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Abstract In this paper, we propose a long short-term memory (LSTM) deep learning model to deal with the
smoothed monthly sunspot number (SSN), aiming to address the problem whereby the prediction results of
the existing sunspot prediction methods are not uniform andhave large deviations. Our method optimizes
the number of hidden nodes and batch sizes of the LSTM networkstructures to 19 and 20, respectively. The
best length of time series and the value of the timesteps werethen determined for the network training, and
one-step and multi-step predictions for Cycle 22 to Cycle 24were made using the well-established network.
The results showed that the maximum root-mean-square error(RMSE) of the one-step prediction model was
6.12 and the minimum was only 2.45. The maximum amplitude prediction error of the multi-step prediction
was 17.2% and the minimum was only 3.0%. Finally, the next solar cycles (Cycle 25) peak amplitude was
predicted to occur around 2023, with a peak value of about 114.3. The accuracy of this prediction method
is better than that of the other commonly used methods, and the method has high applicability.
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1 INTRODUCTION

Changes in solar activity affect activities in space, the
Earth’s magnetic field, the Earth’s climate, and human
activities (Usoskin 2008). Sunspots are one of the most
basic and obvious features of solar activity. The number
of sunspots is also related to the intensity of solar radiation
(Solanki 2003).

Forecasting sunspots is not only important for the
study of changes in solar activity and for an understanding
of the mechanism of solar activity, but it is also im-
portant for space navigation and solar-terrestrial relations
(Prabhakaran Nayar et al. 2002; Gholipour et al. 2005;
Ahluwalia & Jackiewicz 2012). However, the change
process and mechanism of solar activity are extremely
complicated. The prediction of sunspots is also very
difficult using general techniques (Kitiashvili 2016).

Spectral analysis, neural networks, climatological
prediction, dynamo models, and precursor methods are the
main methods for solar cycle prediction. Spectral analysis
is an analytical method for calculating structural response,
which combines modal analysis results with known
spectra. It examines a Fourier analysis of sunspot time
series for invariant quantities. Neural networks are non-
linear statistical algorithms, which can determine complex
relationships between input and output (Attia et al. 2013).
Climatological prediction assumes that the future of a

system can be determined by the statistical characteristics
of the past behavior of the system. It is a general term
for a class of statistical methods. Dynamo models are
based on physics. The conservation equation of a physical
model can be integrated by the dynamo model, which in
turn can predict solar activity (Nandy 2002). Precursor
methods are the most common prediction method at
present; these methods use the solar polar magnetic field
and a geomagnetic activity index to forecast solar activity.

Many scholars have used these methods to predict
the peak value of the smoothed monthly sunspot
number (SSN) for Cycle 24. Among them, Noble and
Noble & Wheatland (2012) (66+5) and Rigozo et al.
(2011) (113.3) used spectral analysis methods;
Ajabshirizadeh et al.(2011) (65) and Attia et al. (2013)
(101+8) used neural network methods;Han et al.(2018)
(134.1), Sabarinath & Anilkumar(2018) (78+25) used
climatological methods; dynamo models were used by
Choudhuri et al.(2007) (80); andDabas & Sharma(2010)
(131+20), andMuñoz-Jaramillo et al.(2013) (78) used
precursor methods. These forecast results are combined
with the results collected byPesnell(2008), Pesnell(2016)
andHan et al.(2018) and are listed in Table1, according
to the different methods used. The observed peak value of
Cycle 24 is 81.9 (Version 1.0).

The methods listed in Table1 include both original
and improved methods, whereNpre is the number of
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Table 1 Cycle 24 Amplitude

Method Npre RMp DRM PDRM N (10%)

Spectral 24 43-180 19.8 17% 5
Neural network 6 65-145 13.1 11.3% 0
Climatological 33 40-185 11.6 10.0% 10
Dynamo model 5 80-167 11.9 10.2% 3

Precursor 36 53-180 8.3 7.1% 5

forecast cases, RMp is the range of the predicted Cycle 24
amplitude, DRM is the absolute error of the forecast value,
PDRM is the relative error of the forecast value, andN

is the forecast number with a prediction error of less than
10%. DRM and PDRM can be expressed as:

DRM = |Predictedvalue−Observedvalue| (1)

PDRM =
|Predictedvalue−Observedvalue|

Observedvalue
∗ 100%

(2)
It can be seen that the prediction values obtained

not only have large distribution ranges, but also low
prediction accuracies. The prediction errors of most of
the prediction methods (we usually use the relative error
(PDRM) to compare the accuracy of prediction results,
so the prediction errors in the following are all relative
errors) are above 10%. In general, obtaining an accurate
prediction of future solar activity amplitude is still very
difficult (Pesnell 2014).

Deep learning, which was developed from ordinary
neural networks, has developed rapidly in various fields
due to its powerful capabilities and flexibility. However,
to date, there has been little research on solar cycle
forecasting using deep learning techniques. In this study,
the long short-term memory (LSTM) deep learning model
was used to predict the SSN. The number of hidden
nodes and the batch size in the LSTM model were
also optimized, Finally, appropriate training samples were
selected experimentally.

2 DEEP LEARNING AND NETWORK
OPTIMIZATION

2.1 Introduction to deep learning and recurrent
neural networks

Deep learning, a type of machine learning, originated
from image recognition. Deep learning algorithms are
both powerful and flexible. In deep learning, there are
two typical neural network structures — the convolutional
neural network (CNN) and the recurrent neural network
(RNN) — among which, the RNN is more suitable for
dealing with time-series analysis.

The RNN model was derived from the Hopfield
network model by Jordan in 1986 (Saratha & Tajuddin
2008). However, the RNN model was not widely used

Fig. 1 Structure of a recurrent neural network.

at that time. As more efficient RNN structures have
continually been proposed, the ability of RNNs to explore
the temporal and semantic information in data has been
fully utilized. Language models (Yamamoto et al. 2001),
machine translation (Saha & Raghava 2010), speech
recognition (Graves et al. 2013), and timing analysis
(Lukosevicius & Jaeger 2009) have all been achieved
using RNNs.

RNNs contain input units, where the corresponding
input unit is labeled {x1,x2,· · · ,xt,xt+1,· · · },
{o1,o2,· · · ,ot,ot+1,· · · } are recorded as the output
units, the corresponding output unit is denoted as
{y1,y2,· · · ,yt,yt+1,· · · }, and {s1,s2,· · · ,st,st+1,· · · } is
a hidden unit. U, V, and W are parameters from the
input layer to the hidden layer, the hidden layer to the
output layer, and the hidden layer to the hidden layer,
respectively. When the network calculates the output unit
{o1,o2,· · · ,ot,ot+1,· · · }, the loss{L1,L2,· · · ,Lt,Lt+1,· · · }
can be calculated from eacho and the corresponding
training targety. A back propagation algorithm is then
used to update the network parameters and minimize the
lossL, finally obtaining the trained network model. The
lossL can be calculated by the following formula:

L = −(y · log ŷ + (1− y) log(1− ŷ)) (3)

whereŷ = softmax(o), which is the value of the output
valueo after normalization. The loss function can be used
to predict the probability of a certain situation for different
independent variables. Only the loss function is minimized
to determine the parameters of the model when LSTM is
used for prediction (Graves 2012). A typical RNN and its
expanded structure are shown in Figure1.

In an RNN, the main work is done by the hidden units.
One flow of information is from the input unit to the hidden
unit, and a second flow of information is from the hidden
unit to the output unit, both of which flow in the same
direction. In some specific cases, the network will direct
information from the output unit directly to the hidden unit.
This information is called “back projection”, and the input
of the hidden layer includes not only the information from
the output unit, but also the state of the previous hidden
layer.
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Fig. 2 LSTM unit details.

The hidden unit can contain important information
about the past, and the former hidden unit is indirectly
connected to the current part of the network only through
the generated prediction. More parallelism and a shorter
training time can be achieved during training because the
time steps can be separated. The variables and operations
in the hidden layer are the same at different times, so the
RNN can process arbitrarily long sequences with limited
parameters.

2.2 The long short-term memory network structure

The LSTM network structure was proposed by
Hochreiter and Schmidhuber in 1997 to solve the
long-term dependence problem in the previous RNNs
(Hochreiter & Schmidhuber 1997).

The “forget gate” and “input gate” are the core of
the LSTM structure. The forget gate calculates a vectorf

whose dimension isn according to the current inputxt

and the outputh(t−1) of the previous moment. Its value is
in the range of (0,1) in each dimension. The statec(t−1)

of the previous moment is then multiplied by thef vector.
Information in dimensions whose values are close to 0 is
forgotten and information in dimensions whose values are
close to 1 is retained (Graves 2012). The input gate is based
onxt. h(t−1) decides which information needs to be added
to the statec(t−1) to generate a new statect. The output
gate determines the outputht based on the latest statect,
the output of the last momenth(t−1), and the current input
xt at that moment. The specific structure of the LSTM unit
is shown in Figure2.

The functions used by each of these nodes are defined
as follows:

candidate = tanh(Wz [ht−1, xt]) (4)

i = sigmoid(Wi[ht−1, xt]) (5)

f = sigmoid(Wf [ht−1, xt]) (6)

o = sigmoid(Wo[ht−1, xt]) (7)

ct = f · ct−1 + i · z (8)

ht = o · tanh(ct) (9)

where Equations (4)–(9) are the input state value
(candidate), input gate (i), forget gate (f ), output gate (o),
new state (ct), and output (ht) in the nodes, respectively
(Graves et al. 2013).Wz , Wi, Wf and Wo are four
parameter matrices with dimensions [2n, n], and the
dimension ofn is the dimension of statec.

Differing from the ordinary linear and nonlinear meth-
ods, LSTM networks do not simply impose an element-
by-element nonlinearity after affine transformation of the
input and recurrent elements. Instead, they incorporate not
only external recurrent neural networks, but also internal
self-cycling. Self-cycling exists in the state unit, whose
weight is controlled by the forget gate. The accumulated
time scale can be dynamically changed by the input
sequence, and it uses different functions to calculate
the state of the hidden layer (Graves, 2012). Therefore,
considering the long intervals in sunspot time series, the
use of the LSTM network structure is appropriate for the
prediction of future solar activity.

2.3 Optimization of LSTM Parameters

The parameters of the LSTM network structure include the
number of hidden nodes, the batch size, and the network
layers. Hidden nodes are located in the hidden units of
the LSTM network. These nodes are called hidden nodes
because the training data do not specify the outputs needed
by these nodes. The number of hidden nodes directly
affects the performance of the network. The network may
fail to train or the network performance will be poor when
the number of hidden nodes is too small. In addition, if the
number of hidden nodes is too large, the training time of
the network will be prolonged, and the network can easily
fall into local minima, although the error of the network
will be reduced.

The batch size is the amount of data that the network
traverses for each training pass. Some data can be
trained at the same time by setting a certain batch size.
However, when the batch size is too small the multi-layer
neurons and nonlinear networks in LSTM will modify the
parameters in the gradient direction of their samples each
time, which means that the model will not easily reach
convergence. Increasing the batch size within a certain
range can improve memory utilization and parallelization
efficiency, but the number of training rounds required to



12–4 Q.-J. Wang, J.-C. Li & L.-Q. Guo: Solar Cycle Prediction

Fig. 3 Parameter determination of the network model.

Table 2 Parameter Setting of the Network Model

HID S NUM L TIM S TRA S BAT S SAM G

19 2 10 10 000 20 0.01

HID S is the number of hidden nodes in LSTM, NUML is the number
of layers in LSTM, TIM S is the length of the training sequence of the
RNN, TRA S is the number of training rounds, BATS is the size of the
batch, and SAMG is the sampling interval.

achieve the same accuracy will increase with an increase
in the batch size.

The number of LSTM network layers refers to the
number of layers between the input and output at each
time step. This differs from a deep feedforward neural
network, as a deep RNN does not stack too many layers
between input and output. In the sequential processing of
RNNs, an increase in the numbers of layers results in an
exponential growth of the time and memory overheads.
The disappearance of the gradient becomes very obvious,
and the convergenceeffect and efficiency drop sharply. The
local minima problem can also be encountered when the
number of layers exceeds three. Therefore, a deep RNN
with two to three layers is a large-scale network.

In order to train a better network model, we evaluated
the impact of the hidden node number and batch size on
the model’s performance. The other parameters were left
unchanged, and we changed the number of hidden nodes
and the batch size in a range from 1 to 30. The results are
shown in Figure3.

From the results, the error after training the network
model is minimized when the number of hidden nodes is
19 and the batch size is 20. Therefore, we chose 19 for
the number of hidden nodes and 20 for the batch size for
the subsequent experiment. Due to the number of nodes
in each hidden layer being the same in LSTM (Graves
2012), the hidden nodes of each layer number are 19 in
this application. These parameters are listed in Table2,
including the other network model parameters.

3 DATASETS AND METHOD

The data types of sunspot numbers include annual mean
value, monthly mean value, and smoothed monthly mean
value. The SSN is the average of the 13 months before and
after the current month, and with a weighting of half for the
first month and the 13th month, which is also called the 13-
month smoothed sunspot number. Solar activities include
sunspots, solar wind, solar proton events, etc. Sunspots are
caused by the large difference between the temperature
of some areas of the Sun’s surface and the surrounding
area. Their change is the most basic phenomenon in solar
activity. The number of sunspots changes periodically, and
the state of the solar cycle is usually described by the
magnitude and change of the SSN.

The data we used were the version 2.0 SSN data
from the year of 1750 onwards, downloaded from
sidc.oma.be/silso/datafiles. In order to analyze the
model errors and explore the influence of sample size on
the prediction results, we first selected the data of different
periods to train the LSTM network to predict the 24th solar
cycle, and obtained four different prediction models. We
then analyzed the model errors and selected the appropriate
data as training sets to model and forecast Cycles 22 and 23
according to the forecast results, and we analyzed the root-
mean-square error (RMSE) of the established model and
the relative error of the predicted amplitude. Finally, we
forecast the future via one-step and multi-step predictions
using the LSTM model, and predicted the peak amplitude
value and occurrence time of Cycle 25.

We took the observation sequenceO(i − 9), O(i −

8),· · · ,O(i) in the first 10 months as the input of the
network, and the valueO(i + 1) in the next month was
trained as the output of the network, for the one-step
prediction. We then took the observation sequenceO(i −

719),O(i − 718),· · · ,O(i) in the first 720 months as the
input of the network, and the valuesO(i + 1) in the next
72 months were trained as the output of the network, for
the multi-step prediction. A prediction model was then
established. The known data were selected as the test set
of the model, and the RMSE of the test set data and the
relative error of the predicted amplitude were used as the
evaluation indicators. The RNN model takes a very short
time to process the time series of pure numbers, so the time
complexity is generally not considered in the prediction of
sunspot numbers.

Similar to the training process, the prediction took the
observation sequence of the first some months as the input
of the network and the value of some future months as the
output. For example, we used the data series of 10 months’
observations from March 2008 to December 2008 (i.e.
O(i− 9) toO(i)) as input of the model, and January 2009
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Table 3 RMSE and Amplitude Prediction Error for
the Cycle 24 One-step Prediction Using the Data from
Different Time Series

SAMPLE 1750C-2008 1770–2008 1790–2008 1810–2008

RMSE 2.45 2.96 3.68 3.86
PDRM 2.10% 2.42% 4.78% 5.28%

(i.e.P (i+1)) as output of the model in one-step prediction.
The output of the model was treated as the correct output,
which was fed back to the hidden unit of the model (Graves
A, 2012). The information passed back to the hidden unit
can be saved as a specific value to the hidden unit and
propagated into the future. However, it is impossible to
predict the next month’s SSN based only on the first few
months of SSN data using the trained LSTM model. The
model needs to combine all the previous SSN data to
make the next prediction (Graves 2012). Since the initial
parameters of each network training pass were random,
each result is the average of 10 runs, to minimize the
influence of the initial parameters on the forecast results.

4 RESULTS

4.1 One-step prediction of SSN

Simulated forecasts for the Cycle 24 SSN using the data
from 1750–2008, 1770–2008, 1790–2008, and 1810–2008
were obtained using the LSTM model. The results for
the different time series are shown in Figure4(a)-(d), and
their RMSEs are listed in Table3. It can be seen that the
RMSE and amplitude prediction error of the established
model increase as the number of samples decreases. This
is the feature of deep learning, where the larger the training
sample set, the lower the error of the established prediction
model. The RMSE obtained using the samples from 1750
to 2008 is 2.45, and the amplitude prediction error is 2.1%,
which represent the best prediction results. Therefore, the
data before the forecast solar cycle were selected as the
training samples in the next forecasting experiment. We
used the SSN data from 1750 to 1985, 1750 to 1996, 1750
to 2008, and 1750 to 2018 as training data sets to forecast
Cycle 22 (1986–1996), Cycle 23 (1997–2007), Cycle 24
(2009–2019), and Cycle 25 (2019–2029), respectively.

It can be seen that the predicted value and the observed
value are in good agreement when the observed value does
not change much. However, the predicted value is not as
accurate when the observed value changes significantly
(e.g. near the peak amplitude of the solar cycle). There is
also an inevitable problem of postponement near the peak
amplitude of the solar cycle, with a postponement period
of about 1.5 months.

Table 4 Statistical Results for the One-step Amplitude
Predictions for Cycles 22–24 Using the LSTM Model

SC RM RMp DRM PDRM RMSE

22 212.5 119.3 13.2 6.2% 6.12
23 180.3 178.8 1.5 0.8% 4.28
24 116.4 118.8 2.2 2.1% 2.45

SC is the solar cycle number, RM is the actual observation value of the
SC, RMp is the forecast value of the solar cycle, DRM is the absolute
error of the forecast value, PDRM is the relative error of theforecast
value, and RMSE is the LSTM model root-mean-square error.

Table 5 RMSE and Amplitude Prediction Error for the
Cycle 24 Multi-step Prediction by Setting

TIMESTEPS 1200 1080 960 840 720
(MON PRED) (120) (108) (96) (84) (72)

RMSE 46.2 28.3 18.4 11.2 6.1
PDRM 18.6% 10.7% 8.9% 6.1% 3%

Table 6 Statistical Results of the Amplitude Multi-step
Prediction for Cycles 22–25 Using the LSTM Model

SC RM RMp DRM PDRM RMSE

22 212.5 175.9 36.6 17.2% 35.3
23 180.3 167.8 12.5 6.9% 28.8
24 116.4 112.8 3.6 3.0% 12.1
25 — 114.3 — — —

Figure 5(a)-(c) are the results of the one-step
prediction predictions for Cycle 22 to Cycle 24 using the
LSTM model. The amplitude prediction error and RMSE
are listed in Table4. The forecast results are generally
low when forecasting Cycle 22, where the final amplitude
forecast error is 6.2% and the RMSE reaches 6.12. On the
one hand, this may be due to the use of fewer training
samples or, on the other hand, it could be due to the
complexity of Cycle 22 itself. The amplitude deviation of
Cycle 23 is the smallest, at only 1.5 difference from the
observed value, the relative error is 0.8%, and the RMSE is
also reduced to 4.28. With an increase of training samples,
although the amplitude forecast error of the 24th solar
activity week is slightly higher than that of the 23rd solar
activity week, reaching 2.1%, the RMSE is reduced to 2.45
compared with Cycles 22 and 23.

4.2 Multi-step prediction of SSN

The RMSE and PDRM results in Table5 were obtained
by setting the timesteps to 1200, 1080, 960, 840, and
720 to predict the SSN of Cycle24. The timesteps and
prediction timestep are generally in a ratio of 10:1 when
setting timesteps and prediction timesteps (Graves 2012).
Therefore, the numbers of predicted months corresponding
to the different timesteps are 120, 108, 96, 84, and 72,
respectively.
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Fig. 4 One-step prediction results for Cycle 24 using the data fromdifferent time series.

Table 7 Predicted Peak Year and Peak Value of Cycle 25

Rigozo et al. (2011) Helal & Galal (2013) Miao et al. (2015) Our forecasting

Peak year 2023 2023 2024 2023
Peak value 132.1 118.2 119.2±5.5 114.3

It can be seen that the RMSE and amplitude prediction
error of the established model are reduced with the
decrease of the timesteps. The prediction effect is better
when the timestep number is 720. The RMSE is then 6.1
and the amplitude prediction error is 3.0%. It would be
impossible to predict the peak value of the next solar cycle
if the value of the timesteps continues to decrease, because
the peak value of the next solar cycle is predicted to be
at least 72 months. Therefore, we set the value of the
timesteps to 720 in the subsequent experiments.

Figure 6(a)-(d) are the results of the multi-step
predictions for Cycle 22 to Cycle 25 obtained using the
LSTM model. The amplitude prediction error and RMSE
are listed in Table6. It can be seen from the results that
there are some deviations between the predicted values and
the observed values. The predicted values for the first two
years are generally larger than the observed values, and
the predicted values for the last three years also deviate to
some extent. This is because the principle of establishing a
prediction model with the LSTM model is to minimize the
overall deviation between the output of the network and
the observed value (Graves 2012). This reflects the overall

trend of the SSN. In the first six years of Cycle 22, the
amplitude prediction error is 17.2% and the RMSE is 35.3.
The amplitude deviation for Cycle 24 is the smallest, at
only 3.6 difference from the observed value. The relative
error is 3.0% and the RMSE is also reduced to 12.1.
Finally, the next solar cycle’s (Cycle 25) peak amplitude
is predicted to occur around 2023, with a peak value of
about 114.3. A number of scholars have forecast Cycle
25, such asRigozo et al.(2011) (113.3), Helal & Galal
(2013) (118.2), andMiao et al. (2015) (119.2±5.5). Our
results for the peak value are consistent with those of these
researchers. The different results are listed in Table7.

5 CONCLUSIONS AND DISCUSSION

The solar cycle has been predicted by many researchers;
the results of long-term forecasting (especially for Cycle
24) are highly biased, and the results obtained by different
methods are notably different. The reason for this may be
the extremely complex and variable character of the solar
activity itself.
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Fig. 5 One-step prediction results for Cycles 22–24 using the LSTMmodel.

Fig. 6 Multi-step prediction results for Cycles 22–25 using the LSTM model.
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In this study, an optimized LSTM network was
trained and used to forecast the SSN. For Cycles 22–
24, the maximum RMSE of the one-step prediction
model was 6.12 and the minimum was only 2.45. The
maximum prediction error of the multi-step prediction of
the amplitude was 17.2% and the minimum was only 3.0%.
Finally, the next solar cycle’s (Cycle 25) peak amplitude
was predicted to occur around 2023, with a peak value of
about 114.3.

The proposed LSTM deep learning model can not
only predict the peak amplitude value of the solar cycle,
but also the time when the solar cycle reaches its peak
amplitude; previous years of solar cycle data are not
required for the forecast. However, the disadvantage is
that sufficient training samples are required to adjust the
network parameters before training the network, and the
network does take some time to train.
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