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Abstract Observations of the sky irradiation intensity in the visible wavelengths during a solar eclipse
permit to model the Sun diameter, a key number to constrain the internal structure of our star. In this paper,
we present an algorithm that takes advantage of the precise Moon topography from Lunar Reconnaissance
Orbiter to compute, with a high resolution in time, the geometrical part (i.e. top-of-atmosphere, and for
a given wavelength) of the sky irradiation at any given location on the Earth during these events. The
algorithm is also able to model the Baily’s beads. We give as an application the theoretical computation
of the light curve corresponding to the solar eclipse observed at Lakeland (Queensland, North Australia)
on 2012 November 13. The application to real data, with the introduction of atmospheric and instrumental
passbands, will be considered in a forthcoming paper.
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1 INTRODUCTION

The solar diameter is a fundamental parameter in solar
physics, used to constrain the internal structure of the
Sun. We refer toRozelot et al.(2018a) and Sofia et al.
(2013) for the relation between solar diameter, solar
luminosity and climate evolution. Due to the fact that the
Sun does not have a solid surface, a precise definition of
solar diameter must be agreed upon. We will discuss the
modern exact meaning later on. Many different methods
and instruments have been used to determine the solar
diameter; including meridian circles, Mercury transits,
astrolabes, solar diameter monitors, reflecting heliometers
and the solar eclipses (Thuillier et al. 2005; Rozelot et al.
2016; Rozelot et al. 2018a). The Greek astronomer Samos
(310 BC — 230 BC) is the earliest astronomer known
to have measured the solar diameter by analyzing lunar
eclipse observations. He assumed a given diameter for
the Earth and determined the solar radius as 900 arcsec
(Thuillier et al. 2005; Rozelot 2006; Rozelot & Damiani
2012).

The history of measuring solar diameter during solar
eclipse dates back to the 18th century. The first observation
of a solar eclipse to compute the solar diameter was
conducted in 1715 (Fiala et al. 1994), and a summary of
measurements of the solar diameter during solar eclipses,
from 1715 to 2010, was written byAdassuriya et al.
(2011). In 1836, the Baily’s beads phenomenon, occurring
in total and annular eclipses of the Sun was first recorded
in writing (Baily 1836). Baily’s beads are caused by the
lunar mountains’ deep valleys, and craters at the edge
of the Moon that break up sunlight (Sigismondi et al.
2012). Before Watts published the Watts’ limb charts in
1963 (Watts 1963), the measurement of the solar diameter
by solar eclipse observation was considered impossible
because the effect of the lunar rugged limb was not
known well enough. From 1966 to 2010, Watts’ limb
charts were widely used in solar eclipse and solar diameter
measurement research. However, the lunar limb profiles
obtained from the Watts’ limb charts sometimes have
large errors (Soma & Kato 2002). These errors influence
the accuracies of solar diameter measurements; thus, a
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high-resolution lunar topography data set is needed. In
2009, a global lunar digital elevation model (DEM) data
set with a resolution down to 1/16 degree was produced
by using the data from the Japanese lunar exploration
mission SELENE (Araki et al. 2009). This model was used
by Adassuriya et al.(2011), Sigismondi et al.(2012) and
Raponi et al.(2012) to determine the solar radius from
Baily’s beads timing observations. Five years later, the
Lunar Reconnaissance Orbiter (LRO) mission from NASA
published a higher resolution 1/256 degree DEM data
in 2014. These DEM data are the most accurate lunar
topography data at the time of the writing of these lines.

It is now time to precise what we mean by “solar
diameter”. First, this notion implies that the Sun can be
considered as a pure sphere. Our Sun is rotating with a
rotation period of 24.47 days at the equator and almost
38 days at the poles. It is argued that there is a 10
km difference between the polar and equatorial diameter
(Rozelot & Damiani 2011; Kuhn et al. 2012; Meftah et al.
2016). No gravity flattening is observed from the tracking
of Deep Space probes (an upper limit of2 × 10−7

was given byFienga et al.(2011). Within an accuracy
of +/− 10 km, it is therefore justified to use only one
parameter to characterize the Sun “size” (Meftah et al.
2016). Secondly, the Sun limb is not a solid surface, and
show a progressive darkening, of wavelength-dependent
character, at its telescopic limit (Hestroffer & Magnan
1998). The most common modern definition is to use a
wavelength-based approach, such asLamy et al. (2015)
and Rozelot et al.(2016), where the solar diameter is
defined as the value observed at 540 nm optical wavelength
(green light). To observe the light-curve at one wavelength
implies the use of narrow-band filters, reducing the amount
of light received by photometers, and so decreases the
signal-to-noise ratio. To observe over a wider range
of wavelength improves this ratio, but then a suitable
average of “wavelength-dependent solar diameters” must
be defined (Rozelot et al. 2016). In 2018, the solar radius
determinations made during the 2012 Venus transit by the
Solar Diameter Imager and Surface Mapper (SODISM)
telescope onboard the PICARD spacecraft were published.
At 535.7 nm, the solar radius was found equal to696 134±

261 km, against696 156 ± 145 km at 607.1 nm and
696 192 ± 247 km at 782.2 nm. It indicates that the solar
radius wavelength dependence on the visible and the
near-infrared wavelength is extremely weak (Meftah et al.
2018). In 2015, Resolution B3 of the International
Astronomical Union defined a new value of the nominal
wavelength-independent solar radius (695 700 km) that
was different from the canonical value used until then
(695 990 km) (Prša et al. 2016). This nominal solar radius
corresponds to the solar photospheric radius suggested by

Haberreiter et al.(2008) who resolved the long-standing
discrepancy between the seismic and photospheric solar
radii (Mamajek et al. 2015). We will use this new value
(695,700km) in all the computations done in this paper.

In this work, we used the LRO lunar DEM data
set to calculate with high accuracy the atmosphere-
less light curve for the solar eclipse observed at
Lakeland, Queensland (15◦51′30′′S, 144◦51′20′′E) on
2012 November 13. By atmosphere-less, we mean that
we did not consider the extinction of solar light caused
by atmosphere gases and aerosols, the scattering of the
Sun light by the atmosphere, as well as photometer
passbands. We used a pure geometrical optics approach
(i.e. an “infinite” frequency monochromatic approximation
for light), taking into account the light-time between Moon
and Earth.

2 DATA AND METHOD

2.1 LRO Digital Elevation Model Data

Between July 2009 and July 2013, the Lunar Orbiter
Laser Altimeter (LOLA;Smith et al. 2010), an altimeter
instrument onboard the LRO spacecraft (Tooley et al.
2010) gathered more than 6.5 billion laser altimetric
measurements along ground tracks separated by 1.25 km
at the Moon equator with a separation of about 57 m
along-track between laser shots. The diameter of the cross-
like laser shot imprint on the Moon surface was about
50 m for an LRO nominal polar orbit of 50 km altitude.
The crossovers between the altimetric tracks on the Moon
surface were used by the LOLA team to reduce the orbital
error of LRO down to a few tens of centimeters. The
average accuracy of each laser shot point after crossover
corrections is estimated to be better than 20 meters in
horizontal position and around 1 meter in Moon radius
(Mazarico et al. 2012).Thereafter, the calibrated altimetric
measurements were gridded (Digital Elevation Model)
with the algorithm ofWessel et al.(2013) with a resolution
of 256 pixels per degree in selenographic latitude
and longitude, corresponding to 118 m on the Moon
equator (Neumann et al. 2011). Gaps between tracks, up
to 4 km at the equator, were filled by interpolation
(Smith et al. 2010). We downloaded these grid values
(file “Lunar LRO LOLA Global LDEM 118m” from the
LRO website (see Acknowledgements section). The grid
values were computed by subtracting the lunar reference
radius of 1737.4 km from the surface radius measurements
(Archinal et al. 2011). An improved digital terrain model,
limited to latitudes+/− 60 degrees, exists (Barker et al.
2016) but cannot be used for this work because we need
the limb from pole to pole.
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The latest DE430 ephemeris (Williams et al. 2013;
Folkner et al. 2014) from the Jet Propulsion Laboratory,
embedded in the SPICE kernel library (https://
naif.jpl.nasa.gov/naif/toolkit.html, ver-
sion N0066 in our case) was employed to generate the
positions and velocities of the Earth and the Moon. It
is valid from 1549 December 21 to 2650 January 25.
According to Urban & Kenneth Seidelmann(2013) and
W.M. Folkner (personal communication, 2020 July 7),
the DE430 ephemeris uncertainty in the relative position
between the Earth and the Moon is around 1 meter.

2.2 Observation Model

2.2.1 Limb geometrical model

The lunar limb is defined as the lines emanating from the
observer that are tangent to the Moon. The lunar limb is in
the “plane of sky”, a plane perpendicular to the direction of
the observer to the center of the Moon. The observational
geometry is given in Figure1.

As shown in Figure1, MF and MG are the limb
points as seen by the observer, defining a circle in three
dimensions.MF can be computed by:

−−→
MF =

−−→
OF −

−−→
OM (1)

OM is the vector of observer to the center of the Moon.
OF is:

−−→
OF = Dµ+ r(cos θi + sin θj) (2)

where µ is the unit vector of
−−→
OM , i and j are two

orthogonal directions in the plane of sky.i andj can be
computed by:

i = µ× z j = µ× i (3)

where z is the local zenith of the observer. All these
vectors are functions of time.D is the distance between
the observer and the plane of sky andr is the radius of the
limb profile.D andr are defined by:

D = d
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whered is the distance between the observer and the center
of the Moon.

To simplify the problem, a basic assumption could
be to assume that the observer is at an infinite distance
from the Moon. In this case, we haveD=d and r=R,
and the limb is a great circle on the Moon surface. We
will see in the next chapter that this assumption is not
sufficiently accurate. The distances in Equations (1)–(4)
have to be understood as “light- time” distances. The light

Table 1 Eclipse parameters for the Lakeland (North
Australia) eclipse on 2012 November 13. The eclipse
magnitude (*) in the table is the fraction of the Sun’s
diameter obscured by the Moon. The mean radius of the
Moon is assumed to be nominally 1737.4 km and the
radius of Sun is nominally fixed at 695 700 km (IAU
resolution 2015-B3). The coordinates of the Sun and the
Moon were computed from the DE430 ephemeris. The
geographical coordinates of the observer are:15◦51′30′′S,
144◦51′20′′E.

Calender Date 2012-NOV-13

First Contact (Eclipse Start) 19:44:05 (UTC)

Second Contact (Totality begins) 20:37:38 (UTC)

Mid-Totality Time 20:38:24 (UTC)

Third Contact (Totality ends) 20:39:12 (UTC)

Fourth Contact (Eclipse ends) 21:38:35 (UTC)

Eclipse Magnitude* 1.0375

Duration of Totality 1 min 34 s

takes slightly more than one second to cross the Moon-
Earth distance, therefore, the

−−→
OM vector is the solution of

the equation:

cτ = ‖
−−−−−−−−−→
O(t)M(c− τ)‖ (5)

wherec is the speed of light,t is the time recorded by the
observerO, τ is the light-time between the pointM and
the pointO and‖.‖ is the Euclidean norm. This equation
is solved iteratively by the SPICE library. The change of
coordinates between the LRO DEM, given in the Moon
mean equator (MME) frame, and the limb frame is also
handled by the SPICE library.

2.2.2 Example of limb computation

We now illustrate the computation of the Moon limb by
using Equations (1)-(5), in the case of the solar eclipse
observed on Lakeland on 2012 November 13 (see Table1
for details).

Figure 2 shows the Moon limb, as seen from the
observer in Lakeland, plotted on the Moon surface at mid-
totality.

The limb profiles for both the finite-distance and
infinite-distance observers are shown in Figure3, enlarged
by a factor of 40 for legibility.

Figure 4 shows clearly that the infinite-distance
approximation is too crude. The time for the right border
of the Moon to cross the Sun surface, as seen from the
observer at Lakeland, is 3213 seconds (First to Second
contacts, see Table1). As the mean diameter of the Moon
is 3474.8 km, this means that the velocity of the Moon in
the plane-of-sky of the observer is around 1.08 km s−1,
therefore a distance of 770 m is equivalent to 0.713 s

https://naif.jpl.nasa.gov/naif/toolkit.html
https://naif.jpl.nasa.gov/naif/toolkit.html
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Fig. 1 Finite-distance observer model.E is the center of the Earth,O is the observer on the Earth surface andM is the
center of the Moon. TheZ direction is the local zenith of the observer.G andF are the limb points as seen from the
observer.

Fig. 2 The Moons limb plotted in the Moon surface, (red line) at 2012-NOV-13 20:38:24 UTC, as observed from Lakeland
on 2012 November 13. The two cases for limb computations (finite -distance and infinite-distance observers) cannot be
distinguished in this figure. The base map is the topographicmap from the LRO mission.

in the timing of the Baily’s beads, a totally unacceptable
value, because the timing accuracy for the measurements
is typically at the level of 1 millisecond.

From a theoretical point-of-view the limb must be
recomputed at each observation time, both for the timing
of the Baily’s beads and for light curves, as the Moon rolls
back and forth around the sub-Earth point as the result
of astronomical forcing (librations, seeRambaux et al.
2010). But this comes with a heavy price-tag in terms
of CPU time. Hopefully, this burden can be reduced to
a manageable level by considering the resolution of the
Moon DEM and the fact that only the daily libration
amplitude, a small daily oscillation due to Earth’s rotation,
which carries the observer on Earth first to one side and
then to the other side of the straight line joining Earth’s
and Moon’s centers, is the only one of interests for us.
Its amplitude is less than one degree (Yang et al. 2017)
in the plane-of-sky. This means about 0.1 degree for two

hours, the duration of the Lakeland eclipse from the first
to the fourth contacts. As the resolution of the Moon DEM
is 1/256 degree, i.e. 108 m at Moon equator, this means
that during the two hours eclipse, the limb is displaced
by 25 pixels on the Moon surface (0.1 / (1./.256)). This
also means that the limb should be recalculated only every
2h / 0.1×(1. / 256.) that is to say around 4 min 30 s.
This corresponds to a one pixel displacement caused by
the diurnal libration for the DEM. As the timing of the
Baily’s beads is done during the second and third contacts,
only separated by 1 min 34 s for the Lakeland example,
this means that we can assume that the limb computation
can be performed only once for this timing. For the whole
eclipse, we only need to recompute the limb about 25
times. Our software permits the recomputation of the limb
with any time resolution. The maximum of the differences
around totality between a light curve computed with the
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Fig. 3 Comparison between the lunar limb as observed from the Earthat a finite distance (orange curve) and the lunar
limb (black curve) observed from an infinite distance along the same line-of-sight. This figure corresponds to the case of
the solar eclipse observed at Lakeland (North Australia) on2012 November 13. The origin of polar coordinates is dictated
by the local zenith of the observer at the time of the observation (2012-NOV-13 20:38:24 UTC, see Eqs. (1)-(5)).

Fig. 4 Differences between the two lunar profiles plotted in Fig.3 (finite-distance versus infinite-distance observers). The
average of differences is 770.17 m, the maximum of differences is 6018 m and the standard deviation is 1165.25 m. The
time sampling is 1 s.
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Fig. 5 Luminous area at 20:20:24 2012-Nov-13. The red area circle is the plane-of-sky illuminated part of the Solar disk
as seen by an observer at Lakeland, the black curve is the Moonlimb. UTC time is 20:20:24 2012-Nov-13. The solar
radius is fixed at 695 700 km (Table1).

limb computed once and the limb computed at each time
sampling is 2.69× 10−6 (Fig. 7(d)).

2.3 Computation of Light Curves

In this section, we compute the geometrical optics approx-
imation of the Sun illumination on Earth surface during
an eclipse. To obtain the light intensity as measured by
a photometer on Earth surface, three other parameters are
needed: (a) The (frequency-dependent) extinction of light
caused by the atmosphere, and especially by its aerosol
contents; (b) The instrument (convolution) function of the
photometer (filters, photodiode characteristics); (c) The
orientation at any time of the photometer boresight with
respect to the line-of-sight Observer-Moon. This is not
treated in this paper, because they are site and instrument
dependents. This raw illumination function is defined as
the angular area of the Sun surface not obscured by the
Moon. For this purpose, the Moon surface is divided in
radial triangles, the external part of the triangles being
defined by the Moon limb (see Fig.5). The problem is
then to compute the common area between each of these
triangles and the disk of the Sun, and to sum up all the
triangle contributions. Because the resolution of the LRO
DEM is 118 m, which is equivalent to 1/256 degree, we
divided the whole lunar limb in 1/256 degree sub-parts,
obtaining 92 160 small triangles.

The mathematics of the computation of the intersec-
tion between a disk and a triangle are not difficult, but
tedious, so we discuss them in the Appendix.

3 RESULT

3.1 Light Curve

Lamy et al.(2015) demonstrated that the modeling of the
light curve, in the neighborhood of the second and third
contacts is a powerful way to determine the diameter of
the Sun from ground based photometric curves. Their main
argument is that, by observing near the second and third
contacts, the bulk of the solar disk is occulted, resulting in
very low instrumental and atmospheric levels of stray light
(scattered light not coming directly from the Sun). Figure6
exhibits the theoretical modeling of such a light curve over
three hours for the Lakeland case.

The difference in illumination caused by the topog-
raphy of the Moon is at a level of 0.01 % of the total
illumination of the unobscured Sun. Figure6(b) show
clearly that the left and right parts of the light curve, before
and after the totality, computed from the true limb, are not
symmetrical. This happens because the topography of the
Moon is highly rugged. The mean radius of the Moon is,
as seen from the observer, simply a poor approximation
of the limb. A better approximation of the limb, of course
only strictly valid for the time of the eclipse, would be
the mean radius of the limb, as seen from the observer.
It would be even better to consider two “mean” radiuses,
the first one corresponding to the half of the Moon limb
at play between the first and second contact; and a second
one corresponding to the half of the Moon limb at play
between the third and fourth contacts (Barriot & Prado
2013). Figure 7(a) shows the light curve from 20:36:00
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Fig. 6 (a) Theoretical light curves for the Lakeland observer (blue: computation with LRO Moon limb, yellow:
computation with the LRO Moon mean radius of 1737.4 km). The radius of the Sun is fixed at 695 700 km (see Table1)
for the whole 2.5 h eclipse duration, from 2013-Nov-13 19:30:00 to 2013-Nov-13 22:00:00. No difference between the
two light curves can be seen by eye. See Fig.7(a) for a zoom of the box area. The two light curves (a) and (b) have been
normalized to their maximum values. (b) Differences between the two light curves in the top subfigure 6(a). The time
sampling is 1 s.

to 20:41:00 (total eclipse from 20:37:38 to 20:39:12).
Before the second contact the best fit is obtained for a
limb “radius” of 1736.85 km, and for a limb radius of
1735.55 km after the third contact. This means that the
mean topography near the position of third contact is lower
than the mean topography near the second contact (see also
Fig. 6(b)).

Two error sources show up in the light curve
computation. The first one is the error contaminating the
DE430 ephemeris, and the second one is the error on

the lunar DEM. These errors were already discussed in
Section 2.1: the average accuracy of the DEM grid values
is around 1 meter (Moon radius) and the DE430 ephemeris
uncertainty in the relative position between the Earth and
the Moon is also at the level of 1 meter. We estimated
(Fig. 8) the error in the nominal light curve by adding
small errors (with plus or minus sign, or zero) at these
levels in both the nominal DEM and the nominal Earth-
Moon distance, and making the relative differences in the
corresponding light curves with respect to the nominal
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Fig. 7 (a) Light curve “in total eclipse” for a duration of 5 minutesaround totality (boxed area in Fig.6(a)), blue: light-
curve computed from the LRO lunar topography, orange: light-curve computed by considering a disk approximation of
the Moon limb with a radius of 1737.4 km (LRO value), red: light-curve computed by a disk approximation of the Moon
limb with a radius of 1736.85 km corresponding to the mean of the limb topography of 1736.85 km (a good fit for the
second contact, but a poor one for the third contact). (b) Zoom at the time of the second contact, (c) Differences between
the LRO topography light curve during totality (Fig.7(a)) and the light curve computed with two limbs mean radiuses:
1736.85 km before the second contact and 1735.55 km after thethird contact, (d) Difference between the light curves with
the limb computed at each sampling time and the limb only computed once (at mid-totality). The time sampling is 1 s.

light curve. The relative error is dominated, by two orders
of magnitude, by the DEM error, and ranges between10−5

and10−3 at the second and third contacts.

The goal of this study is ultimately to show that vari-
ations in the solar diameter can be seen in the photometry
curve. The expected variations of solar diameter are at a
level of 400 milliarseconds, corresponding to 145 km in
solar radius (Rozelot et al. 2018b). To test this sensitivity,
we perturbed the solar radius by a10−6 variation (695
m), and computed the relative error between the light
curve with the perturbed solar radius and the nominal light
curve (violet curve in Fig.8). The relative error caused
by the solar radius variation dominates by two orders of
magnitude the DEM relative error. As the errors in the
Moon LRO DEM and in the DE430 ephemeris are both at
a meter-level scale, this means that, at least theoretically,
a sensitivity at the level of 100 m in the determination
of the solar radius can be achieved by our approach. A
conservative number is certainly around a 1 km accuracy.

3.2 Baily’s Beads

The Baily’s beads, or diamond ring effect, named
after Francis Baily, who observed and explained the
phenomenon during the 1836 May 15 solar eclipse seen
at Inch Bonney in Scotland, occur when beads of sunlight
shine through the valleys perpendicular to the Moon limb.
The diamond ring effect is when several beads shine as
the ring of diamonds of a queen’s crown around the lunar
silhouette. Figure9 shows the relative position of the Sun
and the Moon at the times of the four contacts as seen
from the observer at Lakeland, and Figure10 is a snapshot
of the Baily’s beads evolution during the second contact
(Fig. 9b). The accuracy of the timing of the Baily’s beads
is also dominated by the DEM error, and we estimate
it to be at the millisecond level (1 m in DEM accuracy
divided by the orbital velocity of the Moon (1 km s−1),
plus the rotational velocity of the observer on Earth surface
(4000 km d−1 at the equator).
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Fig. 8 Estimation of the relative error in the light-curve for the Lakeland observer. The Y axis is the base 10 logarithm
of relative errors. The error settings of the eight cases studied are defined in the label: green: six error curves with a lunar
DEM error, blue: two error curves with a DE430 ephemeris error only, violet: error curve with10−6 solar radius variation
of the nominal 695 700 km Sun radius value (Table1). The values of Y are set to zero when the relative errors are zero.
The relative error is dominated, by two orders of magnitude,by the lunar DEM error with respect to the DE430 ephemeris
error. The time sampling is 1 s. The lunar limb was recomputedevery 4 min 30 s.

4 CONCLUSIONS

The observation of solar eclipses is certainly one of the best
ways to measure the diameter of the Sun, a key parameter
in the modeling of the inner dynamics of our star.

In this paper, we focused on the astronomical and
astrophysical tools to compute the atmosphere-less part of
this computation, by considering the latest DEM model of
the Moon from the LRO spacecraft and one of the latest
ephemeris of the Earth-Moon system (DE430). Our Python
code provides astronomical raw illumination data and tim-
ing along the line-of-sight Observer-Center-of-Moon with
a millisecond resolution. As an application, we computed
an atmosphere-less model of the eclipse observed from
Lakeland in North Australia (15◦51′30′′S, 144◦51′20′′E)
on 2012 November 13. Our study demonstrates that a
photometer with a proper calibration of its optoelectronics
and good timing resolution, mounted onboard a spacecraft,
can detect variations in the solar diameter with an accuracy

better than 1 km, and even allow a measurement of solar
oblateness. Using photometers on ground is cheaper but
more challenging. The limiting factor is ultimately the
Earth atmosphere (absorption and scattering). Our next
work will deal with the Earth atmosphere effect in real data
processing.
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(a) First contact at 19:44:05
(b) Second contact at 20:37:38

(c) Third contact at 20:39:12

(d) Fourth contact at 21:38:35

Fig. 9 The four contacts between the Moon and the Sun during the Lakeland eclipse. The topography of the Moon has
been enlarged by a factor of 40 to show details. The contact times are defined at the contacts between the circular mean
limb of the Moon and the circular disk of the Sun with a nominal695 700 km radius (Table1), not the contacts between
the topography of the Moon and the Sun disk. The boxed areas inFig. 9(b), Fig.9(c) are the areas of the Moon concerned
by the apparition of Baily’s beads. Fig.10(b) shows a zoom of the Baily’s beads during the second contact (Fig. 9(b)).
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planetology from the French Space Agency (CNES).

Appendix A: COMPUTATION OF THE COMMON
AREA BETWEEN A TRIANGLE AND
A DISK

In this section, we explored how to compute the
intersection area between a disk and a triangle. Nine cases
are listed, as shown in FigureA.1.

We obtain nine different cases:
Case 1: 0 vertices of the triangle in circle, 0 edge intersects
the circle (a);
Case 2: 0 vertices of the triangle in circle, 0 edge intersects
the circle (b);

Case 3: 0 vertices of the triangle in circle, 1 edge intersects
the circle;
Case 4: 0 vertices of the triangle in circle, 2 edges intersect
the circle;
Case 5: 0 vertices of the triangle in circle, 3 edges intersect
the circle;
Case 6: 1 vertex of the triangle in circle, 0 edge intersects
the circle;
Case 7: 1 vertex of the triangle in circle, 1 edge intersects
the circle;
Case 8: 2 vertices of the triangle in circle, 0 edge intersects
the circle;
Case 9: 3 vertices of the triangle in circle, 0 edge intersects
the circle.
We adopted different ways to compute the area of
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Fig. 10 Baily’s beads modeled time evolution as seen by the Lakelandobserver. White denotes the visible part of Sun. (a)
The simulation of Baily’s beads during second contact (from20:37:18 to 20:37:38, Fig.9(b)). The time interval between
two consecutive pictures is 2 s. (b) The enlargement of the last subplot to show details.

Fig. A.1 The nine cases of intersections between a triangle and a circle (adapted from
https://stackoverflow.com/questions/540014/compute-the-area-of-intersection-between-a-circle-and-a-triangle).
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(a) case 3.1
(b) case 3.2

Fig. A.2 The two sub-cases of case 3. (a) case 3.1 the intersection area is the small circular lens, (b) case 3.2 the
intersection area is the large circular lens.

Fig. A.3 Two parts of intersection.

intersection: For case 1: The intersection area equals the
surface of the circle:

areacase1 = πr2 (A.1)

wherer is the radius of the circle.
For case 2:

areacase2 = 0 (A.2)

For case 3: There are two sub-cases, depending
whether or not the center of the circle is in the triangle. We
plotted these two sub-cases in FigureA.2. In FigureA.2,
the area of intersection is shown in yellow.

As shown in FigureA.2(a), the center of the circle is
not in the triangle; the area of intersection is the lens shown
in yellow, calculated as:

areacase3.1 = 1/2

(

θr2 − r cos

(

θ

2

))

(A.3)

where is:
areacase3.1 = 2 arcsin(l/2r) (A.4)

and l is the length of the line segment, which intercepts
the circle andr is the radius of the circle. As shown in
FigureA.2(b), the center of the circle is in the triangle, the

area of intersection equals the area of the circle minus the
area of the circular lens:

areacase3.2 = πr2 − 1/2

(

θr2 − r cos

(

θ

2

))

(A.5)

wherel is the length of the line segment, which intercepts
the circle andr is the radius of the circle. We used
a common strategy to compute the intersection area in
case 4, case 5, case 6, case 7, and case 8. As shown in
FigureA.3, the area of intersection can be divided into a
polygon and a lens. We computed every partial area and
added them up to obtain the area of intersection.

The different ways to divide areas of intersection in
cases 4-8 are shown in FigureA.4.

The area of the polygon in cases 4 through 8 is
calculated as:

areapolygon =
1

2
[(x1y2 + x2y3 + x3y4 + · · ·+ xny1)

− (y1x2 + y2x3 + y3x4 + · · ·+ ynx1)]
(A.6)

where (xn, yn) are the coordinates of the vertices of the
polygon. The area of the lens can be calculated by:

areacircular lens = 1/2

(

θr2 − r cos

(

θ

2

))

(A.7)
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(a) case 4

(b) case 5

(c) case 6

(d) case 7

(e) case 8

Fig. A.4 Different ways to divide the intersection area. (a): case 4,(b): case 5, (c): case 6, (d): case 7 and (e): case 8. The
yellow part is a polygon, the red part is a circular segment (lens).

So, the area of intersection is

areacase4,5,6,7,8 = areapolygon + areacircular lens (A.8)

For the case 9 mentioned in FigureA.1: The area of
intersection equals the area of the triangle:

areacase9 =
√

s(s− a)(s− b)(s− c) (A.9)

wheres is half the perimeter of the triangle:

s = 0.5(a+ b+ c) (A.10)

and wherea, b, c are the lengths of the edges of the triangle.
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