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Abstract In the fourth Fermi Large Area Telescope source catalog [4F&64-~y-ray sources are reported,
including 3207 active galactic nuclei (AGNSs), 239 pulsaB36 unassociated sources, 92 sources with weak
association with blazars at low Galactic latitudes and ti@rsources. We employ two different supervised
machine learning classifiers, combined with the direct olzg®n parameters given by the 4FGL fits table,
to search for sources potentially classified as AGNs andiplis the 1336 unassociated sources. In order
to reduce the error caused by the large difference in the sizeamples, we divide the classification process
into two separate steps in order to identify the AGNs and thisgrs. First, we select the identified AGNs
from all of the samples, and then select the identified pslfam the remaining cases. Using the 4FGL
sources associated or identified as AGNSs, pulsars and atheres with the features selected through the
K-S test and the random forest (RF) feature importance nmeasant, we trained, optimized and tested
our classifier models. Then, the models are applied to fyats 1336 unassociated sources. According
to the calculation results of the two classifiers, we regoetdensitivity, specificity, accuracy in each step
and the class of unassociated sources given by each clasHifeeaccuracy obtained in the first step is
approximatel¥5%; in the second step, the obtained overall accuracy is appedgly80%. Combining the
results of the two classifiers, we predict that there are 58BlAype candidates, 115 pulsar-type candidates,
154 other types of-ray candidates and 484 of uncertain types.
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1 INTRODUCTION accepted unified model paradigidr(y & Padovani 1995
Ulrich et al. 1997, an AGN is usually associated with a jet
that originates from the central SMBH and is filled with
relativistic plasmas. Due to their extreme charactesstic
the jet of an AGN is an ideal object for studying
the acceleration mechanism of high-energy particles. In

1995 Hartman etal. 1999contain a small number of addition, pulsars are another major observed type; the

sources, most of which are unassociated sources. The idep]glsars’ high energy emission mechanism is an open issue.
tification of MeV-GeV~-ray sources, over a long period Considering the different locations of the emission region
' (Harding & Muslimov 1998} either the polar cap model

(Rudak & Dyks 1998Harding & Muslimov 1998por the

Both the Celestial Observation Satellite (COS-Byay
source catalogs (e.gdermsen 1981Pollock et al. 198y
and the Compton Gamma Ray Observatory (CGR@ay
source catalogs (e.grichtel et al. 1994Thompson et al.

of time, suffers from few detectors and limited angular

resolution. In recent years, approximately 20 types/-of :
ray sources have been identifieflbdollahi et al. 202] outer gap modelGheng et al. 1986Romani 19962014

Most of the identified sources belong to the active galacti(j:S applied to interpr-et the high-energy emissipn of pulsars
nuclei (AGNs) category. It is commonly believed that The latter model is more populaS#z Parkinson et al.

there is a supermassive black hole (SMBH) in the cente?Ola since _a Iar_g.e number Of_ radio-quigtray pulsars
of an AGN. Their continuum emission is chare;mterizedha“le been identified by Fermi-LATAbdo etal. 20092

by high brightness and non-stellar origin. Their broad_saz Parkinson et al. 20L0However, additional evidence

spectral energy distribution extends from radio to high-IS still required.
energy y-ray bands Karas etal. 20109 In the widely
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In 2008, a new era in the classification of observationglassification and regressioBdron 2019. The aim of
began to emerge. High-energy observations have bee3ML classifiers is to establish judgment criteria based on
included in the Fermi catalogs; an abundanceyefiy = known samples to predict the classification of unknown
sources has been discovered. Over the last decade, thamples. A wide variety of SML algorithms is available,
Fermi-Large Area Telescope (LAT) source catalog (FGL)including logistic regression, decision trees, random
has evolved, including the regular releases of the OFGL (®orest (RF), support vector machines, neural networks,
monthsAbdo et al. 2009 1FGL (11 monthsAbdo etal.  Bayesian networks, Gaussian finite mixture models,
2010, 2FGL (2 years,Nolanetal. 201 and 3FGL artificial neural networks (ANNs) and many others (e.g.,
(4 years,Acero etal. 201p Neglecting the incomplete seeFeigelson & Babu 201,ZXabacoff 2015.

OFGL, the 1FGL contains 1451 sources including 630 In recent years, ML algorithms have been widely
unassociated sourcesi{do et al. 2010 Then the 2FGL applied in Fermi data analysis. Many investigators have
reduces the number of these unassociated sources uglized them to explore the nature of unidentifieeray
576; this catalog contains a total of 1873 sources. Theources, for example, searching for AGNgifabal et al.
3FGL contains 3033 sources of which approximately on€012 Doert & Errando 2014 Saz Parkinson et al. 2016
third are unassociated\¢ero et al. 201p Recently, the and pulsars Nlirabaletal. 2012 Saz Parkinson et al.
Fermi-LAT collaboration has provided a release of the2016 Luoetal. 202) in unassociated sources, or
fourth Fermi-LAT source catalog (4FGL)This catalog evaluating the optical classification of Fermi blazar
features the newy-ray observation results of an eight- candidates of uncertain type (BCUsjgssan et al. 2013
year period from 2008 to 2016 in the 50 MeV to 1 TeV Chiaro et al. 2016Lefaucheur et al. 2017Salvetti et al.
energy range with 4 confidence level. The 5064 sources 2017 Kang et al. 20194; Liodakis & Blinov 2019.
contained in the 4FGL are divided into 23 categories (see In the present context, we employ two SML classi-
Abdollahi et al. 202 in which the number of sources of fication methods of both RF and ANN to evaluate the
eight classes of AGNs is 3207, accounting 63r3% of  potential classification of the 1336 unassociated sample
the total sources. Besides, 239 sources are pulsars, 1386urces in the 4FGL catalog. The aim is to obtain
sources are unassociated, 191 sources are identified in #dore potential AGN, pulsar and othey-ray source
other categories (i.e., pulsar wind nebula, normal galaxyinon-AGN and non-pulsar) candidates. The remainder
etc), and 92 sources are labeled as “UNK/unk”in the 4FGlof this paper is organized as follows. In Secti@
table, which are the sources with weak association witiye describe the dataset from the 4FGL and select
a blazar at low Galactic latitude (marked as UNK in thefeatures using the Kolmogorov-Smirnov (K-S) test and
work). Since the AGNs and pulsars are important for theRF feature importance measurement. In SecBprwe
field of high-energy astrophysics, we evaluate the potentigeview SML classification algorithms, dataset partitianin
classification of unassociated sources and confirm thgnd normalization, and the creation and validation of two
AGN and pulsar candidates for the expanded samples. individual algorithms (RF and ANN). In Sectio# we

Machine learning (ML) techniques have becometest the individual algorithms and composition algorithm,
more popular in the field of data mining and datathen apply the composition model to the 1336 unassociated
analysis and are receiving attention in a wide varietysources. Some discussions and the conclusion are given in
of domains, including the analysis of astronomicalSection5.
databases Ball & Brunner 2010 Mirabal etal. 2012
Pesenson et al. 20lDoert & Errando 2014Chiaro etal. 5 HATASET PREPARATION
201§ Saz Parkinsonetal. 2016 Lefaucheur et al.

2017 Salvettietal. 2017 Baron 2019 Kangetal. Inthe new release of the 4FGL catalog fits t&8p&E064~-
2019gb; Liodakis & Blinov 2019 Faisstetal. 2019 ray sources above a4onfidence level are reported, and
Fluke & Jacobs 2020 As a cutting-edge cross- these are divided into 23 categories. Nevertheless, not all
disciplinary subject, ML is divided into supervised samples are available. The nature of UNKs has not been
machine learning (SML) and unsupervised machinalefined, though there is a weak association between UNKs
learning (USML) algorithms. Based on the clusteringand blazar candidates. Moreover, the bright background at
algorithm, the USML is utilized to identify the potentially low Galactic latitudes impacts the observation of UNKs,
complex relationships among samples. Alternatively, ifwhich may lead to deviation in the classification process.
we focus primarily on the labels of datasets providedSo, 92 UNK sources are removed. In the classification,
artificially, we can employ SML algorithms to realize eight classes of AGNSs, such as flat spectrum radio quasars,

1 https://ferm.gsfc.nasa.gov/ssc/ datal access/ 2 https://ferm .gsfc.nasa. gov/ssc/ datal access/
| at/ 8yr_cat al og/ lat/8yr_catal og/gll _psc_v2l.fit


https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_catalog/
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_catalog/
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_catalog/gll_psc_v21.fit
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_catalog/gll_psc_v21.fit
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BL Lac objects and Seyfert galaxies, are labeled as agn
Similarly, we label the pulsars as psr, unassociated seurce G
as unass and the rest of the sources that are identified ¢ II
othery-ray sources are labeled as other. The details of the 3 -
4972 sources that belong to different categories or labels
are shown in Tablé.
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As seen in Tabld, the sample is unbalanced. More S OEEE

specifically, the number of AGNs is approximately 15
times the number of pulsars or other types, which can
significantly affect the classification results. In order to
reduce the influence of the imbalances and improve the
prediction accuracy, we divide the classification process ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

into two steps. Firstly, we select the AGN candidates in 12 10 08 06 04 02 00 -02

all of the unassociated samples, and then select the pulsc.. Spectiety

candidates in the remaining non-AGN samples for the lastig. 1 The ROC curves of the RF classifier with the best
step. In this way, we expand the non-AGN samples andhyper-parameter combination for the validation set in the
reduce the error. The classification is done step by stegirst step. The text in the figure expresses the AUC value,

thus, there are distinct datasets in the two steps (see Tagfef Optimal threshold and the corresponding sensitivity an
7) specificity.

0.2
|

0.0
|

Each source in the 4FGL catalog contains 333 column-
s of observed dataApdollahietal. 202D Excluding Since different features play different roles in the
strings, missing columns, columns without physicalclassifiers, the selection of suitable input features fer th
significance, errors and historical data, there are 36 asabBML is necessary. Noticing that, i) More input features do
features: F; — Fy]: integral photon flux in the band not always result in higher accuradg¢dng et al. 2019h
of 50 to 100 MeV, 100 to 300 MeV, 300 MeV to 1 ii) More features need more computation; iii) Favorable
GeV, 1 to 3 GeV, 3 to 10 GeV, 10 to 30 GeV and features for the selection of the AGNs are different from
30 to 300 GeV, respectivelyyF,, — vF,;]: spectral those for pulsars, we further select the features for the two
energy distribution over the seven bands; [GLABLAT]:  steps from the 36 usable features.
Galactic longitude/latitude;H1q0]: energy flux from 100 The K-S test is a two-sample hypothesis test method,
MeV to 100 GeV; [Fiooo]: integral photon flux from 1 to  which is often used to evaluate the significance of the
100 GeV; [SignifAvg]: source significance i units over  distribution difference of the same measurement in two
the 100 MeV to 1 TeV bandHpiv.4]: the energy at which  samples (e.g.Xiong & Zhang 2014 Kang et al. 202
error in differential flux is minimal; Kpr,PLIndex]: In particular, the K-S test can also be applied for
differential flux at pivot energy, photon index in power- feature selection (e.gKangetal. 20194), based on
law (PL) fit; [K1p,LP_Index,LPbeta]: differential flux, the principle that the greater the distribution difference
photon index at pivot energy, curvature in logarithmicof the two samples over a feature, the more favorable
parabola (LP) fit; Kprec, PLECIndex,PLECExpfactor the feature is in SML classifiers. In addition, feature
andPLECExp.Index]: differential flux at pivot energy, importance provides a metric on the feature performance
low-energy photon index, exponential factor and indexevaluation in the RF algorithm. Here, this is measured
in powerlaw with superexponential cutoff (PLEC) fit; utilizing the function fmportance” from the package
[LP_ SigCurv/PLECSigCurv]: significance of the fit “randomForest” (Liaw & Wiener 2003. In summary,
improvement between PL and LP/PLEC i units; these two test methods are employed to evaluate the 36
[Npred]: predicted number of events in the model;usable features. For the purpose of implementing the two-
[Variability_Index]: variability index over the full cata- step classification process, we first test the features of
log interval; [Variability2Index]: variability index over ~AGNs and non-AGNs; then, the same process is applied
two-month intervals; [Fra®ariability/Frac2Variability]: ~ between pulsars and othefray sources. The pulsars and
fractional variability computed from the fluxes in each other~-ray sources are labeled as non-AGN in the first
year/two months. step.

In order to facilitate normalization and reduce the  The test results are displayed in Tal@eln the K-
computational demands of subsequent steps in the process test, the statistical valup represents the distribution
we calculate the logarithm of the higher scale featureslifference level of the feature in the two subclasses, while
(flux, energy, etc). p signifies the probability that the feature conforms to
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Table 1 The Label of 4FGL Samples

Description Designator Source count Label
Non-blazar active galaxy agn 11 agn
Blazar candidate of uncertain type bcu 1312 agn
FSRQ type of blazar fsrq 694 agn
Compact Steep Spectrum radio source css 5 agn
Narrow line Seyfert 1 nisyl 9 agn
Radio galaxy rdg 42 agn
Seyfert galaxy sey 1 agn
Steep spectrum radio quasar ssrq 2 agn
BL Lac type of blazar bll 1131 agn
Binary bin 1 other
Normal galaxy (or part) gal 3 other
Globular cluster glc 30 other
High-mass binary hmb 8 other
Low-mass binary Imb 2 other
Nova nov 1 other
Pulsar wind nebula pwn 17 other
Starburst galaxy shg 7 other
Star-forming region sfr 3 other
Supernova remnant snp 40 other
Supernova remnant / Pulsar wind nebula spp 78 other
Pulsar psr 239 psr
Unassociated 1336 unass

Column (1): Descriptions of sources for different classéddpllahi etal. 202D Col. (2):
Designator of sources for different classes. Col. (3): 8ewount for different classes. Col. (4):
The label of different sources used in this paper.

the same distribution. The RGini is the mean decrease help to find the best combination of hyper-parameters
in accuracy factors given by the measured RF featuréparameters of classifiers, such as the number of trees
importance; these tend to follow the same pattern as thia RF), classification threshold of different algorithms, o
K-S test. According to the selection criterioP (> 0.35in  prevent overfitting (seBaron 201%or more details). The
the K-S test), 20 better features selected in the first stép arest set is used to evaluate the classifiers’ performance in
eight better features selected in the second step are showerms of accuracy, sensitivity, etc.
in Table2. The features above the horizontal line are the
features we selected. This work employs both RF and ANN algorithms,
which contain different origins and characteristics. The
3 ESTABLISHING CLASSIFIER MODELS RF algorithms are derived from a “decision tree”
3.1 Classification Methods algorithm, which is a simple classifier algorithm (see
e.g., Paul & Utgoff 1989 Dudaetal. 2001for more
In the field of SML, the dataset contains a certain numbedetails). The principle of a decision tree algorithm is
of objects. Each object has its own features and a targéd build nodes to make one-to-one judgments, and a
variable; for classifiers, the target variable is also chlle large number of nodes constitutes a “tree”. However,
a label Baron 2019. For our work, the dataset contains a limitation of the “decision tree” is an overfitting
5065 sources from the 4FGL catalog, the features are thgtuation, which leads to a decrease in the accuracy of
observation data of these sources and the target variablpglgment Duda et al. 200l An RF algorithm addresses
are the classes of the source. the overfitting problem by utilizing a combination of a
In a classifier, the model learns the correspondindarge number of decision trees with weight consideration
relationships between input features and target variablefor each treeBreiman 2001 Compared with the “decision
Then, inputting the features of the unknown samples théree” (Fernandez-Delgado et al. 2Q1itis a more efficient
model outputs the probabilit] (usually normalized to O— and accurate classifier. Yet, a traditional RBrdiman
1) of each sample. Based on the classification threshold001) requires a “clean” dataset, which means that
(the default value is 0.5 in two-sample classifiers),the input of uncertain features or missing values is
the unknown samples can be divided into two classesunfavorable. Recently, the probabilistic random forest
Therefore, the dataset is further divided according to th¢PRF) algorithm has been proposed to deal with uncertain
role it plays in the classification process. The knowndatasetsReis & Baron 2019Reis et al. 2019 which also
samples are put into the training, validation, and testmakes the RF algorithms more suitable for astronomy
datasets in a certain proportion. The training set is agpliedata. As a mature ML classification algorithm, RF is
to train the classification model. The validation set canvery popular in the field of astronomical data analysis
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Table 2 Results of Test

First step Second step
Feature D P RF Gint Feature D p RF Gini
logFy 0.605 0 19.13 PLEGSIigCurv 0.547 0 17.62
logvF, 4 0.603 0 19.86 LBSigCurv 0.518 0 16.28
LP_SigCurv 0.598 0 17.40 LPeta 0.434 0 13.17
PLECSigCurv 0.591 0 17.69 PLEExpfactor ~ 0.399 <1 x10=6 12.78
PLEC_Expfactor 0.589 0 18.93 Signiivg 0394 <1x10°6 16.47
logF1 000 0.588 0 19.42 logF, 7 0379 <1x10°6 14.98
Frac Variability 0.560 0 17.21 PLEGndex 0375 <1x10°6 10.63
LP_beta 0.555 0 19.29 Idigr 0350 < 1x10°6 12.18
logvF, 3 0.545 0 18.23 lo&Lp 0281 <1x10°°© 8.19
logFs 0.530 0 16.72 0§ pL.EC 0281 <1x10°6 6.66
logF3 0.525 0 18.57 lo& pr, 0.267 < 1x10-6 7.96
logv Fys5 0.508 0 15.93 Epivot 0262 <1x1076 5.93
logFE1 00 0.503 0 18.02 Npred 0.195 6.48 x 10~% 10.52
Variability_Index ~ 0.457 0 18.15 loB; 0.186 1.33 x 1073 8.33
Npred 0.446 0 13.72 logF, 6 0.181 1.97 x 1073 8.70
PLEC.Index 0.445 0 18.48 lokj; 000 0.176 2.88 x 1073 9.34
Variability2_Index  0.382 0 19.64 logF, 4 0.172 3.84 x 1073 8.46
Frac2 Variability 0.371 0 19.01 logF,5 0.170 4.32 x 1073 7.60
logK1,p 0.360 0 12.75 log 0.167 5.60 x 1073 9.16
logKpr,EC 0.360 0 12.75 l0§s 0.159 9.59 x 10~3 8.78
l0gKpr, 0.335 0 12.67 GLAT 0.153 1.44 x 10~2 5.04
GLAT 0.329 0 9.76 PLIndex 0.137 3.83 x 1072 6.44
Signif_Avg 0.289 0 14.89 Fra™ariability 0.136 4.08 x 10~2 7.44
logvF o 0.288 0 14.15 GLON 0.133 4.68 x 1072 4.51
logFy 0.272 0 12.65 logF, 3 0.116 1.18 x 10~1 6.97
PL_Index 0.261 0 12.10 loB; 0.110 1.57 x 1071 7.58
logvF,7 0.195 < 1x1076 10.51 FracVariability ~ 0.104 2.02 x 10~! 1.89
LP_Index 0.188 < 1x10-6 13.80 LPIndex 0.100 2.37 x 10~ 5.09
GLON 0.187 < 1x1076 3.72 log1 00 0.095 2.97 x 10~1 9.07
logFs 0.169 < 1x1076 14.92 logt 0.089 3.75 x 107! 3.31
Epivot 0.164 <1x10°6 14.79 log/F o 0.089 3.75x 101 5.54
logvFy6 0.155 < 1x10°° 15.35 Variability2Index  0.086 4.17 x 10~1 -2.30
logF 0.152 < 1x1076 9.62 Variability Index ~ 0.085 4.33 x 10! 0.46
logrF,q 0.132 3.46 x 10~ 10.85 logFy 0.072 6.35x 1071 4.65
logFy 0.128 8.41 x 10~ 10.85 log/ 1 0.072 6.35 x 1071 5.79
PLEC Exp_Index 0.009 1 0.37 PLEExp.Index  0.013 1 1.00

Columns (1)—(4) display the test results of 36 “usable”dess for the first step; Cols. (5)—(8) list the test resultthef 36 “usable”
features for the second step. Above the horizontal line leeefeatures we selected, 20 for the first step and eight fosé¢leend
step. Cols. (1) and (5): Tested feature name; Cols. (2)-A8)X®&)—(7): Value of test statistidX) andp-value ) for the two-sample
K-S test respectively. Cols. (4) and (8): RF mean decreasednracy factors given by the functiomiportance” from package
“randomForest” (Liaw & Wiener 2003.

(e.g.,Feigelson & Babu 20Q3Calderon & Berlind 2019 addition, there may be extensive computational demands
Hosenie et al. 203XKang et al. 20194). resulting from a large number of neurortdussain et al.
The ANN algorithms are based on the structure2019.
of human brain neurons, and they are implemented Currently, the R languag®(Core Team 201 &ersion
in both SML and USML. Owing to their nonlin- for 3.5.1) is a convenient platform to implement various
earity, diversity characteristics and wide applicability classifier algorithms. The RF and ANN algorithms are re-
in the areas of regression, classification and modetlized using the packagesithdomforest” (Liaw & Wiener
prediction, the ANN algorithms are widely utilized 2002 and ‘RSNNS’ (the Stuttgart Neural Network
in astronomy (e.g.Vanzellaetal. 2004 Banerjietal. ~Simulator forR language; se&3ergmeir & Benitez 2012
201Q Eatoughetal. 20%0Bresciaetal. 20132014  respectively.
Ellison et al. 2016 Teimoorinia et al. 2016Bilicki et al. For the purpose of evaluating the performance of
2018 Huertas-Company etal. 2018Nauletal. 2018 classifiers, we also employed some other methods. The
Parks et al. 2018 Das & Sanders 2039 The network confusion matrix is a common metric in classifier tests
structure is generally divided into an input layer, one or(Baron 2019. The ‘“class_eval” (Feigelson & Babu 2003
more hidden neuron layers composed of a large number @§ a graph function that realizes the visualization of
nodes, and an output layer. However, the input and outpuhe confusion matrix. More specifically, the horizontal
data are generally normalized, which means that normabxis indicates the predicted label, the vertical axis
ization and de-normalization conversions are necessary. represents the true label and the accuracies appear on
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Fig.3 The ROC curves of the ANN classifier with the
two best hyper-parameter combinations for the validation
set in the first step. The text in the figure expresses the
AUC value, the optimal threshold and the corresponding
sensitivity and specificity. The different panels correspo

to different hyper-parameter combinations

Sensitivity

0.4

Fig.2 The ROC curves of the RF classifier with the three

best hyper-parameter combinations for the validation set
in the second step. The text in the figure expresses the
AUC value, the optimal threshold and the corresponding

sensitivity and specificity. The different panels corraspo

to different hyper-parameter combinations

top of them. In addition, the functionpérformance”
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1
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AUC: 0.796
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Fig.4 The ROC curves of the ANN classifier with the

) best hyper-parameter combination for the validation set
(Kabacoff 2013 provides a way to calculate severaljn the second step. The text in the figure expresses the
model performance parameters, including sensitivitye(tru AUC value, the optimal threshold and the corresponding

positive rate), specificity (true negative rate) and overalSensitivity and specificity.
accuracy based on the confusion matrix. The curves of
the receiver operating characteristic (ROC) are another
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important classifier performance evaluation metric, whichtraining set, and calculate the AUCs of the validation
consists of points at which the sensitivity is plotted set of different hyper-parameter combinations. The hyper-
against the specificity at different classification thrddeo parameter combinations corresponding to the maximum
(Saz Parkinson et al. 20L6&r the true positive rate is AUC value for the first step are displayed in TaBland
plotted against the false positive rat8afon 2019. The the corresponding ROC curves are plotted in Figlire
pROC packageRobin et al. 201)Lis employed to obtain while those for the second step are shown in Tabéand

the ROC curves for sensitivity against specificity of Figure2. In the first step, there is a best hyper-parameter
different classifiers and the values of the areas under theombination, htree=102" and “mtry=3". The best AUC
ROC curves (AUC) in this work. is 0.992, and the thresholds are 0.809 (see Fidire

In the first step of agn selection, all of the sources! the second step, there are three best hyper-parameter
in the sample with 20 selected features (see Ta)le COmbinations, fitree=56" and “mtry=4", “ ntree=65" and
are taken into account. A total of 3207 AGNs and 429 Miry=4", “ntree=78" and “mtry=4", respectively. The
non-AGNs, containing 239 pulsars and 190 other sourcegest AUC is 0.829, and the thresholds are 0.580, 0.600 and
are randomly divided into training set, validation set0-390, respectively (see Fig).
and test set. Considering the impact of randomness on Accordingly, in several hyper-parameter combinations
data set partitioning on a single result, we adopt a fixedvith the highest AUC values, we adopt the prior one, i.e.,
randomness (random seed df2345") and uniqueness we set ‘htree=102" and “mtry=3" for RF in the first step,
ratio (6:2:2) between training, validation and test setwhile the threshold is set to 0.80%ttee=56", “ mtry=4"
Again, the 239 pulsars and 190 other gamma-ray sourceshd the threshold is set to 0.580 in the second step.
would be randomly (random seed 012345") divided
intg training -sets, validation sets and test sets ip the- Same4 \1odel Creation and Validation: ANN
ratio (6:2:2) in the second step. In order to obtain uniform
results, we also set the random seed1&345” during RF

. Compared with RF, ANN is more complicated. The
and ANN training.

package RSNNS' (Bergmeir & Benitez 2012 provides

In addition, the normalization of input features is many different types of network structures, including
necessary in the ANN, but not in the RF, and the inputadaptive resonance theory (ART) networks, dynamic
target variables (class labels) of the training, validatio |earning vector quantization (DLVQ) networks, etc. The
and test set need to be decoded into a binary matri)fnost common way to imp|ement an ANN classifier is
For the purpose of feature normalization, we call theto construct a multilayer (MLP) network by calling the
“normalizeData” function in the RSNNS package, where fynction “mip”. Variable parameters includéearnFunc”,
there are three modes to choose from, i.e., t9pE"  “maxit” and “size’. The “learnFunc’ represents the
(normalized to the interval from 0 to 1), typeehter” (the  ysed learning function, which contains different network
data are centered, i.e., the mean is subtracted) and tyg@uctures, nonlinear activation functions, whether the
“norm” (mean zero, variance oneBgrgmeir & Benitez  pack propagation is employed and so on. Since the
2012. In the work, our feature normalization type is |earning function without back propagation is difficult
“nornt’. In addition, the function tiecodeClassLabels’is  to be stable in a small number of iterations, which

adopted for decoding class labels toabinary matrix, WhI|Qnay lead to Overfitting' we choose the more common
the function ‘encodeClassLabels’ is the approach utilized one, ‘BackpropBatch”, and the parameters of learning

for encoding the binary matrix. function are set to the default value. Thaeit” represents
the maximum of iterations to learn, and the default
3.2 Model Creation and Validation: RF value is 100. The dize” is an array that represents the

number of hidden layers and the number of neurons per
In the packagerandomforest” (Liaw & Wiener 2002, we  layer. For example, ¢ (2,3,4)” represents three hidden
build the classifier from functionrandomforest”, which  layers, with the number of neurons in each layer being
contains two hyper-parametersitrtee” and “mtry”. The 2, 3 and 4, respectively. Considering the limitation of
“ntree”’ represents the number of trees to grow, and thecomputation, similar to RF, we evaluated the performance
default value is 500. Thenitry” signifies the number of single and double hidden layer classifiers for all the
of features randomly sampled as candidates at each sptibombinations of neuron number per layer in the range
ranging from 1 to 8. For classifier, the default valug/s, of 1 to 15 and fnaxit” in the range of 50 to 150.
wheren is number of features. With all the combinations The hyper-parameter combinations corresponding to the
of the “ntree” in the range of 50 to 750 andnitry” in maximum AUC value for the first step are shown in
the range of 1 to 8, we train the classifiers using theTable3 and the corresponding ROC curves are depicted in
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Table 3 The Best Hyper-parameter Combination of Classifiers

RF ANN
mtry ntree  Auc  threshold size maxit Auc  threshold
Step 1 3 102 0.992 0.809 9 149  0.988 0.785
9 150 0.988 0.785
Step 2 4 56 0.829 0.580 c(4,12) 142 0.796 0.345

4 65 0.829 0.600
4 78 0.829 0.390

Column (1): Step 1 for selection of AGN and step 2 for selectibpulsar; Cols. (2)—(5): The best hyper-parameter
combination, the corresponding Auc value and thresholdro€Bssifier respectively; Cols. (6)—(9): The best hyper-
parameter combination, the corresponding Auc value aresiimid of ANN classifier respectively. The hyper-
parameter combination marked with a symbas the combination obtained in the present context.

Figure3, while those for the second step are visualized iness misclassification (8 out of 45). The specificity for
Table 3 and Figured. In the first step, the single hidden pulsars was 0.791 and 10 of a total of 41 pulsars were
layer classifier is better, and there are two best hypemisclassified as other sources. In contrast, the ANN has
parameter combinationsiriaxit=149" and “size=9”, and  high specificity up to 0.927 for the pulsars and less
“maxit=150" and “size=9". The best AUC is 0.988, and misclassification (3 out of 41). The sensitivity for the athe
both the thresholds are 0.785 (see Hy.In the second category was 0.800, and 9 of a total of 45 other sources
step, the double hidden layer classifier is better, and thengere misclassified as pulsars.

is a best hyper-parameter combinatiomakit=142" and

“size=c(4,12)". The best AUC is 0.796, and the thresholds4.2 Composite Algorithm Results

are 0.345 (see Fid).

In ANN, we employ a single hidden layer classifier When combining the two algorithms, we are guided by the
with “maxit=149", “size=9” and threshold of 0.785 in Principle of common identification, thatis, we obtained the
the first step, while a double hidden layer classifier withclassification results only when unassociated sources are
“maxit=142", “size=c(4,12)" and threshold 0.345 in the classified as the same by both classifiers. When the source
second step. classification results of the two classifiers are inconstste
we consider the sources to be the uncertain type (label
as “unc”). For example, the source numbered as 4FGL
J0531.7+1241c is obtained as uncertain type, while it is
4.1 Individual Algorithm Results evaluated as an AGN in ANN classifier and evaluated as

anothery-ray source in RF classifier. Hence, the accuracy
Based on the classifier models created (refer to Section 4i improved, although the number of candidates is reduced
we tested their performance with the test set. In the firs{e.g.,Kang et al. 2019pb The combined test results of the
step, the test set contains 635 AGNs and 92 non-AGNswo algorithms are provided in Tablk For the AGNSs,
and in the second step it includes 41 pulsars and 45 othéhere are only nine misclassifications of the 614 candidates
~-ray sources. The test confusion matrixes for the first stepbtained, and the overall accuracy is 09&%. In the case
are shown in Figur&, while those for the second step are of pulsars and other sources, the overall accuracies are
depicted in Figur®. The performance of the classifiers are0.886 and 0.914, respectively. There are also some sources
displayed in Tabld. of indeterminate type.

In the first step, the ANN's accuracy was 0.944, Then, we employ the classification model to the
slightly higher than the RF's accuracy of 0.939. For the4FGL catalog’s dataset of 1336 unassociated sources. The
RF algorithm, 34 out of the total of 635 AGNs were ANN classifier gives 911 AGNs, 166 pulsars and 259
misclassified as non-AGNs, while 10 of a total of 92 non-other gamma-ray candidates. The RF classifier gives 585
AGNs were misclassified. The sensitivity for non-AGNs AGNs, 175 pulsars and 576 other gamma-ray candidates.
was 0.859, and the specificity for the AGNs was 0.956. FoCombining the results of the two classification algorithms,
the ANN, 28 out of a total of 635 AGNs were misclassified we obtain 583 AGN candidates, 115 pulsar candidates and
as non-AGNs, while 13 of the total of 92 non-AGNs were 154 other gamma-ray candidates (see TadleFigure7
misclassified. The sensitivity for the non-AGNs was 0.891displays the distribution of the AGN and pulsar candidates
and the specificity for the AGNs was 0.946. over the sky. We find that most pulsar candidates are

In the second step, the accuracy was not as goodbcated near the Galactic plane; 74 pulsar candidates are
The overall accuracies of two algorithms were 0.791located at GLAT|b| < 10° and 11 candidates are located at
and 0.860, respectively. The RF algorithm has a highGLAT 10° < |b] < 15°. The distribution is consistent with
sensitivity of 0.822 for the other gamma-ray sources andhe identified pulsars. However, the AGN candidates are

4 MODEL TESTING
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Fig.5 The test confusion matrix of the two classifiers for the fiteps The label agn is the positive sample, while the
non-agns are the negative samples.
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Fig.6 The test confusion matrix of the two classifiers for the selcstep. The label psr is the positive sample, while the
other is the negative sample.

dispersed all over the sky. Just only 108 AGN candidate8y finding the optimal combination of hyper-parameters
are located at GLATH| < 10°. Since the high density to optimize the algorithm, we test the performance of our
distribution of the sources and the bright background arenodel (accuracy, sensitivity, etc.), and evaluate theléabe
near the Galactic plane, we regard the AGN candidates aif the 1336 unassociated samples. The accuracy obtained
low GLAT as difficult to identify. in the first step is aboui5%, and in the second step, the
obtained overall accuracy is approximatély. Finally,

we obtain 583 AGN candidates, 115 pulsar candidates,
In this work, we attempt to search for AGN and 154 cher type of candidates and 484 uncertain type by
pulsar candidates in the 4FGL catalog's unassociate(cxiomb'nmgl the results of the two classifiers.

samples based on two supervised learning methods. We The current context provides the coordinates and the
do not focus on the specific physical mechanism. Taall-sky map of the obtained AGN and pulsar candidates.
accommodate the unbalanced sample, we divide thkleanwhile, the probabilities given by different classier
classification process into two steps. Firstly, we applyfor each source are also shown (see Tabld hese could

the RF and ANN methods with 20 features identifiedhelp us to interpret the sky survey, as well as to further
by the K-S test to select AGN candidates in all of theexamine Fermi unassociated sources by the investigators.
unassociated samples. Then, we utilize the same methotl¢e note that AGNs and non-AGNs differ in spectral
with eight different features to choose pulsar candidateshape, variability, overall integral flux and flux of partial

in the remaining non-AGN samples for the second stepband (such as from 300 MeV to 10 GeV), which is

5 CONCLUSIONS AND DISCUSSION
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Table 4 Test Results for Two Classifiers

First step Second step
Classifier Sensitivity  Specificity ~ Accuracy Sensitivity  éfficity  Accuracy
RF 0.891 0.946 0.939 0.822 0.756 0.791
ANN 0.859 0.956 0.944 0.800 0.927 0.860

Column (1): Classification methods applied in this papetsQ@)—(4) list the test results for the first step: the daritsi for
the non-AGNs and the specificity for AGNs, and overall accyraespectively; Cols. (5)—(7) report the test resultstier
second step: sensitivity for otherray sources, specificity for pulsars and overall accunaspectively.

Table 5 Test Results for Classifiers Combined

Class Label Count Errors Overall accuracy

AGN agn 605 9 0.985

Pulsar psr 35 4 0.886
Other~-ray source other 35 3 0.914

Columns (1) and (2): Source classes and labels respecti@alls. (3) and (4): Source count and the
number of misclassifications for each label when two clasgsitire combined respectively; Col. (5): Overall
accuracy for each label when combining the two classifiers.

75° Pulsar Candidates
60°

45° .
30° . “tiiele

15°

. e ST e
150 \wlite o«
-30° s ' o
% o, e
-45° ot [}
-60°

-75°

Fig. 7 All sky distribution of AGN (eft) and pulsariight) candidates in Galactic coordinates. The blue symbol&ssmit
candidates we obtained, the red symbols signify the sowfcB&N or pulsar identified or associated in 4FGL and gray
symbols correspond to ajtray sources in 4FGL.

related to the high-energy emission mechanism of AGNs¢raining samples in variable star classification lead to
(e.g.,Zheng et al. 201&Zheng & Yang 2016Zheng etal. sample selection bias in the classification of fainter stars
2017. On the other hand, the pulsars and non-pulsarfRichards et al. 201 Richards 201p, there are systematic
are quite different in terms of spectral shape and highedifferences between Fermi associated and unassociated
energy band flux (such as from 30 to 300 GeV), that resulsources. Brighty-ray sources are more likely to be bright
from the unique high-energy emission mechanism-odly  at other wavelengths (radio, optical, X-ray) and therefore
pulsars (e.g.Cheng et al. 198@Romani 19962014. more likely to be detected in multiwavelength catalogs
that are utilized to associatgray sources. The sources
The basis for relying on SML for classification is the of the associated sample that are used for training and
training samples and the predicted sample to be classifigdsting the performance of the classification algorithms
according to the same distribution in multi-dimensionalare generally brighter and detected at higher significance
feature space. When the distributions are different, wéevel. On the contrary, the unassociated sources were non-
encounter the potential problem that the classifier doesignificant. This may lead to the potential problem that the
not perform as well on the unassociated samples asassifier model is not ideal for a predicted target, even
it does on the test samples, which is also known ashough it performs well on the test samples. Similarly,
covariate shift or sample selection bias in astronomy (sethe systematic differences are reflected in the coordinate
Richards et al. 203 Richards 2012Luo etal. 2020for  space. The unassociated samples were biased towards the
more detail discussions). In the classification of Fermisources near the Galactic plane, while the associated cases
unassociated sources, the covariate shift exists whemere widely distributed throughout the full-sky, espdgial
comparing the distribution differences of some featuresn regions with high Galactic latitude. The large number
between 3FGL and 4FGL (e.gVariability_Index, see  of sources and highlighted backgrounds on the Galactic
Luo etal. 2020. As observations advance, the featuresdisk increase the difficulty of source detection. The source
are changing with longer exposures, improvement otlistributions in the significance space and Galactic ldétu
observational and statistical methods, and the ideniificat are depicted in Figur8.
or associate of partial sources. Just as the brighter
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Fig.9 The normalized distribution of photon spectrum index ofke@aisources, brighter sources, lower Galactic latitude
sources and higher Galactic latitude sources. The darkéigthe coincidence region of associated and unassociated
samples.

For the purpose of clarifying the influence of showcased in Figur® The spectral indexes of associated
systematic differences in distribution of the classificafi and unassociated sources located at higher Galactic
we divided the Fermi sources into four groups: brighteratitude are similar in comparison with those of low
sources, darker sources, higher Galactic latitude sourcé&3alactic latitude and therefore it is a “cleaner” dataset
and lower Galactic latitude sources. TakiRfjoton_index ~ for using featurePhoton_index for classification. For
as an example, the normalized distribution diagram isignificance, the distribution differences of associated a
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Table 6 The Classification of Unassociated Sources
4FGLname R.A. Dec Prri Prr2 Crr Panni Pann2 CanN Ceom Aname CLr—p CRrr-p

4FGL J0530.0-6900e 82.50 -69.00 0.09 0.02 other 0.59 0.10 herot other 3FGL J0524.5-6937 AGN AGN

4FGL J0531.7+1241c 82.94 12.69 0.63 0.32 other 0.81 agn unc

4FGL J0531.8-663% 82.97 —66.65 0.83 agn 0.98 agn agn 3FE5I06614 AGN AGN
4FGL J0532.6+3358 83.17 33.98 0.82 agn  0.99 agn agn

4FGL J0533.6+5945 83.42 59.76 0.28 0.98 psr 0.41 0.94 psr B$GL J0533.2+5944 PSR AGN
4FGL J0533.9+2838 83.48 28.64 0.83 agn  1.00 agn agn

4FGL J0534.0+3746¢c 83.51 37.77 0.71 0.39 other 1.00 agn unc

4FGL J0534.2+2751 83.57 27.86 0.99 agn 097 agn agn

4FGL J0535.1-5422 83.78 -54.38 0.93 agn  0.97 agn agn

4FGL J0535.3+0934 83.84 9.58 0.98 agn  1.00 agn agn

4FGL J0536.1-1205 84.03 -12.09 0.90 agn  0.92 agn agn

4FGL J0537.5+0959 84.38 9.99 0.98 agn  1.00 agn agn 3FGL mE®57 AGN AGN
4FGL J0538.9+3549c 84.74 35.83 0.33 0.09 other 0.53 0.20 erottother

4FGL J0539.2-6333 84.82 —63.55 1.00 agn  1.00 agn agn

4FGL J0540.0-7552 85.01 —75.88 0.90 agn 1.00 agn agn 3F&E9WMF553 AGN AGN
4FGL J0540.2+0655 85.05 6.92 1.00 agn  0.99 agn agn

4FGL J0540.6+5540 85.17 55.67 1.00 agn 1.00 agn agn

4FGL J0540.7+3611 85.18 36.20 0.53 0.41 other 0.40 0.66 psrnc u

4FGL J0543.5-8741 85.89 -87.69 1.00 agn  1.00 agn agn 3FQR2IDB737 AGN AGN
4FGL J0543.9-0418 85.98 —-4.31 0.81 agn 0.98 agn agn

4FGL J0544.4+2238 86.11 22.64 0.71 0.21 other 0.98 agn undGL 3B544.7+2239  AGN AGN
4FGL J0544.8+5209 86.22 52.16 1.00 agn 1.00 agn agn

4FGL J0545.7+6016 86.44 60.27 0.16 0.93 psr 0.58 0.94 psr BHGL J0545.6+6019 PSR PSR

Column (1) shows the 4FGL names. The right ascension anthdtieh of sources are listed in Cols. (2)—(3), respectivebls. (4)—(5) report

the score given by ANN classifier for the firdP{nn1) and second®ann2) step. Sources with a step 1 score below the threshold 0ré89 a
classified as non-AGNs and brought into the step 2 classifitathe classification(a nn) given in the ANN is listed in Col. (6). Cols. (7)—(8)
report the scores given by the RF classifier for the fiFs{i1) and secondifr g2 ) steps. Sources with a step 1 score below the threshold 0.739
are classified as non-AGNs and brought into the step 2 cleatsifin. The classification(r ) given in the RF is listed in Col. (9). Col. (10) lists
the classification results of the two algorithms combinath¢” means uncertain source). Col. (11) expresses theiasboame A,ame)

in the other FGL. The cross-matching results for the 3FGlalogts unassociated source classification rest#ig Parkinson et a(2016
obtained using logistic regressiofi{r _p) and RF Crr_p) are listed in Cols. (12) and (13), respectively. Tabls published in its entirety

in machine-readable format (e.g., Tahleult.xIsx). A portion is shown here for guidance regagdta form and content.

Table 7 Comparison of 3FGL and 4FGL Results

Obtained predictions

Method Label Courtt agn psr other unc
Count 334 96 73 24 141

LRP agn 146 84 6 4 52
psr 188 12 67 20 89

RFP agn 163 87 9 4 63
psr 171 9 64 20 78

Column (1): The classifiers obtained 8az Parkinson et a(2016); Cols. (2) and (3): The classification
results for 356 common sources frdBaz Parkinson et a(2016), where the row coufit expresses our
classification results for 356 common sources; Cols. (4)-&iss comparison results.

Table 8 Results from Two Supervised Classifiers for Simultaneoas$ification of Three Different Types

Test Prediction
Classifier Features AGEn  ACCpsr  ACCother  ACCoverall agn psr  other
RF 20 features (See Takieleft) 0.992 0.653 0.488 0.939 959 133 244
ANN 20 features (See Tab® left) 0.998 0.673 0 0.917 1216 120 0
RF 8 features (See Tak®2, right) 0.995 0.633 0.349 0.933 1112 106 118
ANN 8 features (See Tab right) 1 0.286 0 0.893 1221 115 0

Column (1): Classification methods; Col. (2): The used femtuCols. (3)—(6): Test results; Cols. (7)—(9): Predittiesults.

unassociated samples in both brighter and darker sourcesstead of direct observations like individual fluxes and
are large, while the difference proportion in the brightervariability index to keep information about the spectral
source is slightly smaller. shape, or modifying the observations to obtain more
Due to the limitation of astronomical observation, intrinsic features might solve the problem. Grouping the
sample selection bias is almost inevitable. A simpleprediction samples and searching for suitable training
classifier with few features reduces the possibility ofsamples to refine the classification process are less likely
covariant shift Luo etal. 2020, Using hardness ratios to encounter the problem of sample selection bias.
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Table 9 The Influence of Sample Proportion on Learning Results

Sample ratio RF ANN

Sample method (npon—AGN/PAGN) Sensitivity  Specificity ~ Accuracy Sensitivity ~ Specificity cAuracy
No 0.127 0.891 0.946 0.939 0.859 0.956 0.944
Undersampling 0.200 0.891 0.935 0.930 0.913 0.899 0.901
Undersampling 0.500 0.934 0.869 0.878 0.946 0.639 0.678
Undersampling 1.000 0.946 0.795 0.814 0.967 0.398 0.470
Oversampling 0.200 0.891 0.948 0.941 0.913 0.917 0.916
Oversampling 0.500 0.913 0.937 0.934 0.946 0.655 0.692
Oversampling 1.000 0.913 0.332 0.930 0.957 0.356 0.432
SMOTE 0.254 0.891 0.935 0.930 0.913 0.874 0.879
SMOTE 0.508 0.913 0.912 0.912 0.946 0.641 0.680
SMOTE 1.017 0.913 0.883 0.887 0.978 0.339 0.420

15-13

Column (1): Sample methods; Col. (2): The sampling ratiat i, the ratio of the number of non-AGNs to the number of AGBs. (3)—(5):
The performance of ANN classifier in sampling test; Cols—(8): The performance of RF classifier in sampling test.

Recently, Saz Parkinson et al2019 divided all of 8), the approach has several limitations. Firstly, the
the 3FGL catalog’s sources into AGNs and pulsargesult is unstable, especially for the other type, and the
based on the logistic regression (LR) and RF algorithmstesults produced by various classifiers are quite different
Cross-matching the 4FGL predictions (1336 unassociatefiecondly, the imbalance of the samples reduces the
sources) from the present work and 3FGL prediction-accuracy. Almost no predicting sample is classified as
s (3033 sources, seSaz Parkinsonetal. 2036 we the other type, mainly resulting from fewer other type
obtained 334 common sources (see Tab)e In the samples with insignificant characteristics. The presence
3FGL predictions of common sources, 146 sources weref more AGN type of training samples leads to more
classified as AGNs and 188 sources were classified asmassociated samples to be evaluated as AGN type. For
pulsars in LR"4; 163 sources were classified as AGNs andunbalanced samples, this can result in higher accuracy but
171 sources were classified as pulsars in th&if based it does not mean the classifier is good. Thirdly, there is
classifier. In our predictions for classifier combination,a large difference in the selection of suitable features for
96 sources belong to the AGN type, 73 belong to thedifferent samples. For example, based on the results of
pulsar type and the number of sources classified athe K-S test, “logF4” is the best feature in evaluation of
other or uncertain type are 24 and 141, respectivelythe AGNs and non-AGNs, but it is not a good feature in
Cross-matching the results (see TaB)ethe majority of  the discrimination of pulsars and non-pulsars. In order to
sources (approximate§9%) had the same classification obtain a higher confidence level, we employ a step-by-step
for sources of AGN and pulsar types in our predictionsfeature selection and classification approach at the egpens
In Luo et al. (2020, they searched 20 millisecond pulsar of higher computational demands.
candidates from the 4FGL unidentified sources employing
a two-layer cascade method prompted by investigating We have adopted a step-by-step classification strategy
the factors affecting ML classifications. Cross-matchingto reduce the large gap in the sample size. However, there
the 20 millisecond pulsar candidates given lhyo etal. s still a class imbalance issue even in the classification
(2020, nine sources are evaluated as pulsars, two sourc@E0cess, especially for the first stage of the AGN selection.
are classified as AGNs and nine sources are uncertakindersampling and oversampling are important statistical
type in our predictions. In addition, we note that the ninemethods to solve the imbalance of samples. The SMOTE
pulsar candidates have higher significance in their resultglgorithm Giriseriwan 201p is a method to improve
while two AGNs exhibit lower significance. Most of our the oversampling by constructing new samples; this can
predictions are consistent with other previous resultsteduce the overfitting consequences of oversampling to
However, the predictions of a fraction of sources aresome extent. We have studied the effect of different
inconsistent, and the evaluation of their true classificati sample proportions on the results (see TaBle by
needs further study in the future. different sampling methods (oversampling, undersampling

We have tried to put all of the unassociated sample@nd SMOTE). There are several important observations
(i.e., 1336) into the algorithms at the same time andor these results. Firstly, in the optimal classifier model
classify them into three types directly. Although anutilized in this paper, the application of a sampling

overall accuracy of over 0.9 can be obtained (see TablBethod reduces the accuracy of the classifier. Secondly,
in comparison with the ANN algorithm, the RF algorithm

has better performance against sample change. Thirdly, in
the oversampling, the sensitivity of the non-AGN samples
does not increase after the increase of non-AGN samples,

3 Also  see https://www.physics.hku.hk/
pulsarness/Step_08_Results.html

4 The logistic regression and RF model usedSiaz Parkinson et al.
(2019

~ pablo/


https://www.physics.hku.hk/~pablo/pulsarness/Step_08_Results.html
https://www.physics.hku.hk/~pablo/pulsarness/Step_08_Results.html

15-14 K. Zhu et al.: Searching for AGN and Pulsar Candidates in 4FGL

which may be due to the overfitting. However, overfitting Baron, D. 2019, arXiv e-prints, arXiv:1904.07248
has been avoided in the SMOTE method, which we plan tdergmeir, C., & Benitez, J. M. 2012, Journal of Statistical
consider in future work. Software, 46, 1

There are some differences between these classifier8ilicki, M., Hoekstra, H., Brown, M. J. ., et al. 2018, A&A, 16,
results presented in the preceding section. These resultsA69
should be treated with caution. Similarly, the accuracy ofBreiman, L. 2001, Machine Learning, 45, 5
the second step is not as satisfactory as that of the first on8rescia, M., Cavuoti, S., D’Abrusco, R., Longo, G., & Mericyr
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number of observations in catalogs progress, the situatioff"€ng. K. S., Ho, C., & Ruderman, M. 1986, ApJ, 300, 500
can be gradually improved Chiaro, G., Salvetti, D., La Mura, G., et al. 2016, MNRAS, 462

A potential drawback of this work is that the results 3180
Das, P., & Sanders, J. L. 2019, MNRAS, 484, 294

are only obtained from the data in the 4FGL catalog. Due
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. e . Duda, R. O., Hart, P. E., & Stork, D. G. 2001, Pattern
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