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Abstract The LE is the low energy telescope that is carried onInsight-HXMT. It uses swept charge devices
(SCDs) to detect soft X-ray photons. LE’s time response is caused by the structure of the SCDs. With
theoretical analysis and Monte Carlo simulations we discuss the influence of LE time response (LTR) on
the timing analysis from three aspects: the power spectral density, the pulse profile and the time lag. After
the LTR, the value of power spectral density monotonously decreases with the increasing frequency. The
power spectral density of a sinusoidal signal reduces by a half at frequency 536 Hz. The corresponding
frequency for quasi-periodic oscillation (QPO) signals is458 Hz. The root mean square (RMS) of QPOs
holds a similar behaviour. After the LTR, the centroid frequency and full width at half maxima (FWHM) of
QPOs signals do not change. The LTR reduces the RMS of pulse profiles and shifts the pulse phase. In the
time domain, the LTR only reduces the peak value of the cross-correlation function while it does not change
the peak position; thus it will not affect the result of the time lag. When considering the time lag obtained
from two instruments and one among them is LE, a 1.18 ms lag is expected caused by the LTR. The time
lag calculated in the frequency domain is the same as that in the time domain.
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1 INTRODUCTION

The Hard X-ray Modulation Telescope that was launched
on 2017 June 15, also dubbed asInsight-HXMT, is China’s
first X-ray astronomical satellite (Zhang et al. 2018, 2020).
It carries three payloads: High Energy X-ray Telescope
(HE), Medium Energy X-ray Telescope (ME) and Low
Energy X-ray Telescope (LE). The LE contains three
identical detector boxes (LEDs) and one electric control
box (LEB). Each LED consists of eight swept charge
device (SCD) modules, two types of collimators, visible
light blocking filters, anti-contamination films, heat pipes
as well as several thermal and mechanical supporters
(Chen et al. 2020). The LE uses SCDs to record time-of-
arrivals and energies of soft X-ray photons in the energy
band of 0.7–13keV. The time response of the LE is caused
by the structure of SCDs. There are four quadrants in
each SCD detector. The charges generated by incident

photons that hit the detector flow out along a specific path
in each quadrant. The readout time of photons hitting at
different positions of the detector is different, which results
in the time response distribution (TRD) (Zhao et al. 2019).
Figure1 is a schematic diagram of the charge collection of
each LE/SCD.

Assuming a triangular TRD distribution inferred from
the structure of LE/SCDs,Zhang et al.(2017) studied the
time response of LE and its influence on the pulse profile
of pulsations. After that,Zhao et al.(2019) measured the
TRD of LE/SCDs using a long exposure readout mode
(LERM) and obtained the probability distribution of the
readout time. In this paper, we perform a more reasonable
analysis using the updated TRD.

The structure of this paper is as follows: in Section2,
the influence of the LE time response (hereafter LTR) on
the intensity function is studied using analytical methods.
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We also investigated the LTR effect using Monte Carlo
simulations. In Section3, the influence of the LTR on
the power spectral density (PSD) of sinusoidal signals
and quasi-periodic oscillations (QPOs) is discussed. In
Section 4, the influence on the pulse profile of pulsar
signals is discussed. Section5 focuses on the time lag and
Section6gives the discussion and conclusions of the paper.

Fig. 1 Schematic diagram of the charge collection by
LE/SCDs. Each SCD has four quadrants. In each quadrant
the yellow and gray areas are called ‘packed-pixels’. The
color is simply for visual discrimination. There are 120
‘packed-pixels’ in each quadrant, but we only draw a
few of them in the diagram. The charge generated by
the ‘packed-pixel’ A is first transferred to B, and then
transferred to the central C for recording. The incident
photons at different positions of the SCD lead to different
charge collection time, i.e., the time response.

2 METHODOLOGY

2.1 Theoretical Analysis

The number of detected X-ray photons (N ) in a given time
interval (tmin, tmax) obeys a Poisson distribution with a
parameterλ(t) (Emadzadeh & Speyer 2011), i.e.,

P (N = k) =

[

∫ tmax

tmin

λ(t)dt
]k

exp
[

−
∫ tmax

tmin

λ(t)dt
]

k!
,

(1)
whereP (N = k) represents the possibility of detecting
k photons in the given time interval(tmin, tmax); λ(t) is
called the time-varying rate or the intensity function in
the unit of photons per second and

∫ tmax

tmin

λ(t)dt = E[N ],
whereE[N ] is the expectation of the variableN . Let T0

represent the actual arrival time of an X-ray photon and

D the readout time. Therefore, the timeZ recorded by the
LE/SCD is that

Z = T0 +D,

D = D0 +Dk.
(2)

Here D is composed ofD0 and Dk, whereD0 equals
to 10−5 second, which is the fixed delay caused by
the 100 kHz working frequency of the readout mode of
LE/SCDs, andDk is the time delay caused by the TRD
effect.

The intensity function recorded by LE/SCDs is
influenced by the TRD effect, which can be described
as the convolution of the original intensity functionλ(t)
and the TRD (Zhang et al. 2017). Considering the updated
TRD and the fixed delay, the response intensity function
λ′(t) is given by

λ′(t) = λ(t) ∗ h(t),

h(t) =
n
∑

k=1

pkδ[t− 10−5(k + 1)],

n
∑

k=1

pk = 1,

(3)

wheren = 118 andλ(t) is the original intensity function;
pk is thekth probability of delaying10−5k seconds.pk
and the corresponding delay are shown in Figure2; δ is
the Dirac delta function. Thush(t) is the impulse response
function of LE/SCDs. The detection area of each SCD
quadrant is a L-shaped strip, which is called the ‘packed-
pixel’ (Fig. 1). There are 120 ‘packed-pixels’ in each
quadrant. The 20 ‘packed-pixels’ near the centre have a
fixed read-out time. On the other hand, two ‘packed-pixels’
close to the outskirt of SCDs are invalid, which are thus
not considered. Therefore, with the working frequency
of 100 kHz, all charges would be readout within 1.18 ms
(Zhao et al. 2019). Because the 20 ‘packed-pixels’ near the
centre have a fixed delay and the area is smaller than the
outside, the time resolution of LE/SCDs is often recorded
as 0.98 ms (Chen et al. 2020). In this paper, all delay
effects are taken into account. So the sequence number of
Equation (3) starts from 1 to 118. The LTR effect in the
timing analysis can be studied by comparingλ′(t) with
λ(t).

2.2 Monte Carlo Simulation

The Monte Carlo (MC) simulation is widely used when
dealing with difficult quantitative analysis. The general
method is as follows:

1. In the time interval(tmin, tmax), the time set{ti}Mi=1

that represents arrival times of photons is sampled
from the original intensity functionλ(t) by using
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Fig. 2 Time response distribution (TRD) of LE/SCD.

the rejection sampling method. The time set{ti}
M
i=1

satisfiest1 ≤ t2 ≤ ... ≤ ti ≤ ... ≤ tM−1 ≤

tM .The time set{ti}Mi=1 follows a given distribution,
for examples, periodic signals, QPOs signals, etc.

2. Add a random number to each value in the time set
{ti}

M
i=1 to get a new time set{ui}

M
t=1, whereui =

ti+D. We arrange{ui}
M
t=1 in an ascending order and

still denote it as{ui}
M
t=1. Therefore,{ui}

M
t=1 satisfies

t1 + 10−5 ≤ u1 ≤ u2 ≤ ... ≤ ui ≤ ... ≤ uM−1 ≤

uM ≤ tM + 118× 10−5.
3. Extract two light curves from time sets{ti}Mi=1 and

{ui}
M
t=1, which represent signals before and after the

LTR, respectively. Then the influence of the LTR on
the timing analysis can be studied by comparing these
two light curves.

To carry out the simulation more efficiently, a spectral-
timing software packagestingray for astrophysical X-ray
data analysis is employed (Huppenkothen et al. 2019).

3 ON POWER SPECTRAL DENSITY (PSD)

3.1 General Analysis

Let Pλ(f) andPλ′(f) represent PSDs ofλ(t) andλ′(t),
respectively. Thus, their relation can be written as:

Pλ′(f) = |H(f)|2Pλ(f), (4)

where H(f) is the Fourier transform of the impulse
response functionh(t) and f represents the frequency.
Considering Equation (3), |H(f)|2 is given by

|H(f)|2 = F [h(t)]F [h(t)]∗

=

n
∑

k=1

p2k

+ 2

n−1
∑

i=1

n
∑

j>i

pipjcos[2× 10−5πf(i− j)].

(5)

Fig. 3 |H(f)|2 as a function of frequency. Thesolid line is
|H(f)|2 and thestar markers are results of Monte Carlo
simulations. Thegreen dot indicates that the PSD peak
after the LTR at 536 Hz decreases by a half.

Obviously,

|H(f)|2 < (

n
∑

k=1

p2k + 2

n−1
∑

i=1

n
∑

j>i

pipj) = (

n
∑

k=1

pk)
2 = 1,

(6)
wheren = 118. Therefore, thePλ′(f) is smaller than
Pλ(f) at any frequency and the attenuation factor is
|H(f)2| (shown in Fig.3).

In addition, we performed MC simulations using this
method. In practice, we assumed that the original light
curve has an intensity of 1000 cts s−1 and an exposure of
100 s. We show the modulation of the PSD caused by the
LTR in Figure3. We found that our simulations are well
consistent with the theoretical estimation.

3.2 QPO Signals

We used the MC method to simulate QPOs, which are
typical signals in the astronomical timing analysis. In
the PSD, QPOs commonly appear as a peak at a certain
frequency with a finite width, which can be described as a
Lorentzian function (Wang 2016)

Pν =
A0ω

(ν − ν0)2 + (ω
2
)2
, (7)

whereν0 is the centroid frequency,ω is the full-width at
half maximum (FWHM), andA0 is the amplitude of the
signal. The quality factor (defineQ≡ ν0

ω
) represents the

significance of QPOs. By convention, signals withQ > 2

are called QPOs while those withQ ≤ 2 called the peaked
noise (Wang 2016).

We simulated different centroid frequencies of QPOs.
The detailed process is as follows:

– Consider Lorentzian-shape PSDs described by the
Equation (7) with specific parameters. In practice, we
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performed simulations assuming variable centroid fre-
quencies between 10 Hz and 600 Hz with a resolution
of 10 Hz. We also setA0 ≡ 1 andω ≡ ν0

10
. Therefore,

the Q factor of QPOs signals we simulated always
equals to 10.

– Simulate a light curve for a given PSD using the
algorithm proposed byTimmer & König (1995). The
light curve duration and root mean square (RMS) were
set at 500 s and 0.5, respectively. The time resolution
of the light curve was set at 1/4 reciprocal of the
centroid frequency of the corresponding QPOs.

– Using the light curve as an intensity function, the time
set{ti}Mi=1 before the LTR and the time set{ui}

M
i=1

after the LTR were obtained by using the method
mentioned in Subsection2.2.

– Generate PSDs using the time sets{ti}Mi=1 and
{ui}

M
i=1. To suppress the Poisson noise, each light

curve was divided into 10-second segments to
calculate PSDs independently, and then an averaged
PSD could be obtained.
Finally, we obtained the resulting parameters of QPOs
after the LTR, and compared them with the input
models.

Figure 4 shows an example. The PSD calculated
here is based on the Miyamoto normalization, which is
a convenient method for calculating the RMS of QPOs
(Miyamoto et al. 1992).

The influence of the LTR on QPOs parameters can
be obtained as a function of the QPO frequency, which
is defined asδ ≡ β

α
. α represents the parameters of

QPOs before the LTR, such asν0, ω, A0 and RMS, and
β represents the corresponding values after the LTR. The
δ is their ratio, which is denoted asδν0 , δω, δA0

, δQPOrms,
respectively. Figure5 shows the changes ofδν0 , δω, δA0

and δQPOrms with the QPO frequency.δν0 and δω are
almost invariant, which indicates that they are not affected
by the LTR.

Meanwhile, δA0
of QPOs decreases with the in-

creasing frequency, indicating that the LTR has a great
influence on the peak value of QPOs. This is similar to the
results obtained from Subsection3.1. We used a quadratic
polynomial functiony = ax3+bx2+cx+d to fit δA0

. The
fitting parameters area = −1.05×10−9, b = 3.02×10−6,
c = −2.10× 10−3, d = 0.954, respectively. According to
the simulation, theQ factor of QPOs does not change with
the centroid frequency because both the FWHMω and the
centroid frequencyν0 of QPOs are unchanged after the
LTR. Considering that the peak value of QPOs decreases
as the frequency increasing, the actual data contains high
frequency QPOs may miscalculate theQ factor because
the significance of QPOs obtained is too low. The RMS
results are shown in panel d of Figure5. It is similar to

δA0
, which decreases with the increase of the centroid

frequency. We fitted the results with a functiony = ax2 +

bx + c. The fitting parameters area = 1.21 × 10−6,
b = −1.11× 10−3, c = 0.977, respectively.

4 ON PULSE PROFILE OF PERIODIC SIGNAL

The conventional method to obtain the pulse profile
of a pulsar signal is epoch-folding (Ge et al. 2016).
Considering that the LTR changes the arrival time of
photons in milliseconds, the accuracy of the pulse profile
with a period of milliseconds is expected to be influenced
significantly.

In fact, the pulse profile with a high SNR can
be considered as the intensity function mentioned in
Subsection2.1. The theoretical results are also represented
by Equation (3). Actually, the impulse response function
has described the influence on profile already, but in order
to get a more intuitive result we simulate a periodic signal.
In other words, suppose that the intensity function in one
cycle has the following form:

λ(t) = exp[−
(t− µ)2

2δ2
], (8)

where µ and δ represent the peak position and the
dispersion degree of the profile in a periodP , respectively.
Here we setµ = P

2
and δ = P

15
, respectively. In this

way, a single peak signal can be well constructed in one
cycle. Once we get the expression of the profileλ(t), we
can calculate theλ′(t) using Equation (3) or the Monte
Carlo method mentioned in Subsection2.2. Figure6 shows
the results of the profile before and after the LTR when
the periodP takes different values. It can be seen that
the smaller the periodic of the signal, the greater the
influence of the LTR, which are represented by the phase
shifting (PS) and the peak value (PV). A series of signals
with different periods are simulated, and changes of the
peak value (denote asδPV), the phase shifting (denote
as δPS) and the RMS (denote asδrms) of the signals
before and after the LTR are calculated to quantitatively
describe the influence of the LTR on the pulse profile. The
definitions ofδPV andδrms are similar to those mentioned
in Subsection3.2. The definition ofδPS is δPS ≡ pa−pb

P
,

wherepa and pb represent the peak position before and
after the LTR andP represents the period. Figure7 shows
the simulation results.

In addition, we also used the real data of theInsight-
HXMT (ObsID: P010129900101) to do some verification.
The data reduction and the scientific results have been
published byTuo et al.(2019). We found that the phase
of the LE pulse profile is shifted, compared with HE and
ME (Fig. 7). For the convenience of comparison, Figure7
also shows the HE and ME results after the LTR. It appears
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Fig. 4 Left panel: The black dashed line is a Lorentzian model and thered line is the simulated PSD which has been
normalized for comparison.Right panel: the simulated PSD by using the Lorentzian model.Red points are simulated PSD
before the LTR whilegreen points are simulated PSD after the LTR. Theblack dashed line is the best-fitting with the
corresponding Lorenzian model.

Fig. 5 The influence of the LTR effect on the QPO studies. From a practical point of view, the higher frequencies have a
larger simulation error so we only got to 600 Hz. Panel a:δν0 as the function of frequency. Panel b:δω as the function of
frequency. Panel c:δA0

as the function of frequency. Thered dashed line is the result of the quadratic polynomial fitting.
The fitting function isy = ax3 + bx2 + cx + d and the fitting parameters area = −1.05 × 10−9, b = 3.02 × 10−6,
c = −2.10 × 10−3, d = 0.954, respectively. Panel d:δQPOrms as the function of frequency. Thered dashed line is
the result of the quadratic polynomial fitting. The fitting function isy = ax2 + bx + c and the fitting parameters are
a = 1.21× 10−6, b = −1.11× 10−3, c = 0.977, respectively.

that the peak position of HE and ME after the LTR is
indeed close to the peak position observed by the LE,
which indicates that the abnormality of the LE pulse profile
is mainly caused by the LTR. For comparison, we draw the
δPV, δPS andδrms of HE and ME in Figure7 with red dots,
which are in good agreement with the simulated curve.

5 ON THE TIME LAG

5.1 The Time Domain Time Lag

In the time domain, the time lag between two signals
is usually calculated using the cross-correlation function
(Li et al. 2012). The time displacement that maximizes the
cross-correlation function is called the time delay between
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Fig. 6 Upper left and right panels: intensity functionsλ(t) andλ′(t) before (star sign) and after (cross sign) the LTR
assuming different periods. The profiles are obtained by folding the time sets generated by the Monte Carlo method
mentioned in Subsect.2.2, and thedashed line is the theoretical prediction by using Eq. (3). Bottom left panel: the pulse
profile of the Crab pulsar observed byInsight-HXMT satellite.Bottom right panel: the pulse profiles of HE and ME after
the LTR are compared with that of LE.

Fig. 7 δPV, δPS andδrms as a function of the pulsed period. Thered dots are the results using the Crab data obtained from
HE and ME after the LTR.

the two signals. In this section, we simulate two signals
with a fixed time delay. Then we calculate their time
lag after the LTR. In this way, we explore how the LTR
influences the time lag.

For the sake of simplicity, we chose a flat signal as the
intensity functionλ(t). We sampled this intensity function
to get the time set which represent arrival times of a batch
of photons. Then, we shifted the time sets with a constantτ

to get a new time set. These two time sets have a fixed time

lagτ . Then cross-correlation function between light curves
extracted from these two time sets were calculated, which
is shown in Figure8. The time resolution of light curves
was set at half of the time lagτ . Two cross-correlation
functions (before and after the LTR) are compared. It is
clear that the smaller the time lag, the smaller the peak of
the cross-correlation function. The LTR only reduces the
values of the function and does not change the maximum
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red line: before LTR

green line: after LTR

red line: before LTR

green line: after LTR

Fig. 8 Simulations for the time lag in the time domain.Top left and right panels: the cross-correlation functions before
(red) and after (green) the LTR, assuming different time lags.Bottom panel: the peak ratio of the cross-correlation
function as a function ofτ . Whenτ is 0.63 ms, the peak value of cross-correlation function decreases by a half (red
dot). However, the peak position does not change, which impliesthat there is no influence on the time lag detected with
Insight-HXMT/LE.

position of it, so the calculated time lag actually will not
be influenced.

However, when we consider light curves detected with
LE and ME/HE, the LTR effect is expected to have an
influence on the lag detection. In this case, two non-lag
time sets were generated, one of which was responded by
the LE LTR. After that, the cross-correlation function was
calculated between these two signals to obtain the time lag.
This simulation shows that the resulting time lag is 1.18
millisecond. It is the maximum time delay of the LTR.
This is reasonable because the intensity function is mainly
delayed by 1.18 millisecond.

5.2 The Frequency Domain Time Lag

We used the cross-spectrum to estimate the time lag of
two signals at different frequencies (Huppenkothen et al.
2019). Because we want to calculate the signal time lag
at different frequencies, we assumed a set of sinusoidal
signals to produce the the intensity function, and generated
a time set. Then we shifted the time set to get a delayed
time set. Finally, we extract two light curves from these
two time sets. These two light curves were used to
calculate the cross-spectrum to obtain the time lag. The
result is similar to that of the cross-correction function.As
shown in Figure9, after the LTR the time lag between two
signals is not changed, despite the results become more
diffuse. The time lag, in case that one signal is responded

Fig. 9 Simulation results of the time lag in the frequency
domain.Black (red) points represent the time lag before
(after) the LTR. The assumed time lag is 1 ms in the
simulation. After the LTR, the time lag is still close to the
true value but more diffuse.

by LE while the other not, in the frequency domain is also
similar to that in the time domain.

6 DISCUSSION AND CONCLUSIONS

The timing analysis mainly depends on the analysis of light
curves. The light curve is the sampling implementation of
the intensity function. Therefore we analyzed the influence
of the LTR on the intensity function at the beginning
of this paper. The effect of the LTR is the convolution
of the original intensity functionλ(t) and the TRD. In
addition, the Monte Carlo method is introduced to facilitate
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the calculation of some quantities. We then discuss the
influence of the LTR on the timing analysis from three
aspects: the PSD, the pulse profile and the time lag.

The influence of the LTR on the PSD is mainly
manifested in the reduction of the power. The simulations
of sinusoidal and QPOs signals show that the LTR effect
is more important at high frequencies. After the LTR, the
signal power decreases monotonically with frequency. For
sinusoidal signals, when the frequency is 536 Hz, the peak
of the power spectral density is reduced by 50% compared
with none LTR time series. For the QPO signals, this value
is 458 Hz. We note that the centroid frequency and the
FWHM of QPOs do not change in our simulations. So the
LTR will not change theQ factor of QPOs. After the LTR,
the RMS of QPOs also decreases.

The influence of the LTR on the pulse profile is mainly
manifested in the reduction of the pulsed peak, the RMS
and the phase shifting of the pulse profile. All of these
effects increase monotonically with the decrease of the
period. The pulse profile decreases by a half and the phase
shifts π when the period value is about 2 ms. When the
period value is 1 ms, RMS decreases by a half.

There are two situations for the influence of the LTR
on the time lag. The first case is that both light curves are
influenced by the LTR. The cross-correlation function is
used to calculate the time lag between two signals in the
time domain. Simulation results show that the LTR can
only reduce the maximum of the cross-correlation function
while it does not change the position of it. Therefore, the
calculated delay is not changed by the LTR. In the second
case, when one signal is influenced by the LTR while
the other not, a fixed delay of 1.18 ms will be introduced
between these two signals, which should be eliminated in
the actual calculation. The results in the frequency domain
are consistent with those in the time domain.

All these results indicate that although the maximum
time uncertainty of LE/SCDs is about 1 millisecond,
the timing analysis nearing 1 millisecond can also be
analysed in some ways(as discussed above). This provides
a reference for timing analysis usingInsight-HXMT/LE.
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