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Abstract We investigated the scenario of time-dependent diffusive interaction between dark matter and dark
energy and showed that such a model can be accommodated within the observations of luminosity distance-
redshift data in Supernova Ia (SN Ia) observations. We obtain constraints on different relevant parameters of
this model from the observational data. We consider a homogeneous scalar fieldφ(t) driven by ak-essence
Lagrangian of the formL = V (φ)F (X) with constant potentialV (φ) = V , to describe the dynamics of
dark energy in this model. Using the temporal behaviour of the FRW scale factor, the equation of state and
total energy density of the dark fluid, extracted from the analysis of SN Ia (JLA) data, we have obtained the
time-dependence of thek-essence scalar field and also reconstructed the form of the functionF (X) in the
k-essence Lagrangian.
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1 INTRODUCTION

In this work, we explore a scenario of interacting dark
matter (DM) and dark energy (DE), where the DE is
represented by a homogeneous scalar fieldφ with its
dynamics driven by ak-essence Lagrangian with constant
potential and DM is assumed to be a perfect fluid. In the
late time phase of cosmic evolution, we can neglect the
effect of radiation and baryonic matter on the total energy
density of the universe. Thus for the late time phase, DE
and DM are the dominant sectors to study the new conse-
quences. Motivation behind consideration of such classes
of a unified model of DM and DE is to address the issue of
coincidence of observed present-day DE and DM densities
utilizing a dynamical relation between DM and DE
(Szydłowski & Stachowski 2016; Calogero 2011, 2012;
Haba et al. 2016; Bandyopadhyay & Chatterjee 2019b).
The interaction between DM and DE is assumed to
happen through velocity diffusion of particles of DM
fluid in the background of fieldφ. In an earlier work
(Bandyopadhyay & Chatterjee 2019a), we studied impli-
cations of such a diffusive interaction with constant (time
independent) diffusion coefficient. In this work, we revisit
an interacting model of DE and DM with a time-dependent
diffusion coefficient. We also explore the implications of
measurements of luminosity distances and redshifts in

supernova Ia (SN Ia) observations (Suzuki et al. 2012;
Betoule et al. 2014; Wang et al. 2017; Wang 2008) in
constraining different parameters for this model.

The basic framework of the model of DM-
DE interactions has been discussed in detail in
Bandyopadhyay & Chatterjee(2019a); Velten & Calogero
(2014). We, first, indulge in a brief recollection of the
model with an emphasis on the consideration of the
time-dependence of the diffusion coefficient. We assume
DM and DE to be perfect fluids and neglect contribution
of radiation and baryonic matter during the late time phase
of cosmic evolution (probed in SN Ia observations). In
a flat Friedmann-Robertson-Walker (FRW) spacetime
background, conservation of total energy momentum
tensor for the dark fluid (DE + DM) takes the form
[

ρ̇dm+3Hρ̇dm

]

= −
[

ρ̇de+3H(ρde+pde)
]

= Q(t) (1)

whereρdm andρde are the energy densities of DM and DE
fluid respectively.pde is the pressure of the DE fluid and
we take DM as pressureless dust.H ≡ ȧ/a is the Hubble
parameter, wherea(t) is the scale factor corresponding
to FRW spacetime background. Heret is regarded as a
dimensionless time parameter witht = 1 corresponding
to the present epoch. The quantityQ(t) in Equation (1) is
a measure of rate of energy transfer between the fluid DM
and DE caused by a diffusion at the instant of timet. We
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parametrise time dependence of the quantityQ(t) in terms
of a parameterk

Q(t) = Q0

[

a(t)
]k

(2)

where scale factora(t) has been taken to be normalised
to unity at the present epoch,a(t = 1) = 1, andQ0

is the value ofQ(t) at the present epoch. Applying the
results of a comprehensive analysis of recently released
“Joint Light-curve Analysis” (JLA) data (Betoule et al.
2014) consisting of 740 SN Ia events as described in
Wang et al.(2017), the observed temporal behaviours of
the quantities: the scale factora(t), the total energy density
(ρdm + ρde)(t) and the equation of stateω(t) have been
extracted over a time domain0.44 < t < 1 accessible
in SNe Ia observations. Considering these observed
time evolutions and the chosen form, Equation (2), of
parametrisation ofQ(t) in Equation (1), we obtained the
range of values ofk for which the interacting DE-DM
model with such a time-dependent diffusion termQ(t)

may be accommodated within the scheme of luminosity
distance-redshift measurements of SN Ia observation. The
methodology of obtaining such constraints is discussed
comprehensively in Section2.

We have assumed that the diffusive interaction,
considered here, occurs in the background of ak-essence
scalar fieldφ, whose dynamics are driven by a non-
canonical LagrangianL = V (φ)F (X), where X =

(1/2)gµν∇µφ∇νφ. We take the potentialV (φ) to be
constant, which ensures existence of a scaling relation of
the formX(dF/dX)2 = Ca−6, whereC is a constant
(Scherrer 2004; Chimento 2004). We then identify the
stress energy tensor corresponding to the non-canonical
Lagrangian with that of the DE fluid and consider the
k-essence scalar fieldφ = φ(t) to be homogeneous.
Use of the scaling relation then enables us to establish
relations between time derivative of scalar field and energy
density and pressure of DE fluid. Utilizing the above
relations along with the observed temporal behaviour
of the quantities likea(t), ω(t) and ρdm + ρde, we
reconstructed the temporal behaviour of thek-essence
scalar fieldφ as well as the form of the functionF (X). The
results are obtained for different benchmark values of the
parameterk with its allowed domain as obtained earlier.
The quantityQ(t) plays an important role in studying the
interaction between DM and DE sectors. We have also
calculated the energy transferred in these two sectors for
some chosen values of the diffusion parameters. This is
described in detail in Section3.

2 OBSERVATIONAL CONSTRAINTS ON
TIME-DEPENDENT DIFFUSIVE DE-DM
INTERACTING MODEL

We use the measurements of luminosity distance and
redshift in SN Ia observations for redshift values up to
z ≈ 1 to extract features of the late time phase of cosmic
evolution. These data are instrumental in obtaining the
temporal behaviour of FRW scale factora(t). There
exist different compilations of SN Ia data from different
surveys. These include high redshift (z ∼ 1) projects
viz. Supernova Legacy Survey (SNLS) (Astier et al.
2006; Sullivan et al. 2011), the ESSENCE project
(Wood-Vasey et al. 2007), the Pan-STARRS survey
(Tonry et al. 2012; Scolnic et al. 2014; Dotson et al.
2018); intermediate redshift (0.05 < z < 0.4) projects
viz. Sloan Digital Sky Survey (SDSS)-II supernova
surveys (Kessler et al. 2009; Sollerman et al. 2009;
Lampeitl et al. 2010; Campbell et al. 2013) and small
redshift programmes such as surveys like Harvard-
Smithsonian Center for Astrophysics survey (Hicken et al.
2009), the Carnegie Supernova Project (Contreras et al.
2010; Folatelli et al. 2010; Stritzinger et al. 2011), the
Lick Observatory Supernova Search (Ganeshalingam et al.
2013) and the Nearby Supernova Factory (Aldering et al.
2002). Various other compilations of SN Ia data may
be found in Leibundgut et al.(1996); Goldhaber et al.
(2001); Foley et al. (2005); Hook et al. (2005);
Blondin et al. (2006); Li et al. (2000); Filippenko
(2005); Wood-Vasey et al.(2004); Frieman et al.(2008);
Dilday et al.(2012); Lidman(2004); Hamuy et al.(1996);
Miknaitis et al. (2007); Matheson et al.(2005); Li et al.
(2001, 2003); Jha et al. (2006); Percival et al. (2001);
Voit (2005); Linder (2003). All such surveys include
nearly one thousand SN Ia events. In this work we
used the results from analysis of JLA data (Suzuki et al.
2012; Betoule et al. 2014; Wang et al. 2017; Wang 2008)
consisting of 740 data points from a three-year survey
from SDSS, five-year SNLS survey and 14 very high
redshift 0.7 < z < 1.4 SNe Ia from space-based
observations with the Hubble Space Telescope (HST)
(Riess et al. 2009). The methodology of analysis of JLA
data has been described in detail inWang et al.(2017);
Bandyopadhyay & Chatterjee(2020) where aχ2 function
for the JLA data is defined as

χ2
SN(α, β) =

∑

i,j

(

µ
(i)
obs − µ

(i)
th

)

(

Σ−1
)

ij

(

µ
(j)
obs − µ

(j)
th

)

(3)
where i and j run from 1 to 740 corresponding to 740
SN Ia events contained in the JLA data set (Betoule et al.
2014). µ(i)

obs is the observed value of distance modulus at
a redshiftzi corresponding to theith entry of the JLA
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data set andµ(i)
th is the corresponding theoretical estimate

expressed through an empirical relation expressed in terms
of various parameters.Σ is the total covariance matrix
given in terms of statistical and systematic uncertainties
(see Wang et al. 2017for details). Wang et al. (2017)
performed the marginalisation of theχ2 function of
Equation (3), over the parameters of the theory to obtain
best-fit values of the parameters. The estimated value of
the quantityE(z) = H(z)/H0 at the best-fit has been
displayed in the left panel of figure 5 ofWang et al.(2017),
whereH = ȧ/a is the Hubble parameter at redshiftz and
H0 is its value at the present epoch (z = 0). We have used
the results of analysis obtained inWang et al.(2017) along
with the relationsH = ȧ/a and1/a = 1 + z (value of the
FRW scale factor at present epoch is normalised to unity)
and writedt = − dz

(1+z)H0E(z) which on integration gives

t(z)

t0
= 1− 1

H0t0

∫ 0

z

dz′

(1 + z′)E(z′)
(4)

wheret0 is the time denoting the present epoch. We utilize
the functionE(z) as obtained from best-fit in analysis
of JLA data in Wang et al.(2017) in Equation (4), and
obtaint as a function ofz by performing the integration
numerically. We then eliminatez from the obtainedz-
t(z) dependence and the equation1/a = 1 + z to obtain
scale factora(t) as a function oft. The obtained temporal
profile may be used to find the time-dependence of the
Hubble parameterH ≡ ȧ/a which directly governs the
cosmological dynamics through Friedmann equations. In
the right panel of Figure1, we have plotted the observed
temporal behaviour ofH in terms of a newly introduced
time parameterτ , defined as

τ = ln a. (5)

Note that the present epoch corresponds toτ = 0 as the
scale factor at the present epoch is normalised to unity.

The two independent Friedmann equations governing
dynamics of late time cosmic evolution in FRW spacetime
background are

H2 =
8πG

3
(ρde + ρdm);

ä

a
= −4πG

3
[(ρdm + ρde) + 3pde] .

(6)

Here we consider a flat spacetime background (zero cur-
vature constant) and neglect contributions from radiation
and baryonic matter during late time phase of cosmic
evolution. Employing Equation (6), the equation of state
of total dark fluid may be expressed as

ω ≡ pde
ρde + ρdm

= −2

3

äa

ȧ2
− 1

3

= −2

3

a(a′HH ′ +H2a′′)

(a′H)2
− 1

3
(7)

where in the last expression, the time variable has been
changed fromt to τ and′ corresponds to derivatives with
respect toτ . We apply the time dependence of the scale
factor a(τ) extracted from the analysis of JLA data to
obtain the temporal behaviour of the equation of stateω(τ)

of the dark fluid. The derived time-dependence is depicted
in the left panel of Figure1.

Transforming the time variable fromt to τ and
substitutingω = pde

ρde+ρdm
in the total continuity equation

(Eq. (1)) of the dark fluid, we find

d

dτ
ln(ρde + ρdm) = −3(1 + ω(τ)) , (8)

and performing integration overτ we arrive at

ρ(τ) ≡
[

ρde + ρdm

]

τ

=
[

ρde + ρdm

]

0
exp

[

−3

∫ τ

τ ′=0

(1 + ω(τ ′))dτ ′
]

.

(9)
We use the obtainedτ -dependence of the functionω(τ)
as extracted from SN Ia data in Equation (9) to reveal
temporal behaviour of the total density (ρde + ρdm) of the
dark fluid. We display this dependence in the middle panel
of Figure1.

As already mentioned in Section1, we assume the
quantityQ(t) in Equation (1), which is a measure of rate of
energy transfer between the fluid DM and DE, to be time-
dependent and parametrise the time dependence as

Q(t) = Q0

[

a(t)
]k

(10)

wherek is a constant. In terms of the time parameterτ ,
the above equation readsQ(τ) = Q0e

kτ and Equation (1)
takes the following form,

dρdm
dτ

+ 3ρdm = Q0
ekτ

H(τ)
. (11)

We assume a trial solution of Equation (11) for ρdm(τ) as

ρdm(τ) =
[

ρde + ρdm

]

0

∞
∑

i=0

αiτ
i (12)

and express the temporal behaviour ofH(τ) as extracted
from JLA data in the form of a polynomial as

1

H(τ)
=

∑

i

γiτ
i (13)

where the coefficientsγi are obtained by fitting the
above polynomial with the temporal behaviour of the
reciprocal of the functionH(τ) displayed in the right
panel of Figure (1). The obtained best-fit values of theγi
parameters are given in Table1. We use Equations (12) and



2–4 A. Bandyopadhyay & A. Chatterjee: Time-dependent DM-DE Diffusion ink-essence Cosmology

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

1

1.5

2

2.5

3

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

1

1.2

1.4

1.6

1.8

2

ω ρ    (ρ0
de + ρ0

dm) H

τ τ τ

ω = -1/3

Fig. 1 Plot ofω, ρ/(ρ0de + ρ0dm) andH as a function of time parameterτ as extracted from JLA data, fromleft to right
respectively.

Table 1 Values ofγi’s in Equation (13) Providing the Best
Fit to the Values of 1

H(τ) Extracted from Analysis of JLA
Data

γ0 = 1.00118 γ2 = –0.321574 γi = 0

γ1 = 0.449751 γ3 = –0.149526 for i > 3

(13) in Equation (11) to produce

∞
∑

i=0

iαiτ
i−1 + 3

∞
∑

i=0

αiτ
i = β0

3
∑

i=0

γiτ
i

∞
∑

j=0

kjτ j

j!
.(14)

where,

β0 ≡ Q0/[ρde + ρdm]0 (15)

is the ratio of the value ofQ to that of total dark
fluid energy density at the present epoch. Equating the
coefficients ofτ i from both sides of Equation (14), we find

αi+1 = β0

i
∑

n=0

γnk
i−n

(i− n)!(i + 1)
− 3αi

i+ 1
. (16)

We note from Equation (12) that

α0 =
ρ0dm

[ρde + ρdm]0
(17)

is the fraction of DM energy density contribution
to the total dark fluid density at the present epoch

which has the mathematically allowed domain of0 6

α0 6 1. However, WMAP (Hinshaw et al. 2013) and
Planck (Planck Collaboration et al. 2014) measurements
established that the observed value of the fractionα0 is
∼ 0.27. For given values ofα0, k andβ0, one may find
αi’s (i > 0) using Equation (16). The series{αi} will
always converge asγi’s are zero fori > 3 (see Table1)
and (i + 1) appears in the denominator of the recursion
relation (Eq. (16)). Utilizing the evaluated series{αi}, we
apply Equation (12) to obtain the values ofρdm(τ) at any
τ , corresponding to any given set of values of (α0, k, β0).
Since|τ | < 1 and the series{αi} converges, the numerical
value ofρdm(τ) will have a negligible contribution from
the terms above certain order in the summation series of
Equation (12).

The temporal behaviour of energy density
[

ρdm +

ρde

]

τ
of the total dark fluid has already been obtained

directly from the analysis of JLA data (middle panel
of Fig. 1). The estimated value of the DM density
ρdm(τ ;α0, k, β0) computed from Equation (12) for given
sets of values of (α0, k, β0) is subject to the constraint

0 < ρdm(τ ; α0, k, β0) <
[

ρdm + ρde

]

τ
. (18)

The above constraints put limits on the range of allowed
values of α0, k and β0. The range of values of the
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parameters (α0, k, β0) for which the condition in
Equation (18) is satisfied corresponds to the values of
the parameters for which the scenario of interacting
DE-DM with time-dependent diffusion coefficient may
by accommodated with the luminosity distance-redshift
measurements of the SN Ia events in the JLA data. The
constraints on parameters (α0, k, β0), thus procured, are
presented in Figures2 and 3. In Figure 2, we display
the allowed domain ofα0 − k parameter space for four
different benchmark values of the parameterβ0 (viz. 0.1,
1.0, 5.0, 10.0). In Figure3, the allowed domain inβ0 − k

parameter space is shown forα0 = 0.27.

3 REALISATION IN TERMS OF K-ESSENCE
COSMOLOGY

We also try to realise the diffusive interaction between
DE and DM with time-dependent diffusion coefficient,
in terms of ak-essence scalar fieldφ representing the
dynamics of DE. The scalar fieldφ plays the role of
background medium in which diffusion takes place.

3.1 Theoretical Framework of k-essence Model

The minimally coupled (with gravitational fieldgµν ) action
for ak-essence scalar fieldφ is written as,

Sk =

∫

d4x
√−gL(X,φ) (19)

where kinetic termX ≡ 1
2g

µν∇µφ∇νφ, g is the
determinant of the metricgµν and∇µ represents covariant
derivative associated with metricgµν . The total action
for gravitational fieldgµν and k-essence scalar field is
expressed as,

Sk =

∫

d4x
√−g

[

− R

16πGN

+ L(X,φ)

]

(20)

whereGN is Newton’s gravitational constant. We derive
the expression for energy momentum tensor for thek-
essence field by varying the action with respect to the field
gµν

Tµν ≡ 2√−g

δS

δgµν

=
∂L
∂X

∇µφ∇νφ− gµνL. (21)

The energy-momentum tensor Equation (21) may be
written in the form of a perfect fluid as

Tµν = (ρ+ p)uµuν − pgµν (22)

whereuµ is the effective four-velocity given by

uµ = sgn(∂0φ)
∇µφ√
2X

, (23)

the pressurep of the fluid is the Lagrangian density,

p = L(φ,X) (24)

and the energy density is

ρ = 2X
∂p

∂X
− p. (25)

We use the form ofk-essence model Lagrangian as

L(φ,X) = V (φ)F (X). (26)

For the k-essence Lagrangian in the formL(φ,X) =

V (φ)F (X), the pressure and energy density of the fluid
(whose energy momentum is equivalent to that of thek-
essence field) may be written from Equations (24) and (25)
as

p = V (φ)F (X) (27)

ρ = V (φ)(2XFX − F ) (28)

whereFX = dF/dX . In this way, we can relate the DE
fluid with k-essence scalar fieldφ.

3.2 Diffusion in the Background of k-essence Scalar
Field

We assume the fieldφ to be spatially homogeneous (φ =

φ(t)) and the potentialV (φ) to be constant (V ). These
respectively imply

X = (1/2)φ̇2 (29)

and existence of a scaling relation in the form

XF 2
X = Ca−6 , whereC is a constant. (30)

Considering the time-dependences of various cosmolog-
ical parameters extracted from SN Ia data as described
in Section2, we obtained the constraints on the temporal
behaviour of the fieldφ and the form of the functionF (X)

for different modes of time dependences of the diffusion
coefficient, characterised in terms of the parameterk. The
methodology of obtaining such results is described below.

Recalling Equations (27), (28) and (30), we can write,

X =
a6(ρde + pde)

2

4CV 2
. (31)

Using Equation (29) in Equation (31) and changing the
time parameter fromt to τ (as given in Eq. (5)) we obtain

[ √
2CV

(ρ0dm + ρ0de)

]

(

dφ

dτ

)

=
a3

H

[

ρde
(ρ0dm + ρ0de)

+
pde

(ρ0dm + ρ0de)

]

(32)
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Fig. 3 Allowed region inβ0 − k parameter space forα0 = 0.27.

which on integration yields

[ √
2CV

(ρ0dm + ρ0de)

]

(φ(τ) − φ0)

=

∫ τ

τ ′=0

dτ ′
[

a3(τ ′)

H(τ ′)

(

ρde(τ
′)

ρ0dm + ρ0de
+

pde(τ
′)

ρ0dm + ρ0de

)]

.

(33)
The right hand side of Equation (33) contains the quantities
a and H whose observedτ -dependences have already
been found from the analysis of JLA data as discussed in

Section2. Sinceω = pde

/

(ρdm + ρde), the last term on

the right hand side of the above equation,pde(τ)
/

(ρ0dm +

ρ0de), may be expressed asω(τ)ρ(τ)
/

(ρ0dm + ρ0de).

This τ -dependence is available from observation as

the dependencesω(τ) and ρ(τ)
/

(ρ0dm + ρ0de) are

separately known from observation as shown earlier
(middle panel of Fig.1). To evaluate the other remaining

term in Equation (33), ρde(τ)
/

(ρ0dm + ρ0de), we may
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compute DM densityρdm(τ ;α0, k, β0)
/

(ρ0dm + ρ0de)

from Equation (12), corresponding to a set of values of
parameters (α0, k, β0) within their corresponding domains
allowed from JLA data as depicted in Figure2. The DE
densityρde may also be evaluated at a given (α0, k, β0)
value as

ρde(τ ;α0, k, β0)

(ρ0dm + ρ0de)
=

[

ρdm + ρde

]

τ

(ρ0dm + ρ0de)
− ρdm(τ ;α0, k, β0)

(ρ0dm + ρ0de)
.

(34)
The τ -dependence of thek-essence field, thus computed
performing the integration in Equation (33), would be
dependent on the parameter valuesα0, k andβ0. To depict
the temporal behaviour of the scalar fieldφ, we have set
β0 = 1 and fix α0 at its experimentally observed value
at 0.27 (see discussion after Eq. (17)). The obtainedτ
dependence of the scalar fieldφ for different benchmark
values of the parameterk is shown in Figure4. We have
considered the time dependence in terms of both the time
parametersτ = ln a(t) andt. We find that, for any value
of the diffusion parameterk, the time dependence of thek-
essence scalar fieldφ may be fitted in terms of polynomial
of degree 2 as

φ(t/t0, k)−φ0(k) = ε1(k) (t/t0 − 1)+ ε2(k) (t/t0 − 1)2

(35)
where φ0(k) is the value of the field at the present
epoch (t = t0), and the coefficientsε1(k) and ε2(k)

are functions ofk. We have also computed the values of
these coefficients at different values of the parameterk

andk-dependences of the coefficientsε1,2 are illustrated
in Figure5.

Finally, in the context of realisation of time dependent
diffusive DE-DM interactions in terms of dynamics of a
k-essence field, we have also identified the form of the
functionF (X) appearing in thek-essence Lagrangian. We
mentioned below how this is done using the inputs from the
observational data. Utilizing Equations (27) and (28), and
the equationω(τ) = pde(τ)/ρ(τ), we may write

F (X)V = ω(τ)
ρ(τ)

(ρ0de + ρ0dm)
(36)

and Equation (31) may be rewritten in the form

XV1 = a6
[

ρde(τ ;α0, β0, k)

ρ0de + ρ0dm
+

ω(τ)ρ(τ)

ρ0de + ρ0dm

]2

(37)

where V1 = 4CV 2

(ρ0

de
+ρ0

dm
)2

is a constant. Considering

Equation (34) and observedτ dependences ofa(τ), ω(τ)
andρ(τ) as extracted from JLA data in Equations (36) and
(37), we compute values of both the quantitiesF (X)V

and XV1 at different values ofτ corresponding to any
given set of values of(α0, β0, k). We then eliminateτ
from Equations (36) and (37) to obtain dependence of
F (X)V as a function ofXV1. Thus, form of the function
F (X) has been extracted from observational data up to the
undetermined constantsV andV1. We display the variation
of F (X) with X in Figure 6 for different values ofk
evaluated atβ0 = 1 andα0 = 0.27.

Figure7 depicts the diffusive activity between the dark
sectors. The energy has been transferred from DM to DE
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Fig. 5 Variation of the coefficientsε1, ε2 (in arbitrary units) withk.
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Fig. 6 Variation of reconstructedF (X)V with XV1 for different values ofk. V andV1 are constants (see text for details).

for the chosen benchmark values of the diffusion parameter
β0 (for fixedk andα0). Forβ0 = 0, the continuity equation
of DM gives ρdm ∝ 1

a3 which corresponds to the non-
interacting scenario between these two sectors. We also
choose two non-zero (positive) values ofβ0 to realise the
interacting nature of this model. The figure demonstrates

that larger values ofβ0 correspond to a higher amount of
transferred energy from DM to DE. The figure also affirms
that DM density is always lower than DE density for the
higher values ofβ0 at any epoch.
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Fig. 7 Temporal behaviour of the energy density of DM and DE for the benchmark values of diffusion parameters
(k, α0, β0).

4 CONCLUSIONS

In this work, we study the scenario of interacting DE and
DM, with a time-dependent diffusive interaction between
them. We have demonstrated that such a model can
be accommodated within the observations of luminosity
distance-redshift data in SN Ia events. We obtain the
constraints on different relevant parameters of this model
from the observational data. The two parameters of the
model which are relevant in the context of this work areQ0

andk. They parametrise the rate of exchange of energy due
to diffusion from DM to DE in a formQ0[a(t)]

k appearing
in the non-conservative Equation (1). For convenience,
instead of working with the parameterQ0, we have chosen
Q0/(ρ

0
de + ρ0dm) ≡ β0 as the parameter. Besidesβ0

andk, the parameterα0 ≡ ρ0dm/(ρ
0
de + ρ0dm), which is

approximately the fractional contribution of DM density
to the total density at the present epoch, also appears in the
framework of our analysis.

We have investigated the temporal behaviour of the
Hubble parameter,H , total equation of state (ω) and
total energy density(ρ) of the dark fluid as extracted
from JLA data in Figure1. We have exploited these
dependences to obtain constraints on the above mentioned
parametersβ0, k and α0. The obtained constraints are
depicted in Figures2 and3. The value of the parameterα0

is, however, independently determined from WMAP and
Planck experiments asα0 ≈ 0.27. The results indicate

Table 2 Lower Limit of Allowed Values of Parameterk
for Different Values ofβ0 with α0 = 0.27

Values ofβ0 0.1 1.0 5.0 10.0

Lower limit of k –6.13 –1.11 4.76 9.89

that, if we choose this value ofα0(≈ 0.27), the allowed
values of the parameterk have a lower limit. For example,
for different values ofβ0, the obtained values of the lower
limit of k are given in Table2.

In addition to this, in the context of the interacting DE-
DM model considered here along with the constraints on
relevant parameters of the model from observational data,
we also address certain issues related tok-essence scalar
field model of DE. We consider a homogeneous scalar
field φ driven by ak-essence Lagrangian (with constant
potential) to represent dynamics of DE. We assume, in the
DE-DM interacting scenario considered here, the diffusion
from DM takes place in the background medium of
the scalar field. Using the observational features of the
cosmological parameters as extracted from the JLA data
as inputs, we find constraints on the time-dependence of
the fieldφ. The existence of scaling relation (Eq. (30)),
owing to constancy of the potentialV in the k-essence
Lagrangian, also enables us to obtain the form of the
function F (X) appearing in the Lagrangian. We found
that the temporal behaviour of the scalar field, in this
context, may be very convincingly accommodated within
a profile φ(t/t0, k) − φ0(k) = ε1(k)(t/t0 − 1) +
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ε2(k)(t/t0 − 1)2, where coefficientsε1,2 are dependent on
the (diffusion) parameterk and these dependences are also
derived utilizing inputs from observation (see Fig.5). The
obtained form of the functionF (X) for different values of
the parameterk are depicted in Figure6. Diffusive nature
of DM and DE components have been achieved through
the parametrised form ofQ(t), and Figure7 demonstrates
the validity of our model in both non-interacting and
interacting scenarios.
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