
RAA 2021 Vol. 21 No. 11, 283(8pp) doi: 10.1088/1674-4527/21/11/283
c© 2021 National Astronomical Observatories, CAS and IOP Publishing Ltd.

http://www.raa-journal.org http://iopscience.iop.org/raa

Research in
Astronomy and
Astrophysics

Multi-parameter identification of gratings measurement by Experimental Ray
Tracing

Li-Si Chen1,2,3, Zhong-Wen Hu1,2, Hai-Jiao Jiang1,2, Hui-Min Kang1,2 and Chen-Zhong Wang1,2,3

1 National Astronomical Observatories/Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of
Sciences, Nanjing 210042, China; lschen@niaot.ac.cn

2 CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology,
Nanjing 210042, China

3 University of Chinese Academy of Sciences, Beijing 100049, China

Received 2021 January 24; accepted 2021 August 25

Abstract A simple method for measuring grating groove density as well as its position and orientation
is proposed based on the idea of ERT (Experimental Ray Tracing). Conventional methods only measure
grating groove density with accuracy limited by its rotary stage and goniometer. The method proposed
in the paper utilizes linear guides which could be calibrated to much higher accuracy. It is applicable
to gratings of arbitrary surface profile or mosaic of a group of various gratings. Various measurement
error sources are simulated by the Monte Carlo method and the results show high accuracy capability
of grating parameters identification. A verification testing is performed. The accuracy dependency on main
configuration parameters is evaluated. A method to expand measurement range by double wavelength is
also discussed.
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1 INTRODUCTION

The methods to measure grating groove density include
AFM (Sharma et al. 2012), interference method, Moire
fringe method (Oster et al. 1964), LTP (Liu et al. 2006),
and other diffraction method. The diffraction method is
widely used owing to its simplicity by using either Littrow
configuration (Wang et al. 2015; Du et al. 2016) or Littman
configuration (Tai et al. 1999). The accuracy is limited
by its rotary stage and goniometer used in conventional
diffraction methods. Furthermore, it is necessary to place
a grating sample exactly at the center of a rotating stage,
or an off-center inducing error occurs for measurement.
A few methods for correcting the error is given by data
processing (Hiroyuki & Tomohiro 2014; Hu et al. 2004) or
by improved setups (Wang et al. 2015; Sheng et al. 2017,
2018). Capability of conventional methods on measuring
non-planar gratings or VLS (Varied Line Space) gratings is
restricted. It is difficult to cover the measurement of mosaic
of a group of gratings.

In this paper, a simple method is proposed to achieve
grating multiple parameter identification simultaneously
by drawing the ideas from ERT (Experimental Ray
Tracing) (Häusler & Schneider 1988). By detecting a few

diffracted ray directions which would be extracted from
ray positions of parallel planes, grating groove density as
well as its position and orientation relative to a reference
plane is measured simultaneously. It is applicable to
gratings of arbitrary surfaces or mosaic gratings and it
utilizes linear guides which could be calibrated to much
higher accuracy. It employs a single wavelength laser
beam with fixed direction. Gratings under test would be
kept stationary, thus measurement uncertainty is only from
linear guides and the image centroid algorithm which
could well be traced. The Monte Carlo method is used to
simulate measurement accuracy.

2 THE PRINCIPLE OF ERT ON GRATING
MEASUREMENT

ERT is widely used in profiler metrology of conventional
optical components. It proves its abilities in numerous
optical components surface profile measurement (Ceyhan
et al. 2011; Gutierrez et al. 2017; Binkele et al. 2018b,
2017, 2018a). When a ray incidents on an optical
component, the direction of transmitted or reflected rays
can be determined. This direction gives information about
the optical component at the investigated position based on
ERT. We propose a method in grating multiple parameter
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identification instead, the directions of a few diffracted
lights are measured, then grating parameters are obtained
by grating equation as well as its position and orientation.

The sketch of testing system includes a laser source,
a 2D translation stage, and a CCD detector, as shown in
Figure 1. Gratings under test could be either reflection
gratings or transmission gratings since they both have
diffract rays by the reflection side. The detector is situated
on the 2D translation stage. It shifts vertically and obtains
ray hit point image among different parallel planes. In
order to cover possible ray extent, the detector should move
horizontally. A unified coordinate system is assumed: the
reference plane (horizontal plane) as the xOy plane, the z
axis is perpendicular to the xOy plane.

2.1 Calibration Accuracy of the Translation Stage Tilt

All the testing system components should be calibrated
before measurement. Here the detector shifting vertically
and obtains ray hit point image on CCD or CMOS detector
among different parallel planes. The vertical arm of the
2D translation table must be straight down (parallel to
the z-axis), the tilt angle of the vertical arm relative to z-
axis is called verticality in the paper. The tilt angle of the
horizontal arm relative to xOy is called horizontality. They
are less than 60′′ after calibrating.

2.2 Multi-parameter Identification of Grating

This section introduces the grating parameter identifi-
cation. The experimental steps are as follows: Firstly,
the grating sample must be carefully aligned and keeps
stationary. The narrow laser beam introduces into the
grating vertically with a fixed direction perpendicular to
the xOy plane as Figure 1.

Secondly, CCD shifts vertically in two different height
planes with the height h1 and h2 from the reference
plane respectively. It is assumed that the distance between
the two planes is h with h = h1 − h2. Then CCD
obtains ray hit point image among the two planes and
records the position of the rays. The detector should move
horizontally to cover possible ray extent. The centroid
of the +1-order, 0-order and –1-order diffracted ray on
the first plane are denoted as A1,1, A1,0 and A1,−1
with the coordinate (x1,1, y1,1, h1), (x1,0, y1,0, h1) and
(x1,−1, y1,−1, h1), respectively. Move down the CCD to
the second plane. The centroid of the +1-order, 0-order and
–1-order diffracted ray on the second plane are denoted as
A2,1, A2,0 and A2,−1 with the coordinate (x2,1, y2,1, h2),
(x2,0, y2,0, h2) and (x2,−1, y2,−1, h2), respectively.

Thirdly, two internal angles between 0-order ray and +1-order or –1-order ray are obtained according above six points.
The cosine of the angle between the +1-order diffracted ray and the 0-order ray is denoted as t. The cosine of the angle
between the –1-order diffracted ray and the 0-order ray is denoted as l. They satisfy

t =
|(x1,1 − x2,1)(x1,0 − x2,0) + (y1,1 − y2,1)(y1,0 − y2,0) + h2|√

(x1,1 − x2,1)2 + (y1,1 − y2,1)2 + h2 ∗
√

(x1,0 − x2,0)2 + (y1,0 − y2,0)2 + h2
,

l =
|(x1,−1 − x2,−1)(x1,0 − x2,0) + (y1,−1 − y2,−1)(y1,0 − y2,0) + h2|√

(x1,−1 − x2,−1)2 + (y1,−1 − y2,−1)2 + h2 ∗
√

(x1,0 − x2,0)2 + (y1,0 − y2,0)2 + h2
.

(1)

Lastly, the grating parameters can be obtained from
the grating equation and the two internal angles. If the
grating works in azimuth angle γ = 0. Here, for a given
wavelength λ, the grating incident angle θ, the m-order
diffraction angle βm and the groove density N will satisfy
the grating equation.

sinβm − sin θ = Nmλ . (2)

The incident angle θ is the algebraic value of the
incident light direction and the grating orientation if the
azimuth angle γ = 0. In the test system, the incident light
is parallel to the z axis, so grating orientation α satisfies
α = θ. Here +1 and −1 are the diffraction orders, and
β1, β−1 are the diffraction angles corresponding to +1,−1,

respectively. They meet Equation (3).

cos(β1 − α) = t ,

cos(α− β−1) = l ,

sinβ1 − sinα = Nλ ,

sinβ−1 − sinα = −Nλ .

(3)

In data processing of the test system, the position of
six points in step 2 are measured, so the cosine of internal
angles t and l are obtained. Then grating orientation α and
the grating groove density N can be solved according to
Equation (3). The height of the grating investigated point
relative to the reference plane which denoted asH is based
on the geometric relationships. They can be expressed as
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Fig. 1 Sketch of grating measurement system.

Equation (4).

tanα =

√
1− t2 −

√
1− l2

(2− t− l)
,

N =
1

λ

(1− t)
√

1− l2 + (1− l)
√

1− t2√
(2− t− l)2 +

(√
1− t2 −

√
1− l2

)2 , (4)

H = h2 −
y21 − y20

y11 − y10 − y21 + y20
h .

Equation (4) shows the grating parameters including
grating groove density as well as grating position and
orientation are constructed simultaneously. The method
measures the internal angles between the 0-order and
+1,−1-order diffraction lights at one standard wavelength,
then grating parameters are obtained according to the grat-
ing equation. The measurement principle of transmission
grating is similar to the reflection grating. To obtain the
groove density distribution of the entire grating, the above
steps can be repeated at different positions on the grating
point by point. Arbitrary grating surface profile with varied
groove density distribution or even mosaic of a group of
gratings could be measured by the proposed system.

3 MEASUREMENT UNCERTAINTY

3.1 Measurement Uncertainty of Error Sources

In the method, the measurement uncertainty depends on
the measurement error of ray hit point relative positions.
Here, a grating in a spectrometer is taken as example.
The plane grating works in an incident angle of 4◦ with
constant groove density 333 line mm−1.

The measurement employs a single wavelength laser
beam with fixed direction and grating under test keeps
stationary. The laser wavelength error, laser spot geometry,
the grating surface and groove density variation in the spot
can be ignored for constant groove density plane gratings.
The plane grating could be aligned and the collimation

angle could be identified, so the collimation error is not
considered.

Therefore, measurement uncertainty is only from
linear guides and the image centroid algorithm which will
affect measurement error of the ray hit point. Table 1 lists
various error sources. Here, the Monte Carlo method is
used to simulate the error sources. Firstly, random numbers
are generated and added them to the coordinates of the
six points. Secondly, the measurement value are solved
according to Equation (4). Thirdly, the measurement
uncertainty is calculated by averaging absolute value of
each measurement error.

Take example of 2D translation stage horizontal
positioning error, which is ±20µm, we generate random
number e with expectation µ = 0 and standard deviation
σ = 6.67µm. That is e ∼ N(0, 6.672), according to the
“3σ” principle, the probability of e between −20 µm and
20 µm is 99.7%, the generated random number e is used
to simulate the positioning error and added to the nominal
value as the measurement value, and grating parameters
can be calculated according to Equation (4), and the
measurement uncertainty can be calculated. The random
number e is generated for 50 000 times. Expectation
of absolute measurement error is solved by repeating
the previous actions. Since the Monte Carlo method
is a statistical simulation method, the random numbers
generated in PC are pseudo-random numbers. Simulation
results may vary at different time. The simulation results
show that the measurement uncertainty of the grating
density (∆N/N ) and orientation are 7.52× 10−5 and 1.12
× 10−2. The grating position measurement error is 3.45 ×
10−2. Table 1 lists the uncertainty of grating parameters
with the distance between the two CCD surfaces(h) is
500 mm. The results show high accuracy in grating
parameters identification.

Direction of diffracted rays is measured by intersect-
ing two parallel planes in the simulation. Least square
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Table 1 Uncertainty of the Parameters

Source of error Uncertainty of the grating
groove density ∆N/N

Uncertainty of the grating
normal ∆α/α

Measurement error of the
grating position (mm)

Centroid positioning error
Detecting the centroid of

the light spot error
(0.004 mm)

1.50 × 10−5 2.20 × 10−3 6.90 × 10−3

2D translation stage
positioning error

Horizontal direction
(0.02 mm) 7.52 × 10−5 1.12 × 10−2 3.45 × 10−2

Vertical direction
(0.02 mm) 6.55 × 10−6 1.10 × 10−3 1.42 × 10−4

2D translation stage
orientation error

Horizontality (60′′) 6.09 × 10−5 1.20 × 10−3 4.92 × 10−4

Verticality (60′′) 7.72 × 10−7 7.90 × 10−3 < 10−4

Total 9.81 × 10−5 1.40 × 10−2 3.52 × 10−2
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Fig. 2 Uncertainty of groove density with distance be-
tween two CCD planes for different positioning accuracy.

method may be used to reduce uncertainty if the diffracted
rays are measured among multiple planes.

3.2 Accuracy Dependency on Main Configuration
Parameters

Not only the test system error, but also configuration
parameters affect grating parameters constructing accu-
racy. The accuracy dependency on main configuration
parameters are evaluated in this section. The groove
density identification accuracy dependency is discussed in
this section because it reflects the accuracy of the whole
test system to a certain extent.

3.2.1 Groove density identification accuracy with respect
to distance between two planes

The following numerical simulation shows the relationship
between the distance between two planes and the
measurement accuracy. Here, the Monte Carlo method is
used to simulate the measurement error. The simulated
measurement error of ray hit point position are 0.1µm,

200 400 600 800 1000 1200
−6

−5

−4

−3

−2

−1

0

Nominal  groove density  value (lines/mm)

U
nc

er
ta

in
ty

 o
f t

he
 g

ro
ov

e 
de

ns
ity

 lo
g1

0(
ΔN

/N
)

h=100mm
h=200mm
h=300mm
h=400mm
h=500mm

Fig. 3 Grating groove density and measurement uncertain-
ty for different distance h.

1µm, 5µm, 10µm and 20µm while the distance(h)
between the two different parallel planes changes from
10 cm to 50 cm. The uncertainty of groove density
(∆N/N ) is shown in Figure 2. As seen in Figure 2,
the accuracy of the grating groove density measurement
increases while the distance between the two different
parallel planes increases. Therefore, the distance between
the two different parallel planes should be as large as
possible if technical conditions allow.

3.2.2 Groove density identification accuracy and nominal
groove density value

The following numerical simulation shows groove density
measurement accuracy with respect to nominal groove
density value. The Monte Carlo method is again employed
to simulate the ray hit point position error and it is±20µm.
It is assumed that any groove density can be measured
here. The uncertainty of groove density (∆N/N ) is shown
in Figure 3, with the distance between the two different
parallel planes (h) changes from 10 cm to 50 cm and
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Fig. 4 Measurement results at the same point.

grating groove density changes from 10 lines mm−1 to
1260 lines mm−1.

Overall, the accuracy of the groove density increases
while the distance between the two different parallel planes
(h) increases. It can be known that when h is 500 mm, for a
grating with groove density greater than 310 lines mm−1,
∆N/N is less than 10−4, which shows high measurement
accuracy.

4 A VERIFICATION STUDY

The most simple verification testing without calibrating
is carried out to verify the validity of the principle and
measure a planar transmission grating with a nominal
groove density of 333 lines mm−1. A 632.81 nm
wavelength high-stability He–Ne laser is used as a standard
wavelength. The pixel size of the CCD is 4.45µm. To carry
out the testing system simplicity, the dispersion direction
of the grating is vertically, the 2D translation stage shifts
back and forth and stays on two parallel planes which
is perpendicular to the optical axis. First, obtaining 1,
0, –1-order diffracted rays by shifting the 2D translation
stage up and down (the dispersion direction) in one plane.
Then the 2D translation stage advances 50 mm along the
optical axis to the second plane, and the three diffracted
rays are obtained again. Through data processing and
Equations (1)–(4), the grating parameters are obtained.

To evaluate the accuracy of testing system components
is the first step after establishing the verification system. In
order to evaluate the accuracy of the centroid positioning,
the centroid detection is performed on the same point. In
theory, the coordinate of the centroid remains unchanged.
Due to the uncertainty of the centroid positioning, the
result is different. The RMS of the centroid detection
algorithm is calculated and it is less than 0.3 pixels, which
indicates that the algorithm has high accuracy and stability.
It is applied to the measurement.

The CCD measures the same point by moving
the 2D translation stage up and down to evaluate the
positioning accuracy of linear guide in the vertical
direction. Measuring the same point by moving the 2D
translation stage up and down vertically 0.5 mm each time.

Fig. 5 Measurement results at different locations.

Theoretically, this point is fixed, and its position deviation
in CCD should be 0.5 mm. Due to the positioning error of
the translation stage and centroid algorithm, the deviation
of the centroid should not be 0.5 mm. The mean value of
vertical positioning error is –0.1777µm, and the standard
deviation is 3.5077µm. According to the “3σ” principle, it
can be seen that the probability of the positioning error in
(−10.7008, 8.5947) is 99.7%.

To evaluate the tilt angle of the translation stage
relative to the optical axis, 0-order diffracted light is
measured by CCD with moving it back and forth along the
optical axis. The centroid position of the 0-order diffracted
light on it remains unchanged theoretically. Due to the
translation stage tilt, the position of the 0-order diffracted
light is shifting. Then the translation stage tilt angle can
be estimated. According to linear fitting results, the slopes
of two directions are −0.02308 and 0.001598. It can be
concluded that the 2D translation stage has a certain tilt
angle with respect to the optical axis. The angles in two
directions are 1.3221◦ and 0.0911◦.

The accuracy of each component in the test system
is evaluated. The angle between the translation stage and
the optical axis is planned to be compensated by data
processing. The verification test system is applied to the
grating parameters test.

Figure 4 shows 15 measurements of the same
investigated point in the grating. The average of the
result is 332.6806 lines /mm, and the uncertainty of
groove density (∆N/N ) is 9.5916 × 10−4. The RMS of
the measurement result is 0.0368 lines mm−1. Figure 5
shows the measurement result at nine different investigated
points in the grating. The average of the result is
332.6183 lines mm−1. The RMS of the measurement
result is 0.0818 lines mm−1. The measurement results
demonstrate that this method has good reproducibility.

5 MEASURABLE GRATING GROOVE DENSITY
BY THE METHOD

Due to the limited travel of the 2D translation stage, it
might not cover all rays extent by moving it, which is the
main factor that limits the measurable grating parameters.
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Obviously, the method is applicable when the detector can
obtain the –1, 0, and +1-order diffracted rays by moving
the linear guide. According to the grating equation, the
angle between the –1-order and the +1-order diffracted
light is small when the groove density is small and vice
versa. If the angle between the –1-order and the +1-order
diffracted light is large, the distance between the –1-order
and the +1-order diffracted light on plane is longer than
linear guide travel distance, the grating parameters cannot
be measured. The measurable angle between diffracted
lights limited by linear motion travel distance is discussed
in Section 5.1. Measurable grating groove density of the
method is analyzed in Section 5.2. An improved method
to broaden the measurable groove density is proposed in
Section 5.3.

5.1 Measurable Diffraction Angles Limited by Linear
Motion

The angles between the –1-order and +1-order diffracted
rays which are limited by the test system is discussed here.
A simplified system is shown in Figure 6 where the two
planes show the different CCD locations and the position P
shows the investigated point in grating in Figure 1. The two
ends of the horizontal translation stage on the first plane are
denoted as A and B. Our goal is to find a certain position
P below the second surface so that the angle between
PA and PB, which is denoted as ψ, is the largest. If the
angle between the –1-order diffracted light and the +1-
order diffracted light exceeds ψ for a certain grating groove
density, this grating groove density is not measurable in the
method.

But there is no definite expression for ψ. We find a
upper limit of ψ. Obviously, when the point P is located
on the second surface (point O), and satisfies OA = OB, a
corresponding maximum angle ψmax is reached. As shown
in Figure 6, the maximum angle ψmax can be calculated.
ψmax is larger than ψ.

The angle between the –1-order and the +1-order
diffracted light isψmax when the groove density is a certain
value in the method. The corresponding value is the upper
limit of maximum measurable groove density.

The distance between two CCD planes is h = ks,
where k is the rate and s is the 2D translation stage
horizontal travel distance. It is easy to know that, as shown
in Figure 6, the maximum value ψmax satisfies tanψmax =
4k/(4k2−1). It is obvious that 0◦ < ψmax < 180◦. When
k < 0.5 and 0.5 < k < 1, ψmax is an obtuse angle and
acute angle, respectively. When k = 0.5, ψmax = 90◦.

Fig. 6 The maximum angle between –1-order and +1-order
limited by linear motion.

5.2 Measurable Grating Groove Density of the
Method

To analyze the measurable grating groove density of the
method, it is guaranteed that the angle between –1-order
and +1-order diffracted light is less than ψmax solved in
Section 5.1. The measurable grating groove density of
the method is discussed here. The grating groove density
is measurable when two conditions are met: Firstly, the
output contains +1-order, –1-order and 0-order diffracted
lights. Secondly, the angle between –1-order and +1-order
diffracted light is smaller than ψmax solved in 5.1.

For the first condition, Equation (5) should be
satisfying

|sinβ1| = |Nλ+ sinα| ≤ 1 ,

|sinβ−1| = |−Nλ+ sinα| ≤ 1 .
(5)

The incident angle in Equation (5) is related to the
specific application. There is

N ≤ 1− |sinα|
λ

. (6)

For the second condition, there is β1 − β−1 < ψmax.
According to the grating equation, there is

2Nλ = sinβ1 − sinβ−1

= sin(β1 − β−1) cosβ−1 (7)

+ [cos(β1 − β−1)− 1] sinβ−1

≤
√

2− 2 cos(β1 − β−1)

≤
√

2− 2 cosψmax

=

√
2− 2(4k2 − 1)√

16k2 + (4k2 − 1)2
. (8)
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Fig. 7 The measurable groove density and distance.

According to Equations. (6) and (7), the maximum
grating groove density is denoted as Nmax, there is

Nmax < min


√

2− 2(4k2−1)√
16k2+(4k2−1)2

2λ
,

1− |sinα|
λ

 .

(9)

For example, when k = 0.5, ψmax = 90◦. It
means the measurable angle between –1-order and +1-
order diffracted rays can approach 90◦ infinitely in the
test system. If the angle between the –1-order and the +1-
order diffracted lights exceeds 90◦ for a certain grating
groove density, the grating cannot be measured by the test
system. Here, we imagine a case when the angle between
the –1-order and the +1-order diffracted light is 90◦, and
the corresponding groove density is the largest. When
the incident angle is 0◦, the +1-order diffraction angle is
45◦, and the –1-order diffraction angle is −45◦, in this
case, the corresponding groove density is the largest, it is
N =

√
2/2λ, which is in accordance with Equation (9).

Firstly, the angle between –1-order and +1-order diffracted
light is less than 90◦ when k = 0.5 in practice. Secondly,
achieving the maximum measurable groove density is
related to the grating working conditions. Therefore,
Equation (9) is the upper limit of the measurable groove
density.

Equation (9) shows that shorter probing wavelength
can widen the measurable groove density. The maximum
measurable grating groove density is related to the specific
application. Reducing the distance h which means k
decreasing can also increase measurable groove density.
Due to the limitations of the experimental system, the
distance between two CCD planes cannot be decreasing
arbitrarily. In addition, it is known from 3.2 that the larger
distance h, the higher the measurement accuracy within a
certain range. Equation (9) also shows that the maximum

grating groove density with incident angle α is the same as
−α in the method.

5.3 An Improved Method to Broaden the Measurable
Groove Density

The method detects –1, 0 and +1-order diffracted rays
of a wavelength. The limiting factor that restricts the
measurable groove density is angle between the –1-order
and +1-order diffracted light should less than ψmax. In
order to widen the measurement range, double-wavelength
method can be used. In the double-wavelength method,
0 and +1-order diffracted rays are detected, so the angle
between the 0-order and +1-order diffracted light should
less than ψmax.

The Littrow condition is satisfied when the direction
of incident light is the same as diffracted light. For
wavelength λ, the incident angle α will satisfy 2 sinα =
λN .

For the two laser beams with the wavelengths λ1
and λ2 incident on the grating after they combines. We
assume λ1 < λ2 here. The grating is mounted in Littrow
configuration in wavelength λ2. The grating groove density
can be measured.

The grating incident angle α, the +1-order diffraction
angle β1 of λ1 meet Equation (10). The angle between the
+1-order and the 0-order diffracted light ϕ can be obtained
from the coordinates of four points in two CCD surfaces.
The groove density N is measured.

2 sinα = λ2N ,

sinβ1 − sinα = λ1N ,

β1 − α = ϕ .

(10)
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At this time, ϕ is smaller than ψmax as discussed in
5.1. There is

Nmax < min

(√
2− 2(4k2 − 1)√

16k2 + (4k2 − 1)2
/λ1,

2

λ2

)
(11)

For the single wavelength and the double-wavelength
method with the detection wavelength 632.8 nm and
540 nm, s = 500 mm, the distance between two CCD
planes (h), the maximum measurable groove density are
shown in Figure 7.

It can be known from Figure 7 that as the distance
between two different parallel planes (h) becomes larger,
the maximum measurable groove density becomes smaller,
but at the same time the measurement accuracy improves
based on 3.2. For single-wavelength, shorter probing
wavelength can expand measurable groove density. For
double-wavelength method, when h is less than a certain
value, the limiting factor of the measurement range is that
the diffracted lights can be observed as shown in the circle
in Figure 7. According to Equation (9), Equation (11)
and Figure 7, the measurable groove density of double-
wavelength is nearly twice as the single-wavelength.

6 CONCLUSION

A simple method achieving high precision and wide appli-
cable range for grating multiple parameters identification
is proposed in this paper. The groove density, grating
position and orientation could be identified simultaneously
for transmission gratings or reflection gratings. Arbitrary
grating surface profile with varied groove density distribu-
tion or even mosaic of a group of various gratings could
be measured by the proposed system. Based on the Monte
Carlo method, various error sources are simulated, and
their effects on measurement accuracy are analyzed. The
simulation results show that it has high accuracy. The
accuracy dependency on main configuration parameters
are further evaluated. A double-wavelength method is
introduced to expand the measurement range.
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