hamiltonian dynamics, ! qo 1= 00A = pody = (o = o)
we adopt a set of modified Delaunay variables, given by Y, = —P, 0y =q—p = w,
(Morbidelli 2002 -
23:7P7Q7p0 qu7 0-3:7(]:97

A = /pa, A=M + w, qo0
p
P:,/ua(lf\/lfez), p=—w, 24:Ap+q—ZA, o4 = Ap,
. 35)
= 1—e2)(1— =-Q : : . (35).
@ pa(l—e?) (1 —cosi), q ' which can be realized by the following generating
Ap, Ap = M), + @y, function:
where . = /Gmy is the gravitational parameter of S = [goA = (Po — 40) 4 — PoAp] X1
the central mass), is the conjugate momentum of the + (g —p) X2 — qX3 + A\pXy.

mean longitude of planet,. With such a set of canonical ag g result, the Hamiltonian can be written as follows:

variables, the Hamiltonian of planetary system can be 5

written as Morbidelli 2002 H=——L (S poD)
2 2(qo%1)? : (36)
’H:—W+npAp—R(A,P,Q,)\,p,q,)\p), (34) — R (X1,%2,33,%4,01,02,03,04) .
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(a) 3:1 resonance, e = 0.3, = 60°,w = 0° (b) 2:1 resonance, e = 0.3,1 = 60°,w = 0°
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Fig.5 Level curves of the resonant Hamiltonian (phase-spacetates) shown in the space spanned by the characteristic
angles and semimajor axis for Jupiter’'s 3:1 and 2:1 resonances. In both plots, thergdcéy is assumed at = 0.3,

the inclination at/ = 60° and the argument of pericenteriat= 0°. The green lines stand for the orbits numerically
propagated under the Sun-Jupiter—asteroid dynamical Im®He lines shown in red correspond to the dynamical
separatrices passing through saddle points andlieedots stand for the locations of resonant centers. The resonant
half width, measuring the distance between the separatdxtfae resonant center evaluatedvat= o, is denoted by

Aa = agep — ag. The mathematical expressionAt is given by Eq. 47).

In the new set of canonical variables, = o corresponds The integral of motion given by EquatioB9) shows that
to the characteristic angle of thg:go resonance, angb =  there are coupled oscillations among semimajor axis ratio,
w corresponds to the argument of pericenter. It shouleéccentricity and inclination of the test particle, meaning
be mentioned that the canonical transformation given byhat exchange between the Keplerian eneilgy-£ —
Equation 85) is valid for all the interior o > q¢), co- and the angular momentum along thalirection =
orbital (pp = qo) and exteriorf, < go) resonances. na(1l — e?) cos I) occurs in the long-term evolution.

In particular, when the minor body is located insidea  In terms of the classical elements, the averaged
mean motion resonance, the disturbing function is replacedesonant Hamiltonian given by Equatio®7f can be
by the resonant disturbing function given by Equati®®)(  further expressed as
Consequently, the averaged resonant Hamiltonian becomes

9 H*:—Qi—npp—o\/;ﬁ—’l%*(a,e,i,a,w)
* H * a
H" = 77*]70711121773 (21522723724701502);
2(qo%1) (37) =— i po \/;E - Z ch K, (@€, I) cos (ko + kiw),
k=0 kq
where the constant term,%, is eliminated from the (41)
Hamiltonian and the canonical equations of motion can be
written as where the resonant disturbing functi®i (a, e, i, o, w) is
OH* _ oM given by Equation32). It should be noted that the form
o1 = B Yp=-— 9oL’ given by Equation41) is analogous to the one given by
y y allardo see eq. in his work). The difference
8%1 8%1 (38) Gallardo(202 5) in hi k). The diff
0y = ER g = — Dol is that the resonant disturbing function in the present work
2 02

is produced by analytical developments while@allardo
which correspond to a dynamical system with two (2020, the resonant disturbing function is obtained by
degrees of freedomo( and o, are the associated means of direct numerical integration.
angular coordinates). In the resonant model specified by If we are only interested in the dynamics during the
Equation 87), 03 and o4 are cycle coordinates, so that timescale of mean motion resonances, the argument of
their conjugate momenta; and ¥, become integrals of pericenters can be assumed as a const&Bel{ardo 2006
motion, given by 2019 202Q Lei 2019h, so that the dynamical model
reduces to a system with a single degree of freedom,
Y3=—-P-Q— o SO LY W Via |\/1—e?cosl — @] specified by the resonant Hamiltonian

o * H bo
= const H ——%—npq—,/ua
(39) o0
and Z [Ck (a,e,I,w)cosko + Sk (a, e, I,w)sin ko],
k=0

DPo Po
Ya=A,+—A=A, +—./ua = const. 40
1=hpt " Vi (40) (42)
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Fig.6 Resonant widths for Jupiter’s inner 3:1 resonance as fomstof the mutual inclinatior. In the left panel,
analytical results of resonant width are reported for theesaofw = 0°,30°,60°,90°. The resonant width in terms of
the variation of semimajor axis is marked. In the right paaelomparison is made between the analytical and numerical
results of resonant width for the casewt= 90°. In both plots, the eccentricity is fixed at= 0.3.

2:1 resonance, e = 0.3
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Fig.7 Resonant widths for Jupiter’'s inner 2:1 resonance as fomstof the mutual inclinatiord. In the left panel,
analytical results of resonant width are reported for theesaofw = 0°,30°,60°,90°. The resonant width in terms of
the variation of semimajor axis is marked. In the right paaelomparison is made between the analytical and numerical
results of resonant width for the casewot= 90°. In both plots, the eccentricity is fixed at= 0.3.

where the coefficients are given by Hamiltonian#*) on o determines the dynamical behavior
B R ' of semimajor axis, as pointed out iBallardo (2020.
Cr (a6, T,w) =) CF, (a,e, 1) cos (kiw), Under the resonant model, the equilibrium points can be
M obtained by solving the frozen equation:
Sk (a,e,I,w) = chkl (a,e,T)sin (kiw).

d d
s w50 (45)
In the single degree-of-freedom resonant model, the _ _ . .
equations of motion are The flrS-t equa-tlor% ~ q()>\ 7-p0>‘p = 0 shows that
. o1+ . o the equilibrium points are approximately located at
b1 = me, Si=-S (43)
821 80’1 a5 ©
which can be written in an equivalent form: @=d= p_%n_%
do = 2g0 /a/uaﬁ* The stability condition of equilibrium points requires tha
de oa ivati * Wi
oR the second derivative ¢ * with respect tar evaluated at
a * . . .
_ QO\/QM ~ nppo — 2q0v/alp o (44)  the considered pointis smaller than zero, expressed by
da OH* OR* 29/ 00
a = —2qo a/,u Do = 2q0V/a/p 9o 8@:2 = ;kQ [Ck (a,e,I,w)cosko + Si (a, e, [,w)sinko] < 0,
The second equation of Equatio#4] indicates that the - (46)

dependence of the resonant disturbing function (or
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Fig. 8 Analytical and numerical results of the location of libcaticenter Igft panel) and the associated resonant width
(right panel) for Jupiter’s 1:1 resonance. In simulations, the ecceityris fixed ate = 0.3 and the argument of pericenter

is atw = 0°. The points inside shadow regions stand for the parameters at which the minimum distance latwiee
asteroid and planet is smaller than three times of the ptaH@ékradius (i.e.,R.in < 3Ry). The resonant width in terms

of the variation of semimajor axis is marked. It is observenht the right panel that inside the shaded area the resonant
width is significantly underestimated by the analytical@lepments due to the underestimation of resonant distgirbin
function at the saddle points, as shown in Hg.

meaning that the stable equilibrium points correspond té&cquation 47) to produce the analytical and numerical
the local maxima of the resonant Hamiltonian (or localresonant widths in terms dfa and compare them in order
minima of the resonant disturbing function). Usually, theto validate our analytical developments.

stable equilibrium points, denoted lyy, o5), correspond

to the resonant centers and the unstable ones, denoted ®yAPPLICATIONS

(ao,0.), correspond to saddle points. The level curves

of the resonant Hamiltonian passing through the saddid® this section, we will apply the analytical developments

points provide the dynamical separatrices, which dividg’®rformed in Sectioné ands to Jupiter's inner and co-
the phase space into libration and circulation regionsOrbital resonances and to Neptune's exterior mean motion

According to the discussion irGallardo (2020, the esonances.In particular, we will make direct comparisons
libration region is specified by the so-called resonance’9€tween analytical and numerical results.
half width Aa = asp — a0 (asep is defined by the

separatrix), calculated by 6.1 Jupiter’s Inner and Co-orbital Resonances

The resonant Hamiltonian given by Equatict2) shows

Aa = asep — ao that the resonant model is specified by a pair of pseudo
_2v6 2 I . P 1 conjugate variablesa, o) (notice that there is a one to
= 35, [ (a0, €0, Io, 7, w0) = H (a0, €0, To, 0w, wo)] one correspondence between the semimajor axis and the
_ %[R* (a0, €0, To, s w0) — R* (a0, €0, To, 7, wo)] conjugate variable gf). Thus, itis poss-lble to understand

3n the global dynamics of mean motion resonances by

2 plotting the level curves of the resonant Hamiltonian in
the space spanned hyand o, which correspond to the
(47)  so-called (pseudo) phase-space structures.

In Figure 5, we report the phase-space structures
which is in agreement with the expression derived fromassociated with Jupiter’s inner 3:1 and 2:1 resonances. For
Hamiltonian approach bysallardo (2020 (see eq. (18) Jupiter's inner 3:1 resonance, the characteristic argimen
in his work) and in agreement with the expression ofis defined byoc = X — 3)\, + 2Q and, for Jupiter's
resonance’s half width derived from the multi-harmonicsinner 2:1 resonance, the characteristic argument is defined
pendulum model by.ei (2019h (please refer to eq. (26) by o = A — 2), + €. In simulations, the eccentricity
in his work). Remind that the resonant disturbing functionis fixed ate = 0.3, the inclination at60° and the
in Gallardo (2020 is produced by means of direct argument of pericenter ab = 0° (notice that the
numerical integration and, in the present work, thephase structures with other settings of elements could
resonant disturbing function (or resonant Hamiltoniam) ca be produced in a similar manner). In the phase-space
be obtained by means of both the analytical expansionstructures, the resonant centers (corresponding to stable
and numerical integration. In Sectiof, we will use equilibrium points in the resonant model) are marked

2 oo
= ﬁ{z [Ck (coskoy — coskos) + Sy, (sin ko, — sin kas)]}
3n o
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Fig.9 Analytical and numerical results of the location of liboaticenter Ift panels) and the associated resonant width
(right panels) for Neptune’s exterior 1:2 resonance. In the upper patigéseccentricity is fixed at = 0.1 and, in the
bottom panels, the eccentricity is assumed at 0.2. The resonant width in terms of the variation of semimajads &«
marked.

in blue dots, and the level curves passing through théollowing discussions) and by means of the new expansion
saddle points stand for the dynamical separatrices shownepresented by EquatiorB@ or (31) (the associated
in red lines, which divide the total space into two types ofresonant width and center are called analytical results).
regions: circulation and libration. For the 3:1 resonance, Regarding Jupiter’s inner 3:1 and 2:1 resonances with
the resonant center is locatedoat= A — 3X, + 20 =7 ¢ = (.3, Figures6 and 7 present the analytical resonant
and, for the 2:1 resonance, the resonant center is locatggdths as functions of the mutual inclinatigrior the cases
ato = A — 2), + Q = 0. In addition, the resonant half of v = 0°,30°,60°,90° in the left panels and provide a
width measures the distance betwegn andao, whichis  direct comparison between the analytical and numerical
explicitly marked byAa. The mathematical expression of results of the resonant width for the casewf= 90°
Aa is provided by Equatior(7). in the right panels. The resonant full width in terms of
To validate the phase portraits obtained from our newhe variation of the semimajor axis (it is equal2da) is
expansion of the planetary disturbing function, orbitdwit explicitly marked.
the same initial conditions are numerically propagated From Figures6 and 7, it is observed that (a) the
under the Sun—Jupiter—asteroid system and they are showifluence ofw upon the resonant width is significant,
in the green lines, as shown in Figube The periodic  (b) when the mutual inclination is zero (prograde) or
oscillations are caused by the short-period effects a@isiny (retrograde), the resonant widths with differentare
in the N-body model. Evidently, the numerical trajectories coincident (this is because, at inclination bf= 0 or
could follow closely along the level curves of resonant; — = only the prograde or retrograde pure eccentricity
Hamiltonian, showing that our expansion of the planetaryesonance dominates the dynamics, as discussed in
disturbing function is valid to predict resonant dynamits o0 Section4), and (c) the comparisons made in the right
asteroids. panels show that the analytical results agree well with
As stated in SectioB, the resonant disturbing function the numerical ones. It is worth mentioning tf@allardo
arising in Equation 47) can be produced by means (2020 has studied the influence af upon mean motion
of direct numerical integration (the associated resonamesonances by introducing the index of fragility: the index
width and center are called numerical results in thds higher, the associated resonance is more fragile (ie., t
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Fig. 10 Analytical and numerical results of the location of libcaticenter Igft panels) and the associated resonant width
(right panels) for Neptune’s exterior 1:3 resonance. In the upper patigdseccentricity is fixed at = 0.2 and, in the
bottom panels, the eccentricity is assumed at 0.3. The resonant width in terms of the variation of semimajas &«
marked.

resonant structure is more easy to be broken by changirthe analytical (and numerical) results shown in Figuges
w). and7 (it is noted that, inLei (20198, the Laplace-type
Whenw = 90°, we can observe from the right panels €xpansions of disturbing function are used for formulating
of Figures6 and 7 that (a) the dynamical separatrices the resonant model).
associated with the 3:1 resonance have a gourd shape with For Jupiter's 1:1 resonance, the characteristic argu-
three necks and itis found that the resonant center switchggent is defined by = \ — ), (this argument is also
betweer) andr passing through each neck (it is noted thatcalled the synodic angle between the asteroid and planet in
around the first neck there is a small interval of inC"nationpre\/ious Studies)_ In practica| app”cations of our ar‘ia@t
I € [37°,42°] at which there are two pairs of dynamical developments to this case, we fix the argument of the
separatrices corresponding to two resonant centers tbcatgericenter atv = 0° and the eccentricity at = 0.3
atc = 0 ando = ), (b) the dynamical separatrices (simulations with other parameters can be performed in a
associated with the 2:1 resonance have a complicategimilar manner). It is known that, for the 1:1 resonance,
shape and itis found that, in the intervallo€ [54°,137°],  there are asymmetric libration centers, one of them is
there are two pair of dynamical separatrices bounding tWgocated around = 60° (usually called the.4 point) and
different resonant centers locatedoat= 0 ando = 7 the other one is located arouad= —60° (usually called
and, in the remaining interval, there is only one resonancghe L5 point). These asymmetric libration centers are
center at either = 0 or o = m, and (c) for the 2:1  symmetric with respect te = =, and they have the same
resonance, the resonant widths/at= 0 and/ = 7 are  dynamical behavior. Thus, in the practical discussions,
slightly underestimated by the analytical developments. we only focus on the one around the usual point.
Regarding Jupiter’s inner 3:1 and 2:1 resonances witln Figure 8, the location of the resonant center as a
w = 0°andw = 90° Lei (2019Y has developed function of mutual inclination is shown in the left panel
a multi-harmonics pendulum model for describing theand the associated resonant width is presented in the
resonant dynamics and reported the curves of dynamicaight panel. In both plots, the analytical results are shown
separatrices (see the bottom-left panels of figures 5, 11, 18 red and the numerical results are shown in black. In
and 20 in his work), which are in perfect agreement withparticular, the shadow region covers those parameters at
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Fig.11 Analytical results of the resonant width associated wittptNae’s exterior 2:3, 3:5, 4:7, 3:7, 2:5 and 3:8
resonances. The eccentricity is fixeccat 0.2 and the argument of pericenter is fixed.at 0°.

which the minimum distance between the asteroid andynamical separatrices bounding the asymmetric libration

planet is smaller than three times of Jupiter’s Hill radiuscenter. When the inclination is greater thaf5°, the

(i.e. Rmin < 3Rp). Asdiscussed in Sectigh the resonant asymmetric libration center disappears and is replaced by

disturbing function is underestimated by the analyticathe symmetric libration center at= 0 and, in this region,

developments when the asteroid is located inside ththere is one pair of dynamical separatrices bounding the

shadow region, resulting in the fact that the resonant widttibration center, as shown in the right panel of Fig8re

is also underestimated by the analytical developments, as

shown in the right panel of Figur8. However, when

the asteroid in located outside the shadow region, th

analytical results are in good agreement with the numerical

ones. From the left panel of Figu® the asymmetric The analytical developments discussed in SecGoare

libration center exists if and only if the inclination is applied to the Sun—Neptune system for studying the

smaller thanl55° and, in this region, it is observed from resonant dynamics of exterior mean motion resonances

the right panel of Figure8 that there are two pairs of with Neptune, including the 1:2, 1:3, 2:3, 3:5, 4.7, 3:7, 2:5
and 3:8 resonances.

9.2 Neptune’s Exterior Resonances
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Regarding Neptune’s exterior 1:2 and 1:3 resonances, Then, our analytical developments are applied to
their characteristic arguments are= 2\ — A, — Q and  Neptune’s exterior 2:3, 3.5, 4:7, 3.7, 2.5 and 3:8
o = 3\ — A\, — 2Q, respectively. Figur® presents the resonances with eccentricity at= 0.2 and argument of
locations of libration center and the associated resonamericenter atv = 0°. The resonant widths as functions
width as functions of the mutual inclination for the 1:2 of the mutual inclination are reported in Figutd. For
resonance, and Figud® shows the corresponding results these considered resonances, all of them have symmetric
for the 1:3 resonance. libration center located at = =. From Figurell, it

is observed that (a) for the 2:3, 3:5 and 4:7 resonances,

For the case of the 1:2 resonance as shown in Figiure the resonant width is a decreasing function of the mutual
two cases witle = 0.1 ande = 0.2 are taken into account. inclination, (b) for the 3:7, 2:5 and 3:8 resonances, the
It is observed from the left panels that the asymmetricesonant width first increases and then decreases with the
libration centers exist when the inclination is smallemtha inclination, and (c) when the inclination is close 1
140° and, when the inclination is greater tha#0°, the the resonant widths of all the considered resonances are
asymmetric libration centers disappear and are replaced approaching zero, indicating that their retrograde resbna
the symmetric libration center locatedat= 7. Itis noted  strengths are very weak (this point is different from that of
thatin the interval € [0°,140°) there are two asymmetric inner resonances, as shown in the previous subsection).
libration centers which are symmetric with respecttdn
our study, we only consider one of them (smaller thgan 7 CONCLUSIONS
because the other one has the same dynamical behavior.

From Figure9, we can observe: (a) for both cases withIn this work, a new expansion of the planetary disturbing
e = 0.1 ande = 0.2, the analytical results could be in function has been developed. In the first step, the original
good agreement with the numerical results for the locatiomlisturbing function is expanded around circular orbits and
of libration center and the associated resonant width, (b} is expressed as a formal series in the eccentricities of
with inclination changing fromd° to 140°, the o of the  the objects involved. After the first step, the disturbing
libration center first decreases and then increases up fonction becomes a summation of the terms associated
o = m which is the location of the symmetric libration with the mutual interaction between circular orbits. In
center, (c) in the interval of € [0°,140°), there are two the second step, we define a parametand expand the
pairs of dynamical separatrices (corresponding to therinnecore function (i.e. the mutual interaction between circula
and outer boundaries) bounding the asymmetric libratiorbits) around the reference point as Taylor series of
center, (d) when the inclination is greater thiai°, there 6z = 2 — z.. The disturbing function is finally organized
is only one pair of separatrices bounding the symmetri@s a Fourier series form, where the force amplitudes are
libration center, and (e) the resonant widths associatetélated to the semimajor axis, eccentricity and inclinatio
with e = 0.2 are greater than the ones associated witf@nd the harmonic arguments are linear combinations of the
e = 0.1, because there is a positive correlation betweernean longitude, longitude of pericenter and longitude of
the force amplitude in the expansions and the eccentricitthe ascending node of each mass. In the final expansion,
as discussed in Secti@n there are two numbers in specifying the orders of
expansion: the truncated order in eccentricities denoyed b

For the case of the 1:3 resonance as shown inV and the expansion order é: denoted by, ,x.

Figure 10, two cases witte = 0.2 ande = 0.3 are taken The advantages of the new expansion developed
into consideration. It is observed from the left panels ofin the present work lies in the following two aspects:
Figure 10 that, for the case of = 0.2, the asymmetric (a) in the process of expansion, Laplace coefficients
libration centers disappear when the inclination is gmeateare not used, so that the convergence problem arising
than 104° and, for the case of = 0.3, the asymmetric from the series expansion of Laplace coefficients in
libration centers disappear when the inclination is gmreatethe semimajor axis ratio can be avoided, and (b) the
than130°. Similar to the case of the 1:2 resonance, onlynew expansion is convergent regardless of the values
one of the asymmetric libration centers is considered irof the mutual inclination and semimajor axis ratio, so
this study (the other one has the same dynamical behavioiij. becomes possible to utilize the new expansion of
From Figurel0, we can observe that (a) the analytical planetary disturbing function to study the dynamics of
results are in good agreement with the numerical onesninor bodies located inside the interior, co-orbital and
(b) resonant width in the case ef= 0.3 is greater than exterior resonances at arbitrary inclinations.

that in the case of = 0.2, and (c) there are two pairs of Based on the new expansion of planetary disturbing
dynamical separatrices bounding the asymmetric libratiofunction, the resonant Hamiltonian is formulated through
center and one pair of separatrices bounding the symmetribe linear and canonical transformations of the modified
libration center. Delaunay variables. It shows that the resonant model
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corresponds to a dynamical model with two degrees oBrown, E. W., & Shook, C. A. 1933, Planetary theory
freedom ¢ andw are angular variables of the system). (Cambridge [Eng.] Univ. press)
Considering the fact that the angle is much slower Deprit, A. 1969, Celestial Mechanics, 1, 12
thano, it is possible to make an assumption thats a  Ellis, K. M., & Murray, C. D. 2000, Icarus, 147, 129
constant during the timescale of mean motion resonanceggrraz-Mello, S. 1987, A&A, 183, 397
so that the dynamical model naturally reduces to a systerfrerraz-Mello, S., & Sato, M. 1989, A&A, 225, 541
with a single degree of freedom (only is the angle Gallardo, T. 2006, Icarus, 184, 29
coordinate). Under this assumption, the level curves ofGallardo, T. 2019, Icarus, 317, 121
resonant Hamiltonian in the space, (a) correspond to  Gallardo, T. 2020, Celestial Mechanics and Dynamical
the (pseudo) phase-space structures, which show the globalAstronomy, 132, 9
dynamics of mean motion resonances. In the Hamiltoniarkiori, G. 1966, PASJ, 18, 287
model of mean motion resonances, the expression ofiughes, S.1981, Celestial Mechanics, 25, 101
resonant half width in terms of variation of semimajor axis Kaula, W. M. 1961, Geophysical Journal, 5, 104
is provided. Kaula, W. M. 1962, AJ, 67, 300

The analytical developments are applied to Jupiter’sKlioner' S. A. 2000, Celestial Mechanics and Dynamical
inner and co-orbital resonances and Neptune’s exterior Astronomy, 77, 215
resonances. As for Jupiter’s inner 3:1 and 2:1 resonance&0zai, Y. 1962, AJ, 67, 501
the analytical results of resonant width at differenare Le?' H. 2019a, MNRAS, 490, 4756
produced and, in particular, a direct comparison is madéfe!' H. 20_19_b’ MNRAS, 487, 2097
between the analytical and numerical results for the case d‘fe!' H., C!rC!' C., & Ortore, E. 2018, MNRAS, 481, 4602
w = 90°, showing that the analytical and numerical results " H Circi, C., & Ortore, E. 2019, MNRAS, 485, 2731
are in good agreement. Regarding Jupiter’s co-orbita orais, M. H. M. 1999, A&AT 350, 318 . .
resonance and Neptune’s exterior 1:2 and 2:3 resonances,orals‘ M H. M., & Namouni, . 2013, Celestial Mechanics and
the location of asymmetric and symmetric libration centers DYnamical Astronomy, 117, 405 _
and the associated resonant width are produced by mearMsorblde”I’ A. 2002, M(?dern Celestial Mechanics: .Aspecfs 0
of analytical and numerical approaches, and comparisons S°!a" System Dynamics (London: Taylor & Francis) _
between the analytical and numerical results shows thalfurray: C D., & Dermott, ,S' F 1999’ Solar System Dynamics
our new expansion is valid. Furthermore, the analytical (Cambridge, UK: Cambridge Univ. Press)
developments are applied to Neptune’s exterior 2:3, 3:5amouni, P, & Morais, M. H. M. 2017, MNRAS, 471, 2097
4:7, 3:7, 2:5 and 3:8 resonances and their resonant Widtthamoun" P, & Morais, M. H. M. 2018, MNRAS, 474, 157

as functions of mutual inclination are reported. Naoz, S. 2016, ARA&A‘. 54’.441 ) .
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