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Abstract Binary stars play an important role in the evolution of stellar populations . The intrinsic binary
fraction (fbin) of O and B-type (OB) stars in LAMOST DR5 was investigated in this work. We employed
a cross-correlation approach to estimate relative radial velocities for each of the stellar spectra. The
algorithm described by Sana et al. (2013) was implemented and several simulations were made to assess the
performance of the approach. The binary fraction of the OB stars is estimated through comparing the uni-
distribution between observations and simulations with the Kolmogorov-Smirnov tests. Simulations show
that it is reliable for stars most of whom have six, seven and eight repeated observations. The uncertainty
of orbital parameters of binarity becomes larger when observational frequencies decrease. By adopting the
fixed power exponents of π = −0.45 and κ = −1 for period and mass ratio distributions, respectively, we
obtain that fbin = 0.4+0.05

−0.06 for the samples with more than three observations. When we consider the full
samples with at least two observations, the binary fraction turns out to be 0.37+0.03

−0.03. These two results are
consistent with each other in 1σ.
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1 INTRODUCTION

Binary stars play a crucial role in the evolution of stars
and galaxies (Chini et al. 2012; Almeida et al. 2017).
Almost a half of solar-type stars are located in binary
systems (Raghavan et al. 2010; Moe & Di Stefano 2017).
A nearby companion would probably affect the evolution
of massive stars in binary systems (Podsiadlowski et al.
1992; Langer et al. 2008; Eldridge et al. 2011), leading
to phenomena such as stellar mergers, X-ray binaries and
gamma-ray bursts (Sana et al. 2012). Therefore, it is non-
trivial to identify binary system from single stars and to
determine the orbital parameters of the binary stars in
different Galactic environments (Gao et al. 2017).

Compared the distance to earth, the separations of
most binaries are too close to resolve in photometry.
When orbital periods are relatively short, 1000 days for
example, there are two cases that binaries can be detected
through spectroscopic approaches. On one hand, spectra
will appear split or contain “double lines” if the primary
and secondary have near degree of luminosities (Pourbaix
et al. 2004; Fernandez et al. 2017; Merle et al. 2017).

Bimodal peaks would emerge in the cross-correlation
function of spectra for these binary systems. On the
other hand, the luminosity of secondary is much smaller
than primary and it cannot contribute enough flux to the
spectrum. However, it can lead to orbital motion of primary
and bring distinguishable radial velocity (RV) variation
(Minor 2013; Troup et al. 2016; Price-Whelan et al. 2017;
Badenes et al. 2018). In this paper, we studied the latter
case.

A few previous works have studied the intrinsic binary
fraction fbin in different environments in the past decades.
Raghavan et al. (2010) reported that fbin of solar-type stars
is about 0.34. OB stars are considered having a larger
binary fraction in some literatures. For B-type stars, Chini
et al. (2012) showed that the fbin is 0.46 ± 0.03. Dunstall
et al. (2015) found that there is a relatively high fbin which
is 0.58 ± 0.11. For O-type stars, 0.42 ± 0.04 came from
Aldoretta et al. (2015), 0.50±0.03 from Sota et al. (2014),
0.51±0.07 from Kobulnicky et al. (2014), 0.68±0.03 from
Chini et al. (2012), and 0.69±0.09 from Sana et al. (2012)
respectively. The different results of fbin may be caused
by different methods or data samples adopted in previous
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Table 1 Overview of Recent Studies of Binary Fraction of
Different Samples

fbin Number of samples Spectral type Reference

0.34± 0.02 454 FGK Raghavan et al. (2010)
0.46± 0.03 226 B Chini et al. (2012)
0.58± 0.11 408 B Dunstall et al. (2015)
0.42± 0.04 161 O Aldoretta et al. (2015)
0.50± 0.03 194 O Sota et al. (2014)
0.51± 0.07 45 O Kobulnicky et al. (2014)
0.68± 0.03 243 O Chini et al. (2012)
0.69± 0.09 71 O Sana et al. (2012)

researches. These studies seem to reveal that most early
type stars are residing in binary systems. The results of
binary fraction studied by the above-mentioned works are
listed in Table 1.

LAMOST telescope can obtain at most 4000 spectra
within one observation and hence can survey the sky in
a very high efficiency (Cui et al. 2012; Zhao et al. 2012).
The LAMOST targets mainly on stars and its data is widely
used in researches of stellar physics and the Milky Way. Its
data release 5 (DR5) contains 9 027 634 spectra obtained
between 2011 October 24 and 2017 June 16.

The primary goal of this study is to estimate the
binary fraction of OB stars observed with LAMOST. At
the same time, the distribution law of orbital parameters
were explored. Observations of different epochs for a same
source may obtain different radial velocities, then binaries
can be discriminated from single stars from RV variation.
We employ the method proposed by (Sana et al. 2013,
hereafter S13), to estimate the fbin for the LAMOST
OB stars with multiple observations. LAMOST sample
and data selection are described in Section 2. Details of
our method and validation are presented in Section 3.
The processing results of observational data are analyzed
in Section 4. Discussion and conclusion are given in
Sections 5 and 6, respectively.

2 DATA

2.1 Samples from LAMOST

A catalogue of OB stars from LAMOST released in 2019
(Liu et al. 2019) contains 22 901 spectra of 16 032 stars.
1715 of them have been targeted with two or more epochs
by LAMOST. We discard several spectra which SNRg
< 10 or have bad pixels, and leave 1680 sources for this
work. Here SNRg is the signal-to-noise ratio at g-band,
which can be obtained from the header recorded in the
corresponding fits file of each spectrum. Each spectrum
was checked by eyes, and pixels with flux equal to 0 were
regarded as bad pixels.

In general, for a given binary candidate, the more
observations we have, the more orbital information we
can obtain. Several simulated experiments with mock data

were made to assess the capability of repeated observation
times to predict orbital parameters. We generated nine sets
of mock samples, each set has the same sample size of
328, the same prior distributions of orbital parameters, but
different observation epochs in each set of samples from
2 − 10. The simulated results show that the uncertainty
of predictions of orbital parameters becomes smaller when
the observational times increase.

According to our experiments, samples which have
been observed only twice help little to predict the
distribution of orbital parameters. Therefore, 328 sources
containing 1126 spectra with at least three repeated
observations were chosen for this study. The distribution of
spectral type for the OB stars given by the catalog is shown
in the left panel of Figure 1. Yellow bars indicate the whole
samples, while red bars the subset to be used in binarity
study. The distribution of time intervals for the repeated
observations is shown in the middle panel of Figure 1. The
right panel of Figure 1 shows the distribution of the number
of observations of our samples, and it also shows that about
77.8% stars have three repeated observations.

2.2 Relative Radial Velocity

LAMOST pipeline (Luo et al. 2015) provides the Doppler
shift of each spectrum, which could be used to estimate RV
simply by multiplying light speed. However, the Doppler
shifts in LAMOST RVs are not sufficiently precise for
early type stars, since their spectra have fewer lines.

In order to get more precise RVs, we employed a
cross-correlation approach to estimate the relative RVs.
In general, the usage of template-matching method within
a group of spectra corresponding to an observational
source that observed at different time can avert the risk of
inconsistency of spectral type between the spectrum to be
measured and empirical template spectral library, as well
as the error brought by this procedure.

The wavelength range used in the cross-correlation
analysis depends on the features of OB spectra being
considered within the spectral region. Wavelength range
of 3900 − 5000 Å was chosen because: 1) There are
absorption lines such as Hβ , Hγ and Hδ in this range
which can be used to estimate the relative RV. 2) Many OB
stars are brighter at this wavelength range. The wavelength
calibration is by use of arc lines, a vacuum wavelength
scale is applied for it (Luo et al. 2015).

We chose the spectra with highest SNRg for each
star as the template which relative radial velocity is fixed
at zero. Then the rest spectra of the same star were
respectively cross-correlated with the template to calculate
relative RV. We defined σRV as the standard deviation of
RVs for a given source, which represents the dispersion
of the RVs. Results of σRV calculated by this strategy are
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Fig. 1 Left panel: Distributions of the spectral type of the OB stars from Liu et al. (2019) and the subset for this work are
presented with yellow and red colors, respectively. Middle panel: It displays the distribution of observational interval of the
selected sub-samples. Right panel: It illustrates the distribution of the number of observation for the selected sub-samples.
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Fig. 2 The uncertainty of RV measurement by cross-
correlation method in this paper is about 0.7 km s−1. The
blue line displays the distribution of σRV measured from
cross-correlation. The red line shows the distribution of
σRV provided by LAMOST catalog.

shown in Figure 2, blue line. As a contrast, the red line in
Figure 2 indicated the σRV provided by LAMOST catalog.

2.3 Error of RV Measurement

Binaries can be detected through RV variations. However,
the observed RV differences between epochs may occur
only due to the measurement error. Hence, the results
of radial velocity measurements for the same source
are composed of both measurement error and Doppler
shift caused by orbital motion within binary systems.
The determination of the measurement error of RV is
particularly important because it plays a significant role in
the accuracy of our final analysis results.

The measurement error of RV as ε for each spectrum
was determined with a Monte-Carlo simulation. For each
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Fig. 3 Distribution of measurement error of RV. The
template spectra in each group were not included.

spectrum we draw 200 spectra with randomly added
Gaussian noise. The arbitrarily drawn noise follows sigma
as the following.

σnoise =

√(
ftp

snrgla

)2

−
(

ftp
snrgtp

)2

, (1)

where ftp is the flux of the template, snrgla and snrgtp
are SNRg of spectra to be measured and the template,
respectively. Then, each spectrum with random noise
drawn by Equation (1) was cross-correlated with its
corresponding template to derive the relative RVs. Finally,
the uncertainty of RV of each spectrum can be derived from
the standard deviation of the RVs of the 200 simulations.

The ε of each template was defined as 10−4 km s−1

for the following two reasons. Firstly, to avoid the
exception with a divisor of zero, and make sure that the
calculations go on wheels. Secondly, it should be defined
as a sufficiently small value. The ε of each spectrum
was derived from the template-matching method with its
corresponding template, but it will be very small for
the template spectrum itself. We tested the algorithm by
adopting ε as 10−3 and 10−2 km s−1, there is no change in
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the final results. The distribution of ε of all sources but the
templates is shown in Figure 3.

3 METHOD

3.1 Introduction to S13 Method

Table 2 Kinematics Orbital Parameters of Binary

Name Comment

P orbital period
q mass ratio
e eccentricity
m1 mass of the primary
i angle of inclination
ω longitude of the periastron
T0 the time of periastron passage

There are seven parameters that describe binary orbits
as shown in Table 2. The RV equation (Eq. (2)) can be
drawn through the geometric calculation of the motion of
elliptic orbit.

RV =
2πa1 sin i

P
√

(1− e2)
[cos(θ + ω) + e cosω] + γ , (2)

where γ is the systemic velocity, or the radial velocity of
the center of mass of the binary system. It relates to the
motion of the whole system. The γ always equals 0 in our
method since the radial velocities measured by template-
matching approach within a source are relative radial
velocities, which did not include the systemic velocity.
a1 is the semimajor axis of the primary star’s orbit. θ
is the position angle between the radius vector and a
reference direction, which is a function of the time of
an observational epoch. P , e, i, ω and T0 are defined in
Table 2. We thus can get a simulated RV by given a set of
the seven orbital parameters and an observational time.

We implemented the algorithm described by S13. The
criteria are based on the detectable obvious change in RVs.
A source is deemed a spectroscopic binary star when there
is at least one pair of RV satisfying

|vi − vj |√
ε2i + ε2j

> 4.0 and |vi − vj | > C , (3)

where vi and εi are the RV and its error of epoch i for a
given object. The value of C was conservatively adopted
with 20 km s−1 because not only photospheric variations
in supergiants can mimic variations with amplitudes of up
to 20 km s−1 (Ritchie et al. 2009) but also wind effects
of some stars (Li et al. 2016; Abdul-Masih et al. 2020).
Even though, it is somewhat subjective to give an exact
value to C as a cutoff for binary detection. However,
the intrinsic binary fraction fbin of real observations will
be corrected through the simulation procedure described

as below. Therefore, a reasonable selection of C will
not significantly affect the final result. For a source
with more than three observations, several pairs of RVs
may satisfy Equation (3), each pairs corresponds to its
own observational time scale ∆HJD. The maximum RV
variation ∆RV and the minimum time scale ∆HJD were
recorded respectively in two sequences, which will be used
to compare with the simulations utilizing Kolmogorov-
Smirnov (KS) tests.

Accounting for observational biases due to sampling
and measurement uncertainties we need to search for
sets of distributions that reproduce the properties of the
observations in three aspects: 1) the observed binary
fraction; 2) the peak-to-peak amplitude ∆RV of the
RV variations; 3) the minimum time scale ∆HJD for
significant RV variation to be observed. Simulated and
observed distributions are compared by means of KS
tests. The binary fraction detected in the simulations will
be compared to the observed fraction using a Binomial
distribution (Sana et al. 2012). A global merit function (Ξ′)
is constructed as:

Ξ′ =PKS(∆RV )× PKS(∆HJD)

×B
(
Nbin, N, f

simul
bin

)
,

(4)

where f simul
bin and Nbin are the binary fraction and the

number of samples detected in simulated samples.N is the
sample size. Following S13, we use power-law functions
to describe the intrinsic distributions of orbital parameters,
e.g., f (log10 P/d) ∼ (log10 P )

π , f(q) ∼ qκ and f(e) ∼
eη (η is fixed at−0.5). We thus can explore the distribution
of Ξ′ in the three-dimensional parameter space (π, κ, fbin)

by using the Monte-Carlo approach.

3.2 Validation

3.2.1 Verification of the algorithm with S13 data

We used the real observational data from S13 to test our
code. Following S13, we adopted the detected range of
log10 P , q and e are log10 P ∈ [0.15, 3.5], q ∈ [0.1, 1.0]

and e ∈ [10−5, 0.9], respectively. The results of our
program are shown in Figure 4.

Panels in the top row are the projections of Ξ′ from the
multi-dimensional space onto π vs. κ, π vs. fbin, and κ vs.
fbin. Red points indicate the peak positions. In Figure 4,
the bottom panels are one-demensional Ξ′ projections to
π, κ, and fbin, respectively.

It is worthy to note that assuming the binary mass ratio
follow a power-law distribution may not be very precise
(Liu 2019). However, it could tell us approximately about
the relative amount of binaries with low and high mass
ratio to some extent.
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Fig. 4 The figure shows the results using S13 data. Panels in the top row display the projection of Ξ′ onto π vs. κ, π vs.
fbin and κ vs. fbin respectively. The green and blue contour lines indicate the 15 and 85 percentile of Ξ′. Panels in the
bottom row show the projection of Ξ′ onto π, κ and fbin respectively. The green and red dotted lines indicate the position
of 15 and 85 percentile of Ξ′.

The best-fit parameters displayed in the figure well
agree with results by S13. That means we successfully
implemented the algorithm proposed by S13.

3.2.2 Effect of the true fbin

More simulations were carried out to investigate how
binary fraction affects the results. We generated 332 mock
samples of binaries with π, κ, η = (−0.45,−1,−0.5)

(S13) and 332 samples of single stars with measurement
error of each spectrum. The number of observations,
observational time interval and RV measurement error of
simulated binary samples are came from S13 data. The
primary mass, m1, was randomly drawn from an initial
mass function (IMF) described by Salpeter (1955) with
mass range from 15 to 80M�. The rest parameters i, ω, T0
are randomly drawn from the assumed distributions:

cos i ∼ Uniform(0, 1) ,

ω ∼ Uniform(0, 2π) ,

T0 ∼ Uniform(0, P ) .

(5)

In order to investigate whether the adopted method
can accurately estimate fbin, which is the most important
parameter, we run the Monte-Carlo procedure with a
parameter grid where π ∈ [−3, 2], κ ∈ [−3, 2]. In all the
following calculations we adopted the fixed η = −0.5.

The simulated samples are given with different initial
fbin ranging from 0.1 to 0.9 with a step of 0.2. The results

of fbin estimation and predictions of π, κ are shown in
Figure 5. The error bars in each panel indicate the 15 and
85 percentiles, points between top and bottom of error bars
are the peak position.

Figure 5 shows that when fbin is low, the predictions
of π and κ are inaccurate. The errors of π and κ decrease
and the predicted values of π and κ tend to be pinned down
at around the ground true values with the increase of fbin.
This is in all probability because the estimations of orbital
distributions rely on the enough fraction of binary systems.

Our exercise shows that when fbin > 0.3 the
estimation of π and κ is reliable. From the right panel we
can see the fbin prediction is more accurate than π and κ.
This demonstrates that the method is credible at least in the
fbin estimation for the mock samples.

3.2.3 Validation with mock data mimic LAMOST samples

We then performed the third simulations to investigate
whether the LAMOST samples fit the method. Mock
samples mimic LAMOST OB stars with different fbin
from 0.1 to 0.9 with step of 0.1, were generated in the
same way mentioned above but the range of m1 was
from 5 to 20 M�. The differences are the value range of
log10 P is [0.15, 3.0], and the detection range of π, κ are
π ∈ [−3, 3], κ ∈ [−3, 3]. The corresponding results are
shown in Figure 6.
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Fig. 5 Results of simulation experiments with mock samples generated based on S13 data. The three panels display the
recoveries of π, κ and fbin respectively with different true values of fbin, short transverse lines at the bottom and top of
each vertical line indicated the position of 15 and 85 percentile, points between them are peak positions.
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Fig. 6 Results of simulations with mock samples generated based on LAMOST OB samples. The three panels display the
recoveries of π, κ and fbin respectively with different true values of fbin, short transverse lines at the bottom and top of
each vertical line indicated the position of 15 and 85 percentile, points between them are peak positions.

The left panel displays the estimation of π, from
which we found that there are evident asymmetry and
slight overestimates in almost all samples with different
fbin. When fbin = 0.7, 0.8, 0.9, the corresponding
peak values of π overlapped with their corresponding 85
percentiles meaning that the probability distribution of π
is highly skewed toward large values. The estimation of
κ, delineated in the middle panel, shows that there are
also obvious asymmetry and underestimations in all cases.
Compared with S13 results we find the peak value of κ is
skewed toward smaller values. But the skewness may be
also caused by the limit of detection range we defined.

From the right panel we can see that fbin estimates are
roughly around the ground truth in all cases. However, the
derived fbin is slightly underestimated by around 0.1 when
the real fbin is smaller than 0.6. When the true value is
larger than 0.6, the estimates are underestimated by about
0.15. The different behavior of fbin between Figure 5 and
Figure 6 is likely due to the difference of the two dataset
especially their differences in observation epochs.

4 RESULT

4.1 Estimation of fbin with Open π and κ

By means of Equation (3), 72 samples were satisfied and
are regarded as binary in the 328 OB samples selected in
Section 2.1. So the observed binary fraction is 72/328 =

0.22. The calculated results are shown in Figure 7, which
layout is similar to Figure 4.

As shown in the top-left panel, the Ξ′ range larger
than 85 percentile is larger compared to S13 result. The
distribution of Ξ′ in π vs. κ indicates that the two
parameters are correlated to some extent. It seems that Ξ′

shows two peaks with irregular shape in the top-middle
panel.

The fbin and κ are anti-correlated especially when κ <
0 as shown in the top-right panel. A lower κmeans that our
model considers more binaries with a lower q than those
with a higher q. When the model chooses smaller κ more
binaries having much lower mass companion. In this case,
single stars are easy to contaminate to binary samples. As
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Fig. 7 Results of the LAMOST 328 OB stars with at least three observations. Panels in the top row display the projection
of Ξ′ onto π vs. κ, π vs. fbin and κ vs. fbin respectively. The green and blue contour lines indicate the 15 and 85 percentile
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a consequence, fbin is likely larger. This can well explain
the anti-correlation shown in κ vs. fbin plane. The bottom
panels display the marginal Ξ′ of π, κ and fbin. All the
three distributions are much broader compared with S13
(also Fig. 4). The peak positions of π and κ are 1.4 and−1

(bottom-left and bottom-middle panels in Fig. 7). A larger
peak value of π means there are relative more binaries with
long orbital periods than S13 samples. This may be also
caused by fewer observations so that gives a partial result
with little statistical significance. The estimation of κ is
essentially consistent with S13 with a larger uncertainty.

It seems that the current samples, with less numbers
of observations, are hard to simultaneously constrain π,
κ and fbin. We then turn to only constrain fbin with the
Monte-Carlo procedure by fixing π and κ at −0.45 and
−1, respectively, as concluded by S13.

4.2 Estimation of fbin with Fixed π and κ

If π and κ are fixed, a few experiments we made show that
the fluctuation of statistics is remarkable when the number
of random samplings in the Monte-Carlo procedure is
100. In order to weaken the statistical fluctuation, the
steps of the Monte-Carlo procedure was increased to
2 × 105. According to Equation (2), a multi-degree-of-
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Fig. 8 Estimation of fbin under the condition (π, κ) =
(−0.45,−1). The top panel: It displays the result of subset
containing 328 samples. The 15 and 85 percentiles are
0.34 and 0.45 respectively, and the peak position at 0.4.
The bottom panel: It shows the result of whole samples
containing 1680 stars. The 15 and 85 percentiles are 0.34
and 0.4 respectively, and the peak position at 0.37.
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Fig. 9 Left panel: It displays the comparison of number of observation between data from S13 and LAMOST, blue bars
indicated LAMOST data, and red bars represented S13 data. Right panel: It depicts the comparison of measurement error
of RV between data from S13 and LAMOST, cyan bars indicated LAMOST data, and orange bars represented S13 data.

freedom formula implies that more repeated observations
were need to predict the distributions of orbital periods
and mass ratio. However, the fbin could be estimated
when the parameters, π and κ, are fixed. The samples
excluded in Section 2 with two observations can be used
under this condition. So we calculated the total 1680
samples at the same time. The observed binary fraction
directly derived by Equation (3) of total samples is 0.15.
Calculated results of subset and total samples were shown
in Figure 8. Here the ordinate indicated the normalized Ξ′,
and fbin is 0.4+0.05

−0.06 for the subset, and 0.37+0.03
−0.03 for the

total samples. The error bar becomes narrower when the
number of samples goes up, and the closer peaks show
that the two results are consistent with each other. Note
that, with LAMOST data the adopted S13 method tends to
underestimate fbin by about 0.15 (see Fig. 6). Therefore,
the real fbin of the OB samples may reach ∼ 0.65.
However, since the simulations to produce Figure 6 are
under different conditions, precise systematic correction
for fbin is difficult.

5 DISCUSSION

5.1 Number of Observation

In the top panels of Figure 7, it is seen that constraints on
π,κ and fbin are not very precise compared with results of
S13 shown in Figure 4. That is because seven parameters,
(P, q, e,m1, i, ω, T0), and the time of an observational
epoch, were needed to derive a RV from Equation (2).
Theoretically, at least seven observations for a given source
are indispensable to provide sufficient information helping
to the parameters determination. However, there are 255

sources in our 328 samples with exactly three observations.

Fewer information they carried leads to larger uncertainty
of the orbital parameter estimates. Number of observations
of S13 and our samples are displayed in the left panel
in Figure 9. Most of S13 samples have six, seven and
eight repeated observations, but three, four and five in our
samples. That is the main reason that our results are limited
by larger uncertainty.

5.2 Measurement Error of Relative RV

While selecting sources from LAMOST, we filtered
samples whose RV measurement error is larger than
20 km s−1. The abandoned samples generally have spectra
with low SNRg or defective pixels. The samples with
larger RV measurements error were contained in S13 data
and thus their RV variation may be not very accurate, see
the right panel of Figure 9.

5.3 Cutoff of Orbital Period

The maximum of detection range of log10 P , or P ,
obviously affect the final estimation of fbin. A smaller
maximum of P means the model cannot detect binaries
with orbital periods longer than the maximum. Then, these
binaries will be regarded as single stars, and the fbin goes
smaller at the same time.

The cutoff of detection range of log10 P of our
samples is 3.0, which is smaller than 3.5 adopted by S13.
So the final calculated fbin results is smaller than S13
naturally. However, the cutoff of P is not the larger the
better. Due to the influences from measurement error of
RV, single stars have more risk to fall into binaries when
the detection range become wider.
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6 CONCLUSIONS

We applied the method introduced by S13 to estimate
the properties of binary stars based on the LAMOST OB
samples. We find fbin is 0.4+0.05

−0.06 for the samples with
at least three observations and 0.37+0.03

−0.03 for the total
samples. Many simulations were made to investigate the
capability of the S13 method. We find that because the
epochs of the LAMOST observations are smaller than S13
samples, π and κ cannot be well constrained. In future, we
will revisit this problem with LAMOST time-domain data
so that π and κ can also be estimated.
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