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Abstract In the Sun and Sun-like stars, it is believed that cycles of the large-scale magnetic field are
produced due to the existence of differential rotation and helicity in the plasma flows in their convection
zones (CZs). Hence, it is expected that for each star, there is a critical dynamo number for the operation of
a large-scale dynamo. As a star slows down, it is expected that the large-scale dynamo ceases to operate
above a critical rotation period. In our study, we explore the possibility of the operation of the dynamo in the
subcritical region using the Babcock–Leighton type kinematic dynamo model. In some parameter regimes,
we find that the dynamo shows hysteresis behavior, i.e., two dynamo solutions are possible depending on the
initial parameters—decaying solution if starting with weak field and strong oscillatory solution (subcritical
dynamo) when starting with a strong field. However, under large fluctuations in the dynamo parameter, the
subcritical dynamo mode is unstable in some parameter regimes. Therefore, our study supports the possible
existence of subcritical dynamo in some stars which was previously demonstrated in a mean-field dynamo
model with distributed α and MHD turbulent dynamo simulations.
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stars

1 INTRODUCTION

It is believed that the convective flows of ionized plasma in
the convection zones (CZs) of the Sun and Sun-like stars
are responsible for generation of the magnetic field and
cycles through the hydromagnetic dynamo (Moffatt 1978;
Charbonneau 2020). In this dynamo, differential rotation
and helical convective flow play important roles. This is
because the differential rotation of the star generates the
toroidal field from the poloidal one through the so-called
ω effect. On the other hand, the helical turbulence induces
the poloidal field from the toroidal one which is popularly
known as the α effect. In this type of α-ω dynamo model,
the governing parameter is the dynamo number, which is
defined as,

D =
α∆ΩR3

η2
, (1)

where α is the measure of α-effect, ∆Ω is the variation in
the angular velocity of the Sun/star, R is its radius and η is
the turbulent magnetic diffusivity (Krause & Rädler 1980).
There is a critical dynamo number (Dc) below which

the dynamo is not possible and the initial magnetic field
decays. The regime below Dc is known as the subcritical
regime and that above Dc is called the supercritical regime
(Choudhuri 1998; Kumar et al. 2021).

Since the rotation rate of a star decreases with
age (Skumanich 1972; Rengarajan 1984), the dynamo
number D is expected to decrease as the star spins down
(Kitchatinov & Nepomnyashchikh 2017). Therefore, the
question is: will the dynamo cease immediately whenD <
Dc? Interestingly, it has been found that the dynamo is still
possible when D < Dc. Kitchatinov & Olemskoy (2010)
have described this subcritical dynamo in a kinematic
mean-field dynamo model with nonlinear quenching in
α and η. They found that in the subcritical regime, if
the dynamo is started with a strong magnetic field, a
strong oscillating solution is possible. In contrast, when
the dynamo is initiated with a weak field, a decaying
solution is produced. Thus this dependence of the magnetic
field with the dynamo number exhibits a hysteresis
behavior. Further, in a simplified model, Kitchatinov &
Nepomnyashchikh (2015) demonstrated that transitions
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between two modes (subcritical dynamo with finite
magnetic field and supercritical dynamo) qualitatively
reproduce two distinct modes in the distribution of solar
activity as inferred from cosmogenic isotope content in
natural archives (Usoskin et al. 2014). This behavior was
further supported by Karak et al. (2015) in the turbulent
dynamo simulations.

In the above-mentioned study (Kitchatinov &
Olemskoy 2010), a helical α, distributed over the whole
CZ, was used. However, recently, there are observational
supports for the predominance of the Babcock–Leighton
process for the generation of a poloidal field in the Sun
(Dasi-Espuig et al. 2010; Kitchatinov & Olemskoy 2011;
Muñoz-Jaramillo et al. 2013; Priyal et al. 2014; Cameron
& Schüssler 2015). Various surface flux transport (Wang
et al. 1989; Baumann et al. 2004; Jiang et al. 2014b) and
dynamo models (Karak et al. 2014a; Choudhuri 2018;
Charbonneau 2020) based on this Babcock–Leighton
process alone have been successful in modeling various
aspects of solar magnetic fields and cycles. Therefore, in
this study, we shall explore the subcritical dynamo in a
Babcock–Leighton type solar dynamo model.

As our model is kinematic, we do not capture any
nonlinearity in the mean flows. We however consider
magnetic field dependence nonlinearity in turbulent
diffusivity and Babcock–Leighton α. While diffusivity
quenching is obvious and we have some estimates based
on certain approximations (Kitchatinov et al. 1994b; Karak
et al. 2014b), the quenching in Babcock–Leighton α is less
constrained. In the Babcock–Leighton process, a poloidal
field is produced by the decay and the dispersal of tilted
bipolar magnetic regions (BMRs). This tilt has some
magnetic field dependence, although its exact dependence
is not well constrained (Dasi-Espuig et al. 2010; Jha et al.
2020). There is also a latitudinal variation of BMRs with
the solar cycle (Mandal et al. 2017) which may be a
source of nonlinear quenching (Jiang 2020; Karak 2020).
In our study, we shall consider magnetic field dependent
quenching in both diffusivity and α based on quasi-linear
approximation as presented in Ruediger & Kichatinov
(1993); Kitchatinov et al. (1994b).

In the Babcock–Leighton α, there is some inherent
randomness as primarily seen in the tilts of BMRs around
Joy’s law (Dasi-Espuig et al. 2010; Stenflo & Kosovichev
2012; McClintock et al. 2014; Wang et al. 2015; Arlt
et al. 2016; Jha et al. 2020). These fluctuations can have
a serious impact on the magnetic cycle and particularly on
the existence of the subcritical dynamo branch. Therefore
we shall also include fluctuations in the Babcock–Leighton
α term of our dynamo model and check the dynamo
behavior in different regimes.

2 MODEL

For our study, we consider the magnetic field to be
axisymmetric and thus we express it in the following form

Btotal = Bp+Bφ = ∇×[A(r, θ, t)φ̂]+B(r, θ, t)φ̂ , (2)

where Bp = ∇ × [Aφ̂] is the poloidal component of
the magnetic field and B is the toroidal component. The
evolutions of the poloidal and toroidal fields take the
following forms.

∂A

∂t
+

1

s
(vp.∇)(sA) = ηT

(
∇2 − 1

s2

)
A+ S(r, θ;B) ,

(3)

∂B

∂t
+

1

r

[
∂

∂r
(rvrB) +

∂

∂θ
(vθB)

]
= ηT

(
∇2 − 1

s2

)
B

+ s(Bp.∇)Ω +
1

r

dη

dr

∂(rB)

∂r
,

(4)
where s = r sin θ, vp = vr r̂ + vθ θ̂ is the meridional
flow, which is obtained through an observationally-guided
analytic formula as given in Karak & Cameron (2016),
and S is the source for the poloidal field. In the classical
αΩ mean-field model, S is due to the helical nature of
the convective flow. However, in the case of Babcock–
Leighton process, the poloidal field is generated near the
surface through the decay and dispersal of tilted BMRs. In
our axisymmetric model, this process has been routinely
parameterized as

S(r, θ;B) = αBLB(θ, t) , (5)

where B(θ, t) is the average toroidal field in a thin layer at
the base of the CZ (BCZ) (0.675R� < r < 0.725R�) and
αBL is the parameter for the Babcock–Leighton process.
We write,

αBL = αφα(β) , (6)

where β = B/B0 with B0 being the equipartition field
strength. The α is the profile for the usual Babcock–
Leighton α which has the following form

α =
α0

4

[
1 + erf

(
r − 0.95R�

0.05R�

)]
×
[
1− erf

(
r −R�

0.01R�

)]
sin θ cos θ

1 + exp(K)
,

(7)

for θ < π/2, K = 30(π/4 − θ) and for θ > π/2, K =
30(θ − 3π/4).

The φα(β) in Equation (6) has the following
magnetic field dependent quenching based on quasi-linear
approximation as presented in Ruediger & Kichatinov
(1993).

φα(β) =
15

32β4

[
1− 4β2

3(1 + β2)2
− 1− β2

β
arctanβ

]
.

(8)
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The turbulent diffusivity ηT has the following form

ηT = ηφη(β) , (9)

where

η = η0

[
ηin +

(
1− ηin

2

)(
1 + erf

(
r − xn
hn

))]
(10)

with ηin = 10−4, xn = 0.70R�, hn = 0.05R� and η0 =
5×1012 cm2 s−1. We consider a magnetic field dependent
quenching in the diffusivity following Kitchatinov et al.
(1994a)

φη(β) =
3

8β2

[
1 +

4 + 8β2

(1 + β2)2
+
β2 − 5

β
arctanβ

]
.

(11)
We note that both α and ηT are quenched through the local
magnetic field. In Section 3.2, however, we shall change
this prescription and relate α and ηT through the magnetic
field at the BCZ.

The differential rotation Ω and the boundary condi-
tions are the same as those used in Nandy & Choudhuri
(2002); Chatterjee et al. (2004).

3 RESULTS

3.1 Quenching with the Local Field

By including the magnetic field dependent quenching
in ηT and α and by specifying the large-scale flows,
such as differential rotation and meridional circulation,
we solve the dynamo Equations (3) and (4). We first
identify the dynamo transition. To do so, we perform
simulations at different values of α0, i.e., at different values
of dynamo number, defined here as D = α0Ω0R

3/η2
0

(where Ω0 = 2π/T ; T = 25.38 d). We find that
when we start the simulations with a very weak magnetic
field, the initial magnetic field grows as long as α0 ≥
28.10 m s−1. The dynamo number corresponds to this
α0, i.e., the critical dynamo number, Dc = 1.086 × 105.
The blue circular points connecting the dotted line in
Figure 1 show Bavg versus α0 and D. Bavg is computed
at 0.7R� and −13◦ latitude and averaged over a few
steady cycles. Now, instead of starting the simulation
with a weak magnetic field, we start it with the output
of an oscillatory solution of a strong magnetic field. We
take the output of the simulation performed at α0 =
28.10 m s−1and execute a new simulation at α0 =
27 m s−1and then we take the output of this simulation
and feed it into a new simulation at a lower α0. In this way,
we perform several simulations at a progressively lower α0

by taking the output of the previous simulation at higher
α0. The orange diamond points connecting the dotted
line in Figure 1 shows Bavg for these simulations. The
interesting behavior we observe is that the solutions are
different than the ones performed at the same parameters

Fig. 1 Dynamo hysteresis: Variation of the temporal
average of the mean toroidal field normalized to B0 and
computed at the BCZ at latitude−14◦ (Bavg) as a function
of α0 (in m s−1) from simulations starting with a weak
field (filled circles) and from simulations starting with
strong field of previous simulation (orange diamonds). The
corresponding D is displayed on the top horizontal axis.

Fig. 2 (a) Time-latitude distribution of the toroidal field
at BCZ from a dynamo simulation at critical dynamo case
(α = 28.10 m s−1) for which the simulation started with a
weak field. (b) Same as (a) but from a subcritical dynamo
case (α = 23 m s−1) and the simulation started with a
strong field.

but starting with a weak field. We find a wide region in
the dynamo parameter space, as displayed in Figure 1,
over which the dynamo is decaying when starting with
the weak field but produces a strong oscillatory field when
starting with a strong field. Overall the dynamo exhibits
a hysteresis behavior. This behavior and the subcritical
dynamo, for the first time, were discovered in a simple
mean-field dynamo with distributed α (Kitchatinov &
Olemskoy 2010). Later dynamo hysteresis was confirmed
in magnetohydrodynamics (MHD) simulations of the
helical turbulent dynamo with imposed shear (Karak
et al. 2015). Recently this was also seen in numerical
simulations of turbulent α2 dynamo (Oliveira et al. 2021).

As discussed in Kitchatinov & Olemskoy (2010), the
imposed magnetic-field dependent nonlinearity in turbu-
lent diffusivity and α make the behavior of the effective
dynamo number Deff = α0φα(β)ΩR3/η2

0φη(β)2 non-
monotonic. When the magnetic field is large (β � 1),
Deff decreases with the increase of β (Deff ∼ β−1).
In contrast, when β is small (β � 1), Deff increases
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Fig. 3 Same as Fig. 1 but obtained from simulations in
which αBL and ηT are related to the toroidal field at the
BCZ.

Fig. 4 Butterfly diagrams for (a) toroidal field at BCZ
for critical dynamo for the case (α0 = 36.40 m s−1)
when the simulation started with a weak magnetic field
and (b) for subcritical dynamo case (α0 = 35 m s−1) and
started with the output of a strong oscillatory solution at
α0 = 36 m s−1.

with the increase of β (Deff ∼ D(1 + 16β2/7)); see
figure 1 of Kitchatinov & Olemskoy (2010). Thus, when
the simulation is started with a very weak field, Deff

remains small and cannot trigger the dynamo. On the other
hand, when the simulation is started with a strong field
(β ∼ 1), Deff becomes large enough to produce dynamo
action.

The time-latitude distributions of the toroidal magnetic
fields from a simulation at critical α0 = 28.10 m s−1

(starting with a weak field) and from a subcritical case
at α0 = 23 m s−1(starting with a strong initial field) are
displayed in Figure 2. We observe regular polarity reversal
and some migration towards the equator. The cycle period
is much shorter than the solar value. This short cycle is due
to our chosen value of η0 (= 5 × 1012 cm2 s−1). The high
diffusivity always tends to produce a short cycle (Karak
& Choudhuri 2012; Karak & Cameron 2016) unless we
reduce the diffusivity at BCZ drastically and/or include
a strong downward magnetic pumping (Kitchatinov &
Olemskoy 2012; Karak & Cameron 2016). In fact, if we
do not include the nonlinearity in diffusivity, then the cycle
period is even shorter (∼ 0.83 yr).

One aspect of all these simulations is that they produce
an unexpectedly strong magnetic field near the BCZ. In

Figures 1 and 2 we observe that the magnetic field strength
is several tens of times stronger than B0. This strong field
is caused by the strongly quenched diffusivity near the
BCZ. We recall from Equations (6) and (9) that αBL and
ηT are related to magnetic field locally. Near the BCZ, the
magnetic field is usually stronger than that near the surface
and thus at the BCZ, ηT is reduced strongly, but αBL is
zero there. Hence this strongly reduced diffusivity near the
BCZ in our Babcock–Leighton type dynamo is causing this
strong magnetic field. This strong magnetic field is indeed
in agreement with the super-equipartition field which was
a prediction of the thin flux-tube simulations (D’Silva &
Choudhuri 1993; Caligari et al. 1995).

3.2 Quenching with the Non-local Field

3.2.1 Regular dynamo solutions and hysteresis

The Babcock–Leighton α is a nonlocal process in which
the magnetic field at the BCZ acts as the seed for the
poloidal field; see Equation (5). Therefore, instead of
connecting αBL and ηT with the local magnetic field, we
now connect them with the magnetic field at the BCZ, i.e.,

αBL = αφα(β) , (12)

ηT = ηφη(β) , (13)

where β = B/B0. The quenching functions φα and φη
will be computed from the same Equations (8) and (11) but
based on the average toroidal field at BCZ (B). No other
changes are made in the model.

We perform the simulations at different values of α0

in the same way as we have done to produce Figure 1.
Figure 3 features the results. We immediately notice that
the magnetic field strength is reduced, at least by an order
of magnitude. We again find a regime in the dynamo
parameter where two solutions are possible: a weak
decaying field and a strong oscillatory field, depending
on the initial condition. Thus, the dynamo hysteresis is
a generic feature in the Babcock–Leighton type solar
dynamo.

Figure 4 depicts the time-latitude distribution of
the toroidal field from simulation at the critical α0 =
36.40 m s−1(starting with a weak field) and at the
subcritical dynamo, α0 = 35 m s−1(starting with a strong
oscillating field). Although we see some general features
of the solar magnetic field in this simulation, the cycle
period is considerably reduced. The average period of the
magnetic field oscillation is about 2.5 yr. This short cycle
period is due to different nonlinear quenching in α and η.
Further, the field is strongest near the poles.
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Fig. 5 Butterfly diagrams of toroidal field for subcritical
dynamo at α0 = 35 m s−1with 20 percent fluctuations.
Note that the duration of 80–1130 yr, i.e., the time spans
shown in between two panels, is not displayed.

3.2.2 Dynamo with fluctuations in α

So far in each simulation, all dynamo parameters were
kept constant and thus the nonlinearity in our model
kept the amplitude of the magnetic cycle nearly equal.
However, due to the fluctuating nature of the stellar
convection, the dynamo parameter, especially the α, is
subjected to fluctuate around its mean. In the Babcock–
Leighton scenario, the fluctuations are primarily seen in
the form of scatter in the bipolar active region tilts around
Joy’s law (e.g., Stenflo & Kosovichev 2012; Jiang et al.
2014a; McClintock et al. 2014; Wang et al. 2015; Arlt
et al. 2016; Jha et al. 2020) and the randomness in flux
emergence (Karak & Miesch 2017). On the other hand, in
the turbulent mean-field α, the scatter is unavoidable due to
finite numbers of convection cells (Choudhuri 1992). The
fluctuations in α cause the polar field to change and thus
make the magnetic cycle unequal as observed in the Sun
and Sun-like stars. This has been already incorporated in
many studies for modeling the irregular aspects of solar
cycles (e.g., Charbonneau & Dikpati 2000; Choudhuri
et al. 2007; Choudhuri & Karak 2009; Karak & Choudhuri
2011; Olemskoy & Kitchatinov 2013; Karak et al. 2018).

Motivated by this, we include fluctuations in our
Babcock–Leighton α. To do so, we replace α0 by α0 =
α0[1+s(τcorr)×f ], where s is the uniform random number
in the interval −1 < s < 1 and τcorr is the coherence
time, which is taken as one month—consistent with the
mean lifetime of BMRs. Thus, now in our model, the value
of α0 is updated randomly every one month. The level of
fluctuations is determined by f . For example, f = 1 and
0.2 correspond to 100% and 20% fluctuations, respectively.

We find that for subcritical and slightly above critical
regimes, this model tends to decay at large fluctuations.
The dynamo dies even at 10% fluctuations. Figure 5
depicts the butterfly diagram of a subcritical dynamo
(α0 = 35 m s−1) in which the magnetic field decayed
after about 1000 yr due to large fluctuations. We note that
this did not happen simultaneously in two hemispheres.
Thus the subcritical branch is unstable under the large

Fig. 6 (a) Time series plot along with its smoothed curve
(yellow) of toroidal magnetic flux. Red horizontal line
signifies half of the mean of this smooth curve. (b) and
(c) Butterfly diagrams of toroidal field for the two grand
minima. These are obtained from a supercritical dynamo
at α0 = 40 m s−1.

Fig. 7 Variation of variability with respect to the increase
in α0 with 2% fluctuations (orange solid line) and with
20% fluctuations (blue dashed line).

fluctuations. We have checked that if the fluctuation level is
below 10%, then the dynamo does not decay immediately;
sometimes it decays in a few years and sometimes it
produces cycles for thousands of years before the decay.
This is surprising. However, this problem might be solved
by adding a distributed α0 in the CZ which has been a way
for recovering the dynamo from a grand minimum (Karak
& Choudhuri 2013; Hazra et al. 2014).

However, in the supercritical regime, the dynamo
maintains a stable solution even at very large fluctuations.
We observe that when we have included 20% fluctuations,
subcritical and critical cases die whereas the supercritical
case α0 = 40 m s−1survives. Hence, the critical
dynamo number increases with the increase in the level of
fluctuations.
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The time series of the toroidal magnetic flux B at the
BCZ from a simulation for 9000 yr at α0 = 40 m s−1 is
displayed in Figure 6(a). B is computed in a small region
with r = 0.677R�–0.726R� and latitudes: 10◦–45◦.
We can see that the cycles are now variable, occasionally
producing significantly strong and weak cycles. To check
whether this simulation produces any grand minima or not,
we apply the same method as performed in Usoskin et al.
(2007) for the Sun. We bin the data for the duration of one
cycle period (which is about 2.5 yr in this simulation), filter
the data by applying Gleissberg’s low-pass filter 1-2-2-2-
1, and finally, count a grand minimum if these smoothed
data fall below 50% of their mean for at least two cycle
periods, which is 5 yr in our case. In this way, we detect six
grand minima. Two such cases are presented in Figure 6(b)
and (c). When we increase the supercriticality of the model
by increasing α0, the number of grand minima decreases.
When α0 ≥ 42 m s−1 we do not observe any grand
minima. This is in somewhat agreement with the stellar
observations because only slowly rotating stars produce
grand minima (Baliunas et al. 1995) and slowly rotating
stars are expected to have a smaller value of α0. This is
due to the fact that the efficiency of the Babcock–Leighton
process depends on the tilt which is rooted in the rotation
of the star (D’Silva & Choudhuri 1993).

The amount of variability of the cycle is obviously
more when the fluctuation is more; see Figure 7. To
compute the variability, we first compute the peaks of the
cycles as measured from the toroidal magnetic field time
series B. Then the root mean square of the peaks divided
by the mean is taken as the variability. The variability
decreases with the increase of supercriticality of the model
(α0).

4 CONCLUSIONS

In this work, we have applied an axisymmetric kinematic
solar dynamo model with a Babcock–Leighton αBL as
the source of the poloidal field to explore the subcritical
dynamo and the hysteresis behavior. We have included
magnetic field dependent nonlinearities in the αBL and
diffusivity ηT based on the quasi-linear approximation
(Ruediger & Kichatinov 1993; Kitchatinov et al. 1994b).
We have included these nonlinearities in two ways. First,
we connect the αBL and ηT with the local toroidal
magnetic field and in the second, we connect these with the
toroidal field at the BCZ. We find regular polarity reversals
and cycles as long as the dynamo number is above a critical
value. We find a regime in the dynamo parameter where
two solutions are possible: a weak decaying field and a
strong oscillatory field, depending on the initial condition.
Hence, the dynamo hysteresis, which was predicted in the
distributed α Ω dynamo (Kitchatinov & Olemskoy 2010)
and turbulent dynamo simulations (Karak et al. 2015),

also survives in Babcock–Leighton type dynamos. Thus,
our study along with previous studies provides a possible
existence of subcritical dynamo for the execution of large-
scale magnetic cycles in Sun-like stars.

By including stochastic fluctuations in αBL, we check
the stability of these subcritical branches. We find that
when αBL and ηT are connected with the local magnetic
field, the subcritical branch maintains stable magnetic
cycles. However, in the other case, when the αBL and
ηT are connected with the magnetic field at the BCZ,
the subcritical branch tends to decay with fluctuations.
The supercritical branch is always stable and produces
some grand minima. The number of grand minima and
the variability of the cycle decrease with the increase of
supercriticality (as controlled by the strength of αBL in our
case).
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