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Abstract We investigate a hybrid numerical algorithm aimed at large-scale cosmologicalN -body
simulation for on-going and future high precision sky surveys. It makes use of a truncated Fast Multiple
Method (FMM) for short-range gravity, incorporating a Particle Mesh (PM) method for long-range
potential, which is applied to deal with extremely large particle number. In this work, we present a specific
strategy to modify a conventional FMM by a Gaussian shaped factor and provide quantitative expressions
for the interaction kernels between multipole expansions.Moreover, a proper Multipole Acceptance
Criterion for the hybrid method is introduced to solve potential precision loss induced by the truncation.
Such procedures reduce the amount of computation compared to an original FMM and decouple the global
communication. A simplified version of code is introduced toverify the hybrid algorithm, accuracy and
parallel implementation.
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1 INTRODUCTION

In the early Universe, extremely hot and dense baryons and
photons are strongly interacting prior to the recombination.
The relic of the fluctuation of photons is imprinted
on the Cosmic Microwave Background Radiation which
can be detected at the radio band, as the Universe
is expanding (Planck Collaboration 2018). Meanwhile,
the initial fluctuation of mass increased due to the
gravitational collapse that formed planets, galaxies, cluster
halos and large scale structure of the Universe at present
(Peebles & Yu 1970). Several primary cosmic probes
can extract information locked in the mass distribution,
such as mass function of cluster counting, the sound
horizon of Baryon Acoustic Oscillations as a standard
ruler, power spectrum of cosmic gravitational lensing,
etc (Kaiser 1987; Eisenstein & et al. 2005). The evidence
combined with various data from sky surveys (Rozo et al.
2010; Abbott et al. 2018) supports a modern picture of
cosmology with two mysterious components, dark matter
and dark energy, whose natures are still puzzles of standard
physics (DES Collaboration 2019).

The next generation sky surveys will reveal the
dark side of the Universe by utilizing distant galaxies

and quasars as cosmic probe tracers, including DESI1,
EUCILD2 and LSST3. One crucial step is to generate a
simulated catalog of those tracers. However, it is not trivial
to produce the related observable for galaxy formation
which involves complicated astrophysical processes and
nonlinear evolution (Cole et al. 2000; Berlind & Weinberg
2002; Kitaura et al. 2016; Guo et al. 2011). Mock tracers,
such as the emission line galaxies residing in smaller
structures and at an earlier epoch, require underlying
cosmological simulations with unprecedented resolution
and volume to understand their mask effects, cosmic
variance, redshift uncertainties, etc. for the next generation
surveys. Various techniques are developed for large-scale
simulations carried out on top supercomputers with a
trillion particles.

The movement of particles in an expanding back-
ground can be modeled by equivalent Newtonian gravity
with periodic boundary conditions. One natural solver
of this model is referred to as the Particle Mesh (PM)
method (Hockney & Eastwood 1988) by convolution of
the Green function of gravity. The convolution has cost of
O(N logN), calling Fast Fourier Transformation (FFT)

1 https://www.desi.lbl.gov/
2 https://www.euclid-ec.org/
3 https://www.lsst.org/

https://www.desi.lbl.gov/
https://www.euclid-ec.org/
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two times. However, PM can only deal with the scale
above the computing grid so that it needs a compensated
sub-grid gravity solver, such as a truncated Particle-
Particle (PP) direct summation. The pioneer cosmological
simulation based on PP+PM method, so called P3M,
identified the structure of the cosmic web (Efstathiou et al.
1985; Jing & Suto 2002). Once the system has apparently
condensed, it will fail to reduce toO(N2) due to the
domination of PP interactions.

Another solver with cost ofO(N logN) is introduced
by Barnes & Hut(1986). They make use of an octal tree to
organize the particles. Details about the source cells can be
neglected, since it attracts a well-separated particle like the
gravity of mass points. Thus, any particle is just concerned
with the cells or particles “near enough”, determined by an
opening angle to control the precision of the acceleration.
Warren (2013) modified a tree code (2HOT) to run
on Graphics Processing Units (GPUs) andBédorf et al.
(2014) optimizedBonsai (Portegies Zwart et al. 2013) to
achieve performance of 24.77 Pflops for the Milky Way
simulation.

Tree code is less sensitive to the particle clustering
than a PM code but the PM method is stable and
rapid for a regular and periodic mesh. A hybrid TreePM
method can combine the merits from both methods (Bagla
2002; Bagla & Ray 2003). The Millennium Simulation
Project (Springel et al. 2005) was carried out with over
1010 particles by the parallel TreePM code of Gadget-2
(Springel 2005) over ten years ago. The idea of TreePM
is also effective on a heterogeneous platform, such as
HACC (Habib et al. 2016, 2013). Recently,Ishiyama et al.
(2012) ran a trillion particle cosmological simulation on K
computer.

To face the challenge of high precision, the scale
of simulation is increasing with the capability of su-
percomputers. That requires a faster algorithm to deal
with a unprecedented particle number. Fast Multipole
Method (FMM) has a nearly linear computational
complexity of O(N). It was originally introduced by
Greengard & Rokhlin (1987). Cheng et al. (1999) ex-
tended it into three dimensions. Similar to the Tree
method, FMM also builds a tree but computes the
interactions between cells. The early FMM works in
spherical polar coordinates. It has also been success-
fully accelerated on GPU devices, such as ExaFMM4

(Gumerov & Duraiswami 2008; Yokota & Barba 2011).
Its precision is controlled by the order of expansions.
Moreover, an implementation in Cartesian coordinates
may be more suitable for astrophysical simulation with
an acceptance criterion based on opening angle, instead
of “children of parent’s brother” (Dehnen 2000, 2002).

4 http://www.bu.edu/exafmm/

Fig. 1 Schematic diagram for FMM. The gravitational
potential at a certain point (red point with black circle) in
Region A is generated by a group of particles in region B.
The multipole expansion is computed by P2M in Region
A. Then the information is successively propagated via
interaction kernels, M2M, M2L, L2L and L2P. The gravity
from the nearby particles can be directly accumulated by
P2P. The blue dashed circle signifies the cutoff radius.

For some mass dependent criterion, its complexity can
approachO(N0.86) by relying on a dual tree traversal.
Recently,Potter et al.(2017) reported that the application
of cosmological simulation is able to involve 2 trillion
particles by software PKDGRAV-3 on supercomputer Piz
Daint.

This paper is organized as follows. In Section2, we
briefly introduce the fundamental approach for FMM, then
we investigate the combination of FMM and PM method,
two current methods, for cosmological simulation. The
details of our algorithm will be discussed in Section2.2.
A corresponding Multipole Acceptance Criterion (MAC)
is taken into account in Section2.3. We measure the
reduction of kernel interactions via the hybrid method
compared to a conventional one in Section3. In Section4,
we introduce a parallel implementation to verify the
algorithm. Finally, we summarize in the last section.

2 ALGORITHM

2.1 Fast Multipole Method

In FMM, all particles are organized into a tree and the
finest tree cells (or tree nodes) are always a series of
particle packs, which are also referred to as leaves. In
Figure 1, we employ an Orthogonal Recursive Bisection
(ORB) tree and set a maximum limit on the particle
number in leaves. The particles including parent cell are
almost equally divided into two offspring cells down to
leaves.

The gravitational potential at a point in regionB
induced by the particles in regionA can be estimated

http://www.bu.edu/exafmm/
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via a series of interaction kernels between the multipole
coefficients. We follow the mathematical notations in
Dehnen(2014) and summarize the relevant equations of
FMM method in Cartesian coordinates. The multipole
coefficientsM of regionA are computed by the particles

Mm(zA) =
∑

a∈A

µa
(−1)m

m!
(xa − zA)

m, (1)

wherezA is the geometric (or mass) center of regionA, µa

is mass of the particle labeled bya at the position ofxa and
the integer vectorn denotes(nx, ny, nz). One can shift a
multipole expansion fromz to z+ x by the summation of

Mm(z+ x) =

m
∑

n=0

x
n

n!
Mm−n(z). (2)

Given a Green function ofψ(zb − za), the coefficients of
local expansionL of potentialΨ at the center of regionB
of zB are determined by theM atza by equation

Ln(zB) =

p−|n|
∑

|m|=0

Mm(zA)Dn+m(zB − zA), (3)

whereDn ≡ ∇nψ is a traceless operator. Newtonian
gravity or electrostatic force can be expressed by
a traceless displacement tensorr̄n multiplied by the
prefactors of

f̃(n)(r) = (−1)n
(2n− 1)!!

r2n+1
. (4)

Similarly, the multipoleL can be shifted by

Ln(z+ x) =

p−|n|
∑

|m|=0

x
m

m!
Lm+n(z). (5)

Thus, the potential atxb is approximated by

Ψ(xb) =

p
∑

|n|=0

1

n!
Ln(zB)(xb − zB)

n. (6)

For short, the multipole expansion for the source is
labeled by ‘multipole’ and the expansion at the sink (or
target) place is labeled by ‘local’. Then the abbreviations
of the kernels are as follows: particle-to-particle is referred
as to P2P, particle-to-multipole is P2M, multipole-to-
multipole is M2M, multipole-to-local is M2L, local-to-
local is L2L and local-to-particle is L2P. The multipole and
local expansion coefficients are included in all tree cells.

The above equations can be utilized to transmit
the information on gravity from one particle group to
another. The gravity of a certain particle in the purple
sink (targeted) leaf induced by the orange source leaf
can be computed through a series of successive kernels.
The multipole coefficientsM of an (orange) leaf are

determined by the discrete mass points in the cell (by using
Eq. (1)), which describe mass distribution in source cells
or leaves. Then the multipole expansion coefficients in a
parent cell are computed by its offspring cells recursively
(utilizing Eq. (2)). This procedure is also referred to as
upward pass.

The kernel M2L computes the local expansion
coefficients of gravitational potential from the multipole
of source cells by Equation (3). When two cells are well
separated from each other, the M2L kernel is called to
compute the interactions from yellow to green cells in this
illustration. The local expansion coefficients are passed
level-by-level downward (applying Eq. (5)) till a leaf is
met. The gravity and potential of the targeted particles (red
point with black circle) is calculated by the local expansion
about the center of purple leaf, using Equation (6).

The nearby particles surrounding the target are too
close to be dealt with by the above kernels and they
must be directly accumulated by their interaction. Since
a directN -body summation isO(N2), it can be quite time
consuming. The procedure is referred to as to P2P, which
actually can be considered as interactions between particle
packs in our implementation as well.

2.2 Combination of Particle-Mesh and Fast Multipole
Method

Analogous to TreePM, the essence of Particle-Mesh and
Fast Multipole Method (PM-FMM) is also to split gravity
into two parts by scale. A truncated short-range part of
gravity is computed by FMM and a smoothed long-range
part is by PM method. A combination of two parts must be
equivalent with an original inverse-square law at the split
scale, by fine tuning its splitting function.Bagla (2002)
suggests a Gaussian form as transition function for TreePM
and we generalize it to the PM-FMM in this section.

Specifically, the convolution for PM with a grid size
of ∆g needs a Gaussian functionexp(−k2/4k2s)/

√
π as

a filter to suppress the Green function of the Poisson
Equation, whereks is the wave number of split scale of
rs ∼ 1.2∆g.

Correspondingly, the short range gravity must be
properly modified to compensate underestimation from the
PM method. As a result, the potentialr−1 is modified by
error function as

φ(r) = f(0)(r) =
1

r
erfc

(

r

2rs

)

, (7)

and an inverse-square law is modified by

g(r) = f(1)r = − r

r3

[

erfc

(

r

2rs

)

+
r

rs
√
π
exp

(

− r2

4r2s

)]

.

(8)
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Fig. 2 Reduction effect. All prefactors are truncated at the
cutoff radius∼ 5rs.

Moreover, the operatorDn = ∇n[erfc(|r|/rs)φN ] for a
truncated potential is employed for computation of FMM,
whereφN is Newtonian potential.

For higher orders, the M2L kernel in the truncated
algorithm can be implemented by minimum substitutions
of the original prefactorf̃(n) (Eq. (4)) by the following
ones without tildes:

f(2)(r) =
3

r5
erfc

(

r

2rs

)

+
1√
π
exp

(

− r2

4r2s

)

×
[

3

rsr4
+

1

2r3sr
2

]

,

f(3)(r) = −15

r7
erfc

(

r

2rs

)

− 1√
π
exp

(

− r2

4r2s

)

×
[

15

rsr6
+

5

2r3sr
4
+

1

4r5sr
2

]

,

f(4)(r) =
105

r9
erfc

(

r

2rs

)

+
1√
π
exp

(

− r2

4r2s

)

×
[

105

rsr8
+

35

2r3sr
6
+

7

4r5sr
4
+

1

8r7sr
2

]

.

Figure2 demonstrates the comparison of two kinds of
prefectors. It is apparent that all interactions are truncated
at the radius of5×rs, a cutoff radiusRcutoff , so that gravity
at a short range is negligible beyond that scale. For P2P
kernel, onlyf(1) is needed.

One can compute the prefactor of any orderp by
equation

(−1)pr2p+1
s f(p)(x) =

(2p− 1)!!

x2p+1
erfc

(x

2

)

+

p
∑

q=1

2q−p(2p− 1)!!

(2p− 2q + 1)!!

e−x2/4

√
πx2q

,
(9)

wherex ≡ r/rs, or a more effective approach is to cal-
culate all prefactors in successive orders via a recurrence

Fig. 3 MAC. LA is side length of sink (targeted) tree cell
andLB is the source one. The red arrow is the separation
Sc between the centers of two nodes andSm is minimum
distance between boundaries of tree cells. Two boxes are
still physically relevant despiteSc being beyond the cutoff
radius.

form of

− r2sx
2f(p+1)(x) = (2p− 1)f(p)(x) +

e−x2/4

2p−1
√
πr2p−1

s

.

(10)
The hybrid algorithm is illustrated in Figure1. The

dashed circle signifies a cutoff radius. The contribution
from FMM is localized within the cutoff radius.

2.3 Multipole Acceptance Criterion and Error
Estimation

A dual tree traversal method can complete all kernel
computations by one tree walking. For a local tree, the
traversal begins with root-root pair but it can begin with
any pair of cells. If two cells are “well separated”, an M2L
kernel will be employed to compute the local multipole
of sink cell induced by the source one. Otherwise one
of two cells, usually a larger one, needs to be opened.
The traversal recursively proceeds in the opened cell until
walking to the end of a tree. The interaction between two
“nearby” leaves must use a P2P kernel.

Therefore, the definition of “well separated” will be
influenced by MAC. One can define the geometric relation
by the parameter ofopening angle θ = L/S, where
L is the length of cell andS is the separation between
two cells. It is still free to choose those lengths. In
PKDGRAV3,Potter et al.(2017) utilize the opening radius
RO = bmax/θ as a criterion, wherebmax is from the
mass center of the cell.Dehnen(2014) introduces a mass-
dependent acceptance criterion, which suppresses the cost
of O(N0.86) less than a linear complexity. To demonstrate
this approach, we choose the maximum side length of a
source cell asL, the separationSc is the distance between
the geometric center of two cells andSm is minimum
distance between two cells (see Fig.3).

Besides opening angle, our acceptance criterion needs
to be adjusted for effects caused by truncation and it is
summarized into three items:
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Fig. 4 Relation of error to opening angle. Relative error
of gravity or acceleration is calculated via truncated FMM
up to hexadecapole. The solid curve traces the rms error
and dash-dotted curve signifies the maximum error of all
particles.

– All interactions between cell-cell, cell-body and body-
body are neglected when the minimum separationSm

is larger than the cutoff radius;
– Call M2L kernel to compute local expansion coeffi-

cients while opening angleθ ≤ θMAC. Otherwise,
open the larger one of two cells of interest;

– Enforce opening the cells if the separation is at the
range of the transition region, even if the 2nd condition
is already met, where transition region is defined by
Sc > Rcutoff > Sm.

Our opening angle is defined asθ ≡ LB/Sc, whereLB

is the maximum side length of a source cell. It is apparent
that neighboring cells must be always opened according to
the 2nd item.

The first item causes an essential improvement in
the hybrid method. The additional 3rd item is due to
truncated design. Figure2 shows that the termr−1 is
dominated beyond the truncated scale but the higher order
multipoles still contribute the expansion coefficients of
local gravitational field in the traditional FMM. However
in our method, the multipoles at any order, here fromf0
to f4, are suppressed within the cutoff radius. Therefore
no information can be propagated out the cutoff barrier no
matter how many orders are considered. The error of short-
range gravity also fails to be suppressed by a stricterθMAC

because the shadow region in Figure3 is always ignored
and lost due to the modification of prefactors, despite also
contributing short-range gravity. The 3rd item is motivated
to fix it and guarantee the higher multipole can influence
the cells beyond the scale of cutoff radius.

Figure 4 plots the relative error by the new MAC
with the orders up to hexadecapole. The solid curve traces
the root-mean-square (rms) of relative error and the dash-
dotted curve signifies the envelop of maximum error. The
error of gravity in our criterion with the third item can be

controlled well. It drops as the opening angle decreases.
But the relation of error to opening angle changes. It breaks
the power law of error withθp, sayθ4 in hexadecapole,
presented inDehnen(2014).

The relation between accuracy and efficiency depends
on the choice of control parameters. But it is difficult
to derive the optimized parameters from a theoretical
analysis. The order of FMM can be independently
determined, which is constrained by the machine memory.
The memory that cells consume doubles for every order
that FMM adds. Some applications without a memory limit
employ the FMM up to 10th order with a huge equivalent
opening angle. We practically set the order of FMM up to
octupole or hexadecapole, since cosmological simulations
are usually pressed for memory. Correspondingly, it keeps
sufficient statistics to set the opening angle from 0.3 to
0.4 for regular cosmological simulations. One can decrease
the opening angle to improve accuracy and cause a sharp
enlargement in the amount of computation. Therefore the
parameters must be finely adjusted in accordance with
computing power, environments and accuracy tolerance.

3 COMPARISON OF COMPUTATIONAL COST

In the previous section, we describe an algorithm for
decoupling long-range and short-range gravity with a
proper modification of MAC. Correspondingly, in this
section we measure and confirm that the amount of
computation is reduced. There are two extreme density
distributions that affect cosmological evolution. In the
high-redshift epoch, the density contrast is tiny. The
computing box is almost uniformly filled with mass
particles. With the evolution of the Universe, the initial
seeds of structures grow and highly clustered structures are
formed, including filaments and halos. Most particles fall
into condensed regions.

Fig. 5 Uniform density distribution. The dashed curves
mark the counts of kernel P2P and M2L for a conventional
FMM and the solid curves signify truncated FMM in this
work. Each leaf (particle pack) only holds one particle in
the left panel; Each leaf holds 32 particles at most in the
right panel. Therefore, the length of tree cells is shorter
than theleft panel.
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Fig. 6 Highly clustered density distribution, which is the
most condensed case from aLambdaCDM cosmological
simulation run at redshiftz = 0. The dashed curves
mark the interaction counts of kernel P2P and M2L for a
conventional FMM and the solid curves signify truncated
FMM in the work. Each leaf only contains one particle in
theleft panel; Each leaf contains 32 particles at most in the
right panel.

The dashed curves correspond to the conventional case
and the solid curves are in this work. Arrows demonstrate
the reductions in the amount. The upper curves are for
the P2P kernel and lower are M2L. There is apparent
improvement, since the mean separation of most cells is
beyond the cutoff radius so that the computation of M2L in
original FMM vanishes for the uniform distribution, whose
cost is close to the P3M method in the uniform case.

Figure 5 demonstrates the analyses of the uniform
case. The most time-consuming kernels of M2L and P2P
are directly influenced by the truncated MAC. The run
duration depends on the implementation but the count of
interaction does not. It only depends on the choice of
MAC. In the left panel of Figure5, each leaf (particle pack)
only holds one particle at most, and 32 particles are in the
right panel. The count of interaction kernels determines the
depth of tree and spatial configuration. The tree contains
less cells in the right panel than right one in the same
particle distribution.

Figure6 demonstrates similar analyses for the cosmic
structure distribution of the Universe at present (redshift
z = 0). The notation is the same as in Figure5. As
expected, the total count is larger than in the uniform case,
because more particles are constricted into smaller cells so
that more cells are opened by the acceptance criterion. The
mean separation of cells shrinks below the cutoff radius,
but the hybrid method still works to reduce the kernel
count.

Compared with original FMM, kernel interactions of
M2L and P2P are reduced in our truncated one. However
an additional PM exists in our method. Theoretically, PM
has cost ofO(N logN), which is worse than FMM, but a
PM method can usually be more effectively implemented
to save the overall duration. On the contrary, the original
FMM makes use of Ewald summation to deal with

Fig. 7 The domain decomposition and top level tree.

a periodic boundary condition (Gumerov & Duraiswami
2014). It is not needed in this hybrid method.

4 PARALLEL IMPLEMENTATION OF
ALGORITHM

This PM-FMM method is employed by the cosmological
N -body simulation code photoNs-2, which is designed
for massively parallel cosmological simulations5. Its first
version (Wang et al. 2018) adopts a parallel Tree-PM
method and the interactions between particles and tree
cells are arranged into a task pool, which is suitable
for the optimization, especially on a heterogeneous
platform (Makino 2004; Hamada et al. 2009; Wang et al.
2018; Iwasawa et al. 2018). This second version updates
the short-range gravitational solver by truncated FMM
described in the previous Section2, instead of the tree
method.

In the new version, the domain decomposition returns
to an ORB tree across the computing nodes, such as
computing sockets or processors with a shared memory.
In addition, all domains and their upper nodes construct
a top level tree that needs be stored in all computing
nodes. Thus, the domain cell is the finest cell in the top
level tree but a root cell for local essential tree (LET).
The particles are also organized into ak-d tree in every
computing domain so that a distributed global ORB tree is
constructed. Figure7 illustrates a domain decomposition
for an almost uniform particle distribution. As an example
of seven processes, the ORB tree firstly distributes the
particles along thex-axis by the fraction of 4:3 in order to
balance particle number, then four processes take charge of
the left 4/7 volume of the box and another three processes
do the right 3/7.

The upward pass of P2M and M2M firstly runs on
the local tree. When all local upward passes are complete,
the parallel M2M, M2L and L2L are made for the top
level tree. But the inter-domain M2L and P2P still requires
information across the other domains. In photoNs-2, we
actively send local tree cells and leaves to the domain that

5 A simplified parallel MPI+openMP version can be downloaded
at https://github.com/nullike/photoNs-2.0 to test the
hybrid algorithm.

https://github.com/nullike/photoNs-2.0
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may need it. Using our MAC, a traversal with respect to
the closest boundary of target domain will find all potential
cells and leaves involved in the target domain. For instance,

Fig. 8 The local tree. The tree cells (0-4) and the particle
packs (7-9) need to send to the target domain (Domain 9)
in this case.

there are two local trees which are mounted on domain 9
and 10, respectively in Figure8. Cell 2 may be accepted by
MAC with respect to the “right side” boundary of domain
9 so that nodes 5 and 6 can be safely ignored (see Fig.8),
as are leaves from 11 to 14. The separation between leaf 10
and boundary may be larger than the cutoff radius so that
leaf 10 is also ignored. Then a segment of subtree including
all necessary information is arranged from the local tree of
domain 10.

Extra memory tosend andreceive must be allocated
to exchange the segment of cells and leaves for the
communications. After those parallel operations, a local
downward pass of L2L and L2P can be executed.

In this version, M2L and P2P operators are the most
time-consuming two kernels for gravity calculation. For
the criterion “children of parent’s brother”, the number of
operations of M2L and P2P only depends on the length of
the tree. But for the MAC in our implementation, it also
depends on the clustering of particles. We also rely on
a double-buffering task pool to improve the concurrency,
for P2P and M2L. As the mass particles collapse into the
potential well, the density contrast in the simulation box is
wildly different from place to place. Therefore we estimate
the workload for a single domain by counting the total
number of M2L and P2P operations to determine how to
redistribute the particles in the next time step. It is similar
with the strategy of the code GreeM (Ishiyama et al. 2009;
Ishiyama et al. 2012). Such a feedback strategy usually can
control the workload imbalance within15%.

Practically, this hybrid method is designed for mas-
sively parallel supercomputers with over104 computing
nodes or sockets. Its PM method needs to call the
FFT subroutine two times at every single synchronized
time step. A conventional FFT library, such as FFTW
(Frigo & Johnson 2005), decomposes a mesh into a series
of slices along a certain direction. It fails if the number of
processes is larger than the number of sides of the mesh,

but it exactly happens in a cosmological simulation. In
this version, we employ a Fortran library with a pencil
decomposition, 2DECOMP&FFT (Li & Laizet 2010), for
the PM. As a test, a simulation with a∼ 50003 grid is
carried out by over 20 000 processes.

5 SUMMARY AND DISCUSSION

In this paper, we investigate a hybrid method for the
massive application of cosmological simulations. In the
epoch of precision cosmology, FMM with complexity
O(N) is a key method to run high resolution simulations
on supercomputers and a traditional PM method still
contributes to decoupling the gravity and dealing with
the periodic boundary condition. The hybrid algorithm of
FMM with PM keeps the benefit of gravity splitting and
decreases the amount of computations.

Specifically, we modified the operators of the trun-
cated FMM for short-range gravity and provide a general
form to compute the prefactor of multipoles. We focus
on a Gaussian-type truncation. Because its sharp splitting
is proven by the TreePM method, in principle, one
can choose another truncated function, instead of the
exponential form. A polynomial function can be calculated
more efficiently for the numerical mathematical library
than an exponential one. The modifications of their
prefactors can be generated by a similar procedure. The
method in this work is different from the Particle Mesh
Multipole Method (PMMM), which calls(p + 1)2 FFT
to directly compute the multipole coefficients (Nitadori
2014) or Fourier Transform on Multipoles (FTM) method
(Ong et al. 2004). We do not use a Fourier transformation
to calculate the coefficients of multipole expansion but
rather gravitational potential.

Moreover, MAC needs be modified for two additional
conditions. One is for truncation of long-range interaction
and the other is for controlling the accuracy. The count
of kernel interactions is determined by the details of
implementation of FMM and MAC. A conventional FMM
has a linear stability andDehnen(2002) reports a better
stability by implementing a mass dependent MAC. In this
work, the hybrid method we demonstrate costs more than
O(N) but less thanO(N logN). The reduction of kernel
computation is due to decoupling the long-range force so
that such a hybrid method can robustly work for other
kinds of traversal and tree construction as well.

Finally, the current and next generation supercom-
puters provide a powerful numerical platform to run the
massive simulations with unprecedented resolutions and
simulation boxes, which usually are composed of tens of
thousands of computing nodes and various heterogeneous
accelerators and many-core architectures. Besides the
pressure of memory, I/O band and storage of snapshot,
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it requires appropriate algorithms designed for massive
concurrency to face the challenges of software scalability
and computing performance, especially on heterogeneous
devices. TheN -body applications exchange an enormous
number of particles among processes so that the communi-
cation strategy becomes an essential issue. The other trend
is to employ a more efficient method, such asO(N), to
deal with the extreme amount of force computation. The
method we proposed provides an option to calculate the
force efficiently and decouple global communication in
the meantime. The eventual performance of applications
depends on the algorithm and the implementation of
programming details. Here, we release a fundamental
version of code to verify the precision and validity of the
hybrid algorithm, which is expected to be optimized on
high performance computers.
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