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Solar cycle prediction using a long short-term memory deep learning model
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Abstract In this paper, we propose a long short-term memory (LSTMjpdearning model to deal with the
smoothed monthly sunspot number (SSN), aiming to addregsrtiblem whereby the prediction results of
the existing sunspot prediction methods are not uniformreaveé large deviations. Our method optimizes
the number of hidden nodes and batch sizes of the LSTM netstar&tures to 19 and 20, respectively. The
best length of time series and the value of the timesteps theredetermined for the network training, and
one-step and multi-step predictions for Cycle 22 to Cyclevde made using the well-established network.
The results showed that the maximum root-mean-square(&KSE) of the one-step prediction model was
6.12 and the minimum was only 2.45. The maximum amplituddiptien error of the multi-step prediction
was 17.2% and the minimum was only 3.0%. Finally, the nextrsgjcles (Cycle 25) peak amplitude was
predicted to occur around 2023, with a peak value of about3lT4he accuracy of this prediction method
is better than that of the other commonly used methods, andhéthod has high applicability.

Key words: Sun: solar activity — Sun: sunspot number — techniques: tesping — techniques: long
short-term memory

1 INTRODUCTION system can be determined by the statistical characteristic
of the past behavior of the system. It is a general term
Changes in solar activity affect activities in space, thefor a class of statistical methods. Dynamo models are
Earth’s magnetic field, the Earth’s climate, and humarbased on physics. The conservation equation of a physical
activities (Usoskin 2008 Sunspots are one of the most model can be integrated by the dynamo model, which in
basic and obvious features of solar activity. The numbeturn can predict solar activityNandy 2002 Precursor
of sunspots is also related to the intensity of solar ragiiati methods are the most common prediction method at
(Solanki 2003. present; these methods use the solar polar magnetic field
Forecasting sunspots is not only important for theand a geomagnetic activity index to forecast solar activity
study of changes in solar activity and for an understanding Many scholars have used these methods to predict
of the mechanism of solar activity, but it is also im- the peak value of the smoothed monthly sunspot
portant for space navigation and solar-terrestrial reteti number (SSN) for Cycle 24. Among them, Noble and
(Prabhakaran Nayar et al. 2Q0Zholipour etal. 2005 Noble & Wheatland (2012 (66+5) and Rigozo et al.
Ahluwalia & Jackiewicz 201R However, the change (2011 (113.3) used spectral analysis methods;
process and mechanism of solar activity are extremelpjabshirizadeh et al(2011) (65) and Attia et al. (2013
complicated. The prediction of sunspots is also very101+8) used neural network methodian et al.(2018
difficult using general techniqueKitiashvili 2016). (134.1), Sabarinath & Anilkumar(2018 (78+25) used

Spectral analysis, neural networks, climatologicalclimatological methods; dynamo models were used by
prediction, dynamo models, and precursor methods are tHfehoudhuri et al(2007 (80); andDabas & Sharm&010
main methods for solar cycle prediction. Spectral analysi§131+20), andMufioz-Jaramillo et al(2013 (78) used
is an analytical method for calculating structural resgons Precursor methods. These forecast results are combined
which combines modal analysis results with knownWith the results collected biyesnel(2008, Pesnel(2016
spectra. It examines a Fourier analysis of sunspot tim@ndHan et al.(201§ and are listed in Tablé, according
series for invariant quantities. Neural networks are nonto the different methods used. The observed peak value of
linear statistical algorithms, which can determine comple Cycle 24 is 81.9 (Version 1.0).
relationships between input and outpAtt{a et al. 2013. The methods listed in Tablg include both original
Climatological prediction assumes that the future of sand improved methods, wher®,,. is the number of
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Table1l Cycle 24 Amplitude ¥

Y Y2 Yy o
Method Npre RMp DRM PDRM  N(10%) K l l [ [
Spectral 24 43-180 19.8  17% 5 L L, L, L.,
Neuralnetwork 6  65-145 131 11.3% 0 | [ | |
Climatological 33 40-185 11.6 10.0% 10 9 Unfold, ¢ o 0 0
Dynamomodel 5  80-167 11.9  10.2% 3 . WZQ . L L
Precursor 36 53-180 8.3 7.1% 5 s o & 1 s, s“
Nz W W
U 1% U U
forecast cases, RMp is the range of the predicted Cycle 2: x = Xy o, s

amplitude, DRM is the absolute error of the forecast value, )
PDRM is the relative error of the forecast value, aNd Fig.1 Structure of a recurrent neural network.
is the forecast number with a prediction error of less thany; that time. As more efficient RNN structures have
10%. DRM and PDRM can be expressed as: continually been proposed, the ability of RNNs to explore
DRM = [Predictedvalue — Observedvalue| (1) the temporal and semantic information in data has been
fully utilized. Language modelsy@mamoto et al. 2001
|Predictedvalue — Observedvalue| «100% machine translation Saha & Raghava 20)0 speech
Observedvalue @) recognition Gravesetal. 20)3 and timing analysis
- . éLukosevwlus&Jaeger 2009have all been achieved
It can be seen that the prediction values obtaine lising RNNSs.
not only have large distribution ranges, but also low - : .
RNNSs contain input units, where the corresponding
prediction accuracies. The prediction errors of most of . .
put unit is labeled {zi,72, - xTi1, 0},
the prediction methods (we usually use the relative erro!i
01,02, - +,01,0041, -} are recorded as the output

(PDRM) to compare the accuracy of prediction results . o
. . . . —units, the corresponding output unit is denoted as
so the prediction errors in the following are all relative .
t%y 1y21 : yytayt+11 } and {811821 : Stast+11 } IS

0 .
errors) are above 10%. In general, obtaining an accura hidden unit. U, V, and W are parameters from the

srf(?dlclttlog of fu"ttéroelsolar activity amplitude is still very input layer to the hidden layer, the hidden layer to the
ifficult (Pesne # output layer, and the hidden layer to the hidden layer,

neuzfipetl\zs:rk"sngﬁavghég\]/evl\/:segi\;el%Fl’e?nf:?ar;ozf'fri];:jyrespectively. When the network calculates the output unit
' p p y 01,02," * *,0t,0t41," * } theIOSS{L11L21 Ltth+11 }

due to its powerful capabilities and flexibility. However, can be calculated from each and the corresponding

to date, there has been little research on solar Cyc'Frammg targety. A back propagation algorithm is then

forecasting using deep learning techniques. In this stud
the | hort-t LSTM) d | . del sed to update the network parameters and minimize the
€ long short-term memory ( ) deep learning mo loss L, finally obtaining the trained network model. The

was used to predict the SSN. The number of hidden IossL can be calculated by the following formula:
nodes and the batch size in the LSTM model were y 9

also optimized, Finally, appropriate training sampleseaver L=—(y-logy+ (1 —y)log(l—179)) 3)
selected experimentally.

PDRM =

wherey = softmax(o), which is the value of the output
valueo after normalization. The loss function can be used
to predict the probability of a certain situation for diféet
independent variables. Only the loss function is minimized
to determine the parameters of the model when LSTM is
used for predictionGraves 201p A typical RNN and its
expanded structure are shown in Figlre
Deep learning, a type of machine learning, originated Inan RNN, the main work is done by the hidden units.
from image recognition. Deep learning algorithms areOne flow of information is from the input unit to the hidden
both powerful and flexible. In deep learning, there areunit, and a second flow of information is from the hidden
two typical neural network structures — the convolutionalunit to the output unit, both of which flow in the same
neural network (CNN) and the recurrent neural networkdirection. In some specific cases, the network will direct
(RNN) — among which, the RNN is more suitable for information from the output unit directly to the hidden unit
dealing with time-series analysis. This information is called “back projection”, and the input
The RNN model was derived from the Hopfield of the hidden layer includes not only the information from
network model by Jordan in 198&4&ratha & Tajuddin the output unit, but also the state of the previous hidden
2008. However, the RNN model was not widely used layer.

2 DEEP LEARNING AND NETWORK
OPTIMIZATION

2.1 Introduction to deep learning and recurrent
neural networks
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i = sigmoid(W;[hs—1, 2¢]) ()

/ heq,x: ;
| = sigmoid(Wy[hi—1, z4]) (6)
o = sigmoid(Wy[hi—1, z¢]) (7)
ct:f-ct_l—f—l"z (8)

b= o tanhic) ©

input state value ® '@ Where_ Equz_itions 4)—(9) are the input state value
(candidate) (candidate), input gate)( forget gate (), output gated),
new state ¢;), and output ;) in the nodes, respectively

.@. (Graves et al. 2013)W,, W;, W; and W, are four

parameter matrices with dimensionsn[2n], and the
dimension ofn is the dimension of state
Differing from the ordinary linear and nonlinear meth-

b ods, LSTM networks do not simply impose an element-

by-element nonlinearity after affine transformation of the
Fig.2 LSTM unit details. input and recurrent elements. Instead, they incorporate no
only external recurrent neural networks, but also internal

The hidden unit can contain important information . . L .
about the past, and the former hidden unit is indirecty>c-c/Cing- Self-cycling exists in the state unit, whose
hast, yWeight is controlled by the forget gate. The accumulated

connected to the current part of the network only througqime scale can be dynamically changed by the input

the generated prediction. More parallelism and a Shortesrequence, and it uses different functions to calculate

. ) . fhe state of the hidden layer (Graves, 2012). Therefore,
time steps can be separated. The variables and operations . = . . : ; )
. . . . considering the long intervals in sunspot time series, the
in the hidden layer are the same at different times, so the . :
o ..~ " Ose of the LSTM network structure is appropriate for the
RNN can process arbitrarily long sequences with limited - -
prediction of future solar activity.
parameters.

2.2 Thelong short-term memory network structure 2:3 Optimization of LSTM Parameters

The LSTM network structure was proposed byThe paramet.ers of the LSTM network gtructure include the
Hochreiter and Schmidhuber in 1997 to solve thenumber O.f hidden nodes, the batch- siz€, ar.ld the ne.twork
long-term dependence problem in the previous RNNIayers. Hidden nodes are located in the hldQen units of
(Hochreiter & Schmidhuber 1997 %he LSTM netw-or.k. These nodes are.called hidden nodes
The “forget gate” and “input gate” are the core of because the training data do not specify the outputs needed

by these nodes. The number of hidden nodes directly

the LSTM strugture_. The forget gate calculates a vegtor affects the performance of the network. The network may

ot et 11 7 r 0 ety perfomarc il b pcorwhen

in the range of(t(a i) in each dimension. The stae, the number of hidden nodes is too small. In addition, if the

' ' ) number of hidden nodes is too large, the training time of

f the previ moment is then multipli r. . :
of the previous moment is then multiplied by tfieecto .the network will be prolonged, and the network can easily

Information in dimensions whose values are close to 0 IS .
. o . all into local minima, although the error of the network
forgotten and information in dimensions whose values are

. . . . will be reduced.
close to 1 is retained3raves 201R The input gate is based L
. L . The batch size is the amount of data that the network
onz;. h(;_1) decides which information needs to be added o
traverses for each training pass. Some data can be

to the statec;_;) to generate a new statg. The output . . . . .

: trained at the same time by setting a certain batch size.
gate determines the outplit based on the latest statg o )

: However, when the batch size is too small the multi-layer

the output of the last moment,_;), and the current input

x,; at that moment. The specific structure of the LSTM unitneurons anq nonlinear _netwqus !n LSTM WIH modify the
is shown in Figure parameters in the gradient direction of their samples each

The functions used by each of these nodes are definetgne’ which means th.at the model W'.” not_ ez_asny reach

as follows: convergence. Increasing the batch size within a certain
' range can improve memory utilization and parallelization
candidate = tanh(W, [hs—1, x¢]) (4) efficiency, but the number of training rounds required to
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3 DATASETSAND METHOD

a0 The data types of sunspot numbers include annual mean
value, monthly mean value, and smoothed monthly mean
value. The SSN is the average of the 13 months before and
after the current month, and with a weighting of half for the
first month and the 13th month, which is also called the 13-
month smoothed sunspot number. Solar activities include
sunspots, solar wind, solar proton events, etc. Sunspsts ar
caused by the large difference between the temperature
of some areas of the Sun’s surface and the surrounding
area. Their change is the most basic phenomenon in solar
activity. The number of sunspots changes periodically, and
the state of the solar cycle is usually described by the
magnitude and change of the SSN.

5 T

Batch.gipq 8 30

Fig.3 Parameter determination of the network model.

The data we used were the version 2.0 SSN data
from the year of 1750 onwards, downloaded from
sidc.oma.be/silso/datafiles. In order to analyze the

: _ : model errors and explore the influence of sample size on
e o conconea o . 1€ PrEdiction esults, we first sefected the data of diffre
RNN, TRAS is the number of training rounds, BAS is the size ofthe ~ P€riods to train the LSTM network to predict the 24th solar
batch, and SAMG is the sampling interval. cycle, and obtained four different prediction models. We

then analyzed the model errors and selected the appropriate
achieve the same accuracy will increase with an increaséata as training sets to model and forecast Cycles 22 and 23
in the batch size. according to the forecast results, and we analyzed the root-

The number of LSTM network layers refers to the Méan-square error (RMSE) of the established model and
number of layers between the input and output at eachhe relative error of the predicted amplitude. Finally, we
time step. This differs from a deep feedforward neuraforecast the future via one-step and multi-step predistion
network, as a deep RNN does not stack too many |aye,1ésing the LSTM model, and predicted the peak amplitude
between input and output. In the sequential processing ofalueé and occurrence time of Cycle 25.

RNNs, an increase in the numbers of layers results in an We took the observation sequen®¢: — 9), O(i —
exponential growth of the time and memory overheadss),---,0(i) in the first 10 months as the input of the
The disappearance of the gradient becomes very obviousetwork, and the valu@(i 4+ 1) in the next month was
and the convergence effect and efficiency drop sharply. Thigained as the output of the network, for the one-step
local minima problem can also be encountered when thprediction. We then took the observation sequefi¢e—
number of layers exceeds three. Therefore, a deep RNRL9),0(i — 718),---,0(7) in the first 720 months as the
with two to three layers is a large-scale network. input of the network, and the valué¥(i + 1) in the next

In order to train a better network model, we evaluated’2 months were trained as the output of the network, for
the impact of the hidden node number and batch size ofhe multi-step prediction. A prediction model was then
the model's performance. The other parameters were lefistablished. The known data were selected as the test set
unchanged, and we changed the number of hidden nod@$ the model, and the RMSE of the test set data and the
and the batch size in a range from 1 to 30. The results ar@lative error of the predicted amplitude were used as the
shown in Figures. evaluation indicators. The RNN model takes a very short

From the results, the error after training the networklime to process the time series of pure numbers, so the time
model is minimized when the number of hidden nodes i€omplexity is generally not considered in the prediction of
19 and the batch size is 20. Therefore, we chose 19 fotUnspot numbers.
the number of hidden nodes and 20 for the batch size for ~ Similar to the training process, the prediction took the
the subsequent experiment. Due to the number of nodexbservation sequence of the first some months as the input
in each hidden layer being the same in LSTMréves of the network and the value of some future months as the
2012, the hidden nodes of each layer number are 19 imutput. For example, we used the data series of 10 months’
this application. These parameters are listed in T&le observations from March 2008 to December 2008 (i.e.
including the other network model parameters. O(i —9) to O(7)) as input of the model, and January 2009

Table2 Parameter Setting of the Network Model

HID.S NUMLL TIM_.S TRAS BAT.S SAMG
19 2 10 10000 20 0.01
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Table 3 RMSE and Amplitude Prediction Error for Table 4 Statistical Results for the One-step Amplitude
the Cycle 24 One-step Prediction Using the Data fronPredictions for Cycles 22—24 Using the LSTM Model
Different Time Series

SC RM RMp DRM PDRM RMSE
22 2125 1193 13.2 6.2% 6.12

SAMPLE 1750C-2008 1770-2008 1790-2008  1810-2008 23 1803 1788 15  08% 428
RMSE 2.45 2.96 3.68 3.86 24 116.4 118.8 2.2 2.1% 2.45
PDRM 2.10% 2.42% 4.78% 5.28% SC is the solar cycle number, RM is the actual observationevaf the

SC, RMp is the forecast value of the solar cycle, DRM is theohite
error of the forecast value, PDRM is the relative error of finecast
(i.e. P(i+1)) as output of the model in one-step prediction. value, and RMSE is the LSTM model root-mean-square error.

The output of the model was treated as the correct output,

which was fed back to the hidden unit of the model (Graved able 5 RMSE and Amplitude Prediction Error for the
A, 2012). The information passed back to the hidden unifycle 24 Multi-step Prediction by Setting

can be saved as a specific value to the hidden unit and  T\vesTEPS 1200 1080 960 840 720
propagated into the future. However, it is impossible to (MON.PRED) (120) (108) (96) (84) (72)
predict the next month’s SSN based only on the first few RMSE 46.2 283 184 112 6.1
months of SSN data using the trained LSTM model. The PDRM 186% 10.7% 89% 6.1% 3%
model needs to combine all the previous SSN data to

make the next predictiorGraves 201R Since the initial Table 6 Statistical Results of the Amplitude Multi-step
parameters of each network training pass were randonPrediction for Cycles 22—25 Using the LSTM Model
each result is the average of 10 runs, to minimize the
influence of the initial parameters on the forecast results.

SC RM RMp DRM PDRM RMSE

22 2125 1759 36.6 17.2% 35.3
23 180.3 167.8 125 6.9% 28.8
24 1164 1128 3.6 3.0% 12.1
4 RESULTS 25 — 114.3 — — —

4.1 One-step prediction of SSN

Figure 5(a)-(c) are the results of the one-step
Simulated forecasts for the Cycle 24 SSN using the datgrediction predictions for Cycle 22 to Cycle 24 using the
from 1750-2008, 1770-2008, 1790-2008, and 1810-20085TM model. The amplitude prediction error and RMSE
were obtained using the LSTM model. The results forgre |isted in Tabled. The forecast results are generally
the different time series are shown in Figd(@)-(d), and  |ow when forecasting Cycle 22, where the final amplitude
their RMSEs are listed in Tabf@ It can be seen that the forecast error is 6.2% and the RMSE reaches 6.12. On the
RMSE and amplitude prediction error of the establishechne hand, this may be due to the use of fewer training
model increase as the number of samples decreases. Tlgl§mp|es or, on the other hand, it could be due to the
is the feature of deep learning, where the larger the trginincomplexity of Cycle 22 itself. The amplitude deviation of
sample set, the lower the error of the established predictiocyc|e 23 is the smallest, at only 1.5 difference from the
model. The RMSE obtained using the samples from 175@pserved value, the relative error is 0.8%, and the RMSE is
to 2008 is 2.45, and the amplitude prediction erroris 2.1%g|so reduced to 4.28. With an increase of training samples,
which represent the best prediction results. Therefoee, thalthough the amplitude forecast error of the 24th solar
data before the forecast solar cycle were selected as thetivity week is slightly higher than that of the 23rd solar

training samples in the next forecasting experiment. Weyctivity week, reaching 2.1%, the RMSE is reduced to 2.45
used the SSN data from 1750 to 1985, 1750 to 1996, 175&mpared with Cyc|es 22 and 23.

to 2008, and 1750 to 2018 as training data sets to forecast
Cycle 22 (1986-1996), Cycle 23 (1997-2007), chle 24y 5 Multi-step prediction of SSN
(2009-2019), and Cycle 25 (2019-2029), respectively.

It can be seen that the predicted value and the observéithe RMSE and PDRM results in Tabfewere obtained
value are in good agreement when the observed value dobg setting the timesteps to 1200, 1080, 960, 840, and
not change much. However, the predicted value is not ag20 to predict the SSN of Cycle24. The timesteps and
accurate when the observed value changes significantfyrediction timestep are generally in a ratio of 10:1 when
(e.g. near the peak amplitude of the solar cycle). There isetting timesteps and prediction timeste@sgves 201p
also an inevitable problem of postponement near the peakherefore, the numbers of predicted months corresponding
amplitude of the solar cycle, with a postponement periodo the different timesteps are 120, 108, 96, 84, and 72,
of about 1.5 months. respectively.
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Fig.4 One-step prediction results for Cycle 24 using the data fudfarent time series.

Table 7 Predicted Peak Year and Peak Value of Cycle 25

Rigozo et al. (2011) Helal & Galal (2013) Miao et al. (2015) rQurecasting

Peak year 2023 2023 2024 2023
Peak value 132.1 118.2 11%8.5 114.3

It can be seen that the RMSE and amplitude predictiotrend of the SSN. In the first six years of Cycle 22, the
error of the established model are reduced with themplitude prediction erroris 17.2% and the RMSE is 35.3.
decrease of the timesteps. The prediction effect is bettérhe amplitude deviation for Cycle 24 is the smallest, at
when the timestep number is 720. The RMSE is then 6.bnly 3.6 difference from the observed value. The relative
and the amplitude prediction error is 3.0%. It would beerror is 3.0% and the RMSE is also reduced to 12.1.
impossible to predict the peak value of the next solar cyclé-inally, the next solar cycle’s (Cycle 25) peak amplitude
if the value of the timesteps continues to decrease, becausepredicted to occur around 2023, with a peak value of
the peak value of the next solar cycle is predicted to babout 114.3. A number of scholars have forecast Cycle
at least 72 months. Therefore, we set the value of th@5, such asRigozo et al.(2011) (113.3), Helal & Galal
timesteps to 720 in the subsequent experiments. (2013 (118.2), andMiao et al. (2015 (119.2+5.5). Our

Figure 6(a)-(d) are the results of the multi-step results for the peak value are consistent with those of these

predictions for Cycle 22 to Cycle 25 obtained using thefesearchers. The different results are listed in Table

LSTM model. The amplitude prediction error and RMSE

are listed in Tableb. It can be seen from the results that

there are some deviations between the predicted values aBACONCL USIONS AND DISCUSSION

the observed values. The predicted values for the first two

years are generally larger than the observed values, afithe solar cycle has been predicted by many researchers;
the predicted values for the last three years also deviate the results of long-term forecasting (especially for Cycle
some extent. This is because the principle of establishing24) are highly biased, and the results obtained by different
prediction model with the LSTM model is to minimize the methods are notably different. The reason for this may be
overall deviation between the output of the network andhe extremely complex and variable character of the solar
the observed valu&graves 201 This reflects the overall activity itself.
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In this study, an optimized LSTM network was Graves, A. 2012, Supervised Sequence Labelling (Springer
trained and used to forecast the SSN. For Cycles 22— Berlin Heidelberg)
24, the maximum RMSE of the one-step predictionGraves, A., Mohamed, A.-r., & Hinton, G. 2013, arXiv e-psint
model was 6.12 and the minimum was only 2.45. The arXiv:1303.5778
maximum prediction error of the multi-step prediction of Han, Y.-B., Yin, Z.-Q., & Wang, B. 2018, Chinese Science
the amplitude was 17.2% and the minimum was only 3.0%. Bulletin, 63, 311
Finally, the next solar cycle’s (Cycle 25) peak amplitude Helal, H. R., & Galal, A. A. 2013, Journal of Advanced Resé&arc
was predicted to occur around 2023, with a peak value of 4, 275
about 114.3. Hochreiter, S., & Schmidhuber, J. 1997, Neural Computafon

The proposed LSTM deep learning model can not 1735
only predict the peak amplitude value of the solar cycle Kitiashvili, I. N. 2016, ApJ, 831, 15
but also the time when the solar cycle reaches its peakukosevicius, M., & Jaeger, H. 2009, Computer ence Review, 3
amplitude; previous years of solar cycle data are not 127
required for the forecast. However, the disadvantage idiao, J., Gong, J., Li, Z.,, & Ren, T. 2015, Scientia Sinica
that sufficient training samples are required to adjust the Physica, Mechanica & Astronomica, 45, 099601
network parameters before training the network, and théuioz-Jaramillo, A., Baimaceda, L. A., & DeLuca, E. E. 2013
network does take some time to train. Phys. Rev. Lett., 111, 041106

Nandy, D. 2002, Ap&SS, 282, 209
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