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Abstract In this paper, we have investigated accreting millisecond X-ray pulsars, which are rapidly rotating
neutron stars in low-mass X-ray binaries. These systems exhibit coherent X-ray pulsations that arise when
the accretion flow is magnetically channeled to the stellar surface. Here, we have developed the fundamental
equations for an accretion disk around accreting millisecond X-ray pulsars in the presence of a dynamo
generated magnetic field in the inner part of the disk. We havealso formulated the numerical method for
the structure equations in the inner region of the disk and the highest accretion rate is enough to form
the inner region of the disk, which is overpowered by radiation pressure and electron scattering. Finally,
we have examined our results with the effects of dynamo magnetic fields on accreting millisecond X-ray
pulsars.
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1 INTRODUCTION

Low-mass X-ray binaries (LMXBs) consist of accreting
millisecond X-ray pulsars (AMXPs). Such systems arise
from a low mass evolved star (a degenerate dwarf star)
orbiting a rapidly rotating neutron star (NS). Hence,
AMXPs are distinguished from the group of ordinary
rotation-powered pulsars by their small spin periods
(Becker 2001). In these systems, the accreting matter may
spin up the NS. Here, one of the possible endpoints of the
evolution of an LMXB is expected to be a millisecond
pulsar (Strohmayer 2001). Most LMXBs do not show
coherent pulsation in their light curves, an aspect that is
still under debate; it could be due to the effect of alignment
of the magnetic field on the NS with respect to its rotational
axis. The only subclass of LMXBs in which coherent
pulsations have been observed is AMXPs.

A more observationally inclined review of an accreting
millisecond pulsar is given byWijnands et al.(2005). It is
a transient system in which the outburst stage is associated
with matter falling onto the NS surface, which spins up
its period on the order of a millisecond. Also, the first
real AMXPs were studied byWijnands & van der Klis
(1998), in which the spin frequencies range from 182
up to 599 Hz (Falanga et al. 2013). Among these, the

fastest AXMP is IGR J0029+5934 with a period of
just 1.67 ms (Shaw et al. 2005; Falanga et al. 2005). It
manifests pulse frequency variations. These observations
are very important for understanding of the evolution of
NSs in LMXBs (Poutanen 2006).

Here, in AMXPs, we have considered that a rapidly
rotating NS has weaker magnetic dipole moments of∼

1015Tm3 in the inner region than ordinary X-ray pulsars.
In these systems, the accretion disk will be extended near
the NS and the temperature becomes more so that its
opacity can be overpowered by radiation pressure and
electron scattering (Lasota 2016). Such magnetic fields
are important for transporting angular momentum in these
systems. As was studied byTessema & Torkelsson(2010),
the region of the accretion disk which is located in the
inner part of corotation radius supplies spin-up torque to
the NS while the outer part of the accretion disk brakes
the NS. The resultant torque is investigated by the inner
region of the disk position, which is displaced inwards as
the accretion rate increases.

AMXPs have become important in many areas of
astrophysical research. They show a very high average
mass transfer rateM = 1014 kg s−1 in the inner
region and exhibit persistent X-ray pulsations with less
than 10 ms and weak magnetic fields. Many authors
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have studied the accretion disk in different models,
for exampleShakura & Sunyaev(1973); Ghosh & Lamb
(1979). Hence, they did not address an accretion disk
in these systems, particularly in the inner region of the
disk. However,Tessema & Torkelsson(2010) examined
the accretion disk around magnetized stars employing pure
models of magnetohydrodynamics, but the present study
will focus on the accretion disk in AMXPs in the inner
region of the disk using analytical and numerical solutions.

In this study, we develop the fundamental equations
of an accretion disk with a dynamo that generates an
accretion disk around AMXPs, in particular we investigate
the solution of these equations in the inner part of the
disk incorporating surface density, temperature and radial
velocity as a function of the radius, and finally, we present
the numerical solution for the structure equations in the
inner region of the disk.

This paper is organized as follows: In Section2 we
investigate the fundamental equations of an accretion disk
and we present the numerical method for analyzing the
structure equation in the inner region of the disk. The
associated results and discussion are presented in Section3
and, finally, we summarize our results in Section4.

2 FUNDAMENTAL EQUATIONS OF AN
ACCRETION DISK

2.1 Basic Assumptions

In this study, we consider the accretion disk around an
AMXP with an NS with mass1.4M⊙, radius10 km and
magnetic dipole moment1015Tm3.

Here, we have considered that the scale height of
the disk,H , is much smaller than the radial extension
of the disk,R, (Shakura & Sunyaev 1973). The gas in
the disk rotates at Keplerian velocity and the orbital
kinetic energy is transformed into radiation by viscosity
in the accretion disk,v, while the angular momentum is
transported outward.

v = αsscsH, (1)

whereαss ∼ 10−2 is turbulent stress in the disk that
describes the transport of angular momentum, consistent
with numerical simulations suggested byHawley et al.
(1995), andcs is the speed of sound in the gas.

2.2 Conservation of Mass

The law of conservation of mass or principle of mass
conservation states that for any system closed to all
transfers of matter and energy, the mass of the system must
remain constant over time, as the system’s mass cannot
change, so the quantity cannot be added nor removed.

Hence, the quantity of mass is conserved over time. Then,
conservation of mass is ensured by the continuity equation

∂ρ

∂t
+∇·(ρv) = 0. (2)

Then, from Equation (2) we have

∇·(ρv) = 0, (3)

due to the steady-state condition and whereρ is the density
and v = (vR, vφ, vz) of the systems. Here, from the
axisymmetric disk we have

1

R

∂

∂R
(RΣvR) = 0, (4)

whereΣ is the surface density and for a steady state,
Equation (4) yields an accretion rate of

Ṁ = −2πRΣvR = constant. (5)

2.3 Angular Momentum Conservation

Assuming a steady-state situation, the Navier-Stokes
equation can be expressed as

ρ(v·∇)v = −∇p+ρ∇φ+J×B+∇·(ρv(∇v−
2

3
(∇·v))),

(6)
where p is pressure,v kinematic viscosity, φ the
gravitational potential,J = 1

µ0
(∇×B) = (JR, Jφ, Jz) is

the current density andB = (BR, Bφ, Bz) is the magnetic
field. Here, we only consider the azimuthal component of
the Navier-Stokes equation, which is given by

Σ

(

∂vφ
∂t

+
vR
R

∂

∂R
(RBφ)

)

=
BR

µ0

1

R

∂

∂R
(RBφ)

+
Bz

µo

∂Bφ

∂z
+

1

R2

∂

∂R

(

R3Σv
∂

∂R
(
vφ
R

)

)

.

(7)

Here, we neglectBR

R
∂
∂R (RBφ) and for a steady-state disk

∂
∂t = 0. By integrating Equation (7) and multiplying
both sides byR (Tessema & Torkelsson 2010), we get the
angular momentum conservation

Σ

(

vR
dl

dR

)

=

[

BzBφ

µ0

]H

−H

R+
1

R

d

dR

[

R3vΣ
d

dR
(
l

R2
)

]

,

(8)
wherel = Rvφ ∝ R1/2 is the specific angular momentum.
Then, the magnetic field of the NS inWang (1995) is
defined by

Bz = −
µ

R3
, (9)

where µ is the magnetic dipole moment. Here, from
Equation (8) we have two sources of magnetic fields,
Bφ, shear magnetic field,Bφ, shear and dynamo generated
magnetic field,Bφ,dyn (Balbus & Hawley 1998). As was
proposed byWang (1995), the magnetosphere is nearly
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force free, and reconnection takes place outside the disk.
The ratio of vertical and azimuthal field strengths is related
to the shear between the disk and the magnetic field. Then,
this ratio can be expressed in the form ofLivio & Pringle
(1992)

Bφ,shear

Bz
∼ −γ(

Ωk − Ωs

Ωk
), (10)

whereΩk andΩs represent the Keplerian angular velocity
at the inner radius of the disk and the angular velocity of
the star, respectively. The subscriptk denotes the Keplerian
situation. By rearranging Equation (10), we obtain

Bφ,shear= −γBz

(

Ωk − Ωs

Ωk

)

, (11)

where γ is a dimensionless parameter of the system
(Ghosh & Lamb 1979). The dynamo magnetic field,Bdyn,
generated by magnetohydrodynamical turbulence in an ac-
cretion disk through the dynamo action (Balbus & Hawley
1998) is written as

Bφ,dyn= ǫ(αssµ0γdynP (r))1/2, (12)

where the subscript dyn stands for the dynamo generated
magnetic field andP (r) is the radiation pressure. From
Equation (12), γdyn is the order of 10 as asserted by
Brandenburg et al.(1995) andǫ is a dynamo parameter that
describes the direction of the magnetic field in the range
of −1 ≤ ǫ ≤ 1. Then, substituting Equations (9), (11)
and (12) into Equation (8) and fromTessema & Torkelsson
(2010) we obtain

Σ

(

vR
dl

dR

)

= 2ǫ
(µR−3)

µ0
(αssµ0γdynP (r))1/2R

− 2γ
(µR−3)2

µ0

(

Ωk − Ωs

Ωk

)

R

+
1

R

d

dR

(

R3vΣ
d

dR
(
l

R2
)

)

.

(13)

Equation (13) represents an ordinary differential equation
for an accretion disk with angular momentum conserva-
tion.

2.4 Hydrostatic Vertical Balance

We now consider the structure of the disk in the vertical
z-direction. Hence, the angular momentum conservation
is reduced to hydrostatic equilibrium condition if the net
flow of gas along the vertical direction is zero. Then, the
hydrostatic equilibrium equation is defined as

1

ρ

∂P

∂z
=

∂

∂z

(

GM

(R2 + z2)

)1/2

, (14)

in the limit z ≪ R and neglecting the self-gravity of the
disk, Equation (14) becomes

1

ρ

∂P

∂z
= −

GMz

R3
, (15)

whereG andM are the universal gravitational constant
and mass of the accreting star, respectively.

As a consequence, from Equation (1) and the
approximation of vertical pressure gradient, we express
∂P
∂z ∼

p
H andz ∼ H . Then, Equation (15) yields

P

ρ
= c2s . (16)

Thus, from Equation (15) and Equation (16) we findH as

H ∼= csR

(

R

GM

)1/2

. (17)

For a thin accretion disk, the local Kepler velocity should
be highly supersonic. In general, we can define a central
disk density approximately by

ρ =
Σ

H
and H = cs

(

R

vφ

)

, (18)

wherevφ is given by

vφ =

√

(

GM

R

)

. (19)

The speed of sound can be expressed by utilizing
Equation (18) and (19) as

cs =
H

R

(

GM

R

)1/2

. (20)

As was proposed byTessema & Torkelsson(2010), we can
write the gas and radiation pressure as

P =
ρKBTc

µmp
+

4σ

3c
T 4
c , (21)

where σ is the Stefan-Boltzmann constant,mp is the
mass of a proton,T 4

c central temperature, the subscriptc

signifies values in the central plane,c is the speed of light,
µ is the mean molecular weight for ionized gas andKB is
Boltzmann’s constant. Then, we can write the pressure for
hydrostatic equilibrium applying Equations (15) and (18)
as

P = Σ

(

HGM

R3

)

. (22)

Here, for a Newtonian accretion disk, thefRφ

component of the viscous stress tensor is given by

fRφ =
−3

2
ρvΩ = αssP (r), (23)
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where

Ω =

(

GM

R3

)
1
2

. (24)

Substituting Equation (24) into Equation (23) we obtain

fRφ =
−3

2
ρv

(

GM

R3

)
1
2

= αssP (r), (25)

whereρ = Σ
2H . Then, the viscous stress tensor,fRφ, can

be written as

fRφ =
3Σv

4H

(

GM

R3

)1/2

= αssP (r). (26)

From Equations (16), (22) and (26) we obtain the gas
density of the NS as

ρ =
3vΣ

4αssH3

(

GM

R3

)−1/2

. (27)

Also, we can express the scale height of the disk in terms
of the total pressure as

H =

(

ρkBTcR
3

mpµGM
+

4σT 4
c R

3

3cρGM

)1/2

. (28)

The local viscous dissipation is determined by radiative
losses when the matter flow through an optical disk is low.
Then, we have theTc, v, Σ, M andR relation

4σ

3τ
T 4
c =

9

8
vΣ

GM

R3
. (29)

Here, the optical depth of the disk,τ , is given by

τ =

∫ H

0

kRρdz = ρHkR, (30)

whereKR = kes + kff . In the inner region of the disk,
the temperature is high and the approximation ofkR ≈

kes is valid because this region is dominanted by electron
scattering opacity. Then, from Equations (29) and (30) we
obtain the central temperature

T 4
c =

27

32σ
vΣ2kR

GM

R3
. (31)

As was investigated byTessema & Torkelsson(2010);
Frank et al.(2002); Shapiro et al.(1983):

RA =

(

2π2µ4

GMṀ2µ2
0

)
1
7

≃ 1.4× 104Ṁ14

−2
7 M

−1
7

1 µ
4
7

15m.

(32)

Rco =

(

GMP 2
spin

4π2

)
1
3

≃ 1.5× 106P
2
3

spinM
1
3

1 m, (33)

wherePspin = 2π
Ωs

andM1 = M
M⊙

. Let us to introduce a
parametery = Σv in order to solve an ordinary differential

equation for an accretion disk. Then, from Equations (13),
(22), (27), (32) and (33), we have

y
′

=
Ṁ

6πr
−

y

2r
− ǫD1(Gm)

−1
4 R

−3
2

A −D2R
−9
2

A

[

1−

(

RA

Rco

) 3
2

]

.

(34)

where,

D1 =

√

√

√

√

(

4µ2γdyny

3µ0HR
3/2
A

)

and D2 =
4µ2γ

3µ0(Gm)1/2
,

(35)
which is a differential equation ofy for an accretion
disk around an AMXP. At large radii, the solution of
Equation (34) approaches the Shakura-Sunyaev solution,
which gives us the boundary conditiony → ΛṀ as
R → ∞. Here, we need to transform Equation (34) by
introducing dimensionless quantitiesΛ andr, so that

y = ΛṀ (36)

whereΛ is a dimensionless parameter for the accretion
disk and

R = rRA. (37)

Herer is a dimensionless radial coordinate andRA is the
Alfvén radius, which is a characteristic radius at which
magnetic stresses dominate the flow in the accretion disk.

As noted byElsner & Lamb(1977), we haveωs as

ωs =

(

RA

Rc

)
3
2

= 0.36M
−5
7

1 Ṁ
−3
7

14 µ
6
7

15

(

Pspin

4.8ms

)−1

.

(38)
Finally, using Equation (36), Equation (37) and
Equation (38) we get the differential equation of an
accretion disk from Equation (34) which is given by

Λ
′

=
1

6πr
−

Λ

2r
− ǫD3(GM)

−1
4 R

−5
4

A r
−9
4 −D4r

−9
2

(

1− ωsr
3
2

)

.

(39)

whereD3 =

√

(

4µ2γdynΛ

3µ0HṀ

)

andD4 = 4µ2γ

3µ0(Gm)
1
2 Ṁ

R
−7
2

A .

This equation is the new analytical solution for an
accretion disk around an AMXP.

2.5 The Structure of the Disk

Here, to analyze the dynamics of an accretion disk, we
examine the inner region of the disk, in which the radiation
pressure is much higher than the gas pressure and the
accretion rate is large. In this region, Compton scattering
occurs more frequently than free-free absorption. To solve
Equation (39) numerically, we have to determine scale
height in the inner region of the disk, which is defined by

H =
9

8c
kes(ṀΛ). (40)
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Then, the shear magnetic field is expressed as

Bφ,shear= −4× 103 γM
3
7

1 Ṁ
6
7

14µ
−5
7

15

(

1− ωsr
3
2

)

r−3T.

(41)
In the inner region of the disk, the radiation pressure is
larger than the gas pressure, and we have that:

Σ = 9.57× 101 α−

ss1M
−5/7
1 Ṁ

−10/7
14 µ

6/7
15 Λ(r)−1r3/2 kgm−2,

(42)

ρc = 3.18× 10−2 α−

ss1M
−5/7
1 Ṁ

−17/7
14 µ

6/7
15 Λ(r)−2r3/2 kgm−3,

(43)

vR = 1.18×107αssM
6/7
1 Ṁ

19/7
14 µ

−10/7
15 Λ(r)r−5/2 ms−1,

(44)
Tc = 1.86× 106 α−1/4

ss M
5/28
1 Ṁ

3/28
14 µ

−3/4
15 r−3/8k, (45)

v = 1.1× 1012αssM
5/7
1 Ṁ

17/7
14 µ

−6/7
15 Λ(r)2r−3/2 m2 s−1,

(46)
τes = 1.86α−1

ss M
−5/7
1 Ṁ

−10/7
14 µ

6/7
15 Λ(r)−1r3/2. (47)

The transition radius in the inner region of the disk is
estimated by approximatingΛ = 1/3π.

rIM = 12.5µ8/21α2/21
ss M

10/21
1 Ṁ

22/21
14 µ

−4/7
15 . (48)

Here, the accretion disk outside of the Alfvén radius is
overpowered by radiation pressure only if

µ15 < 82.56µ2/3α−1/16M
5/6
1 Ṁ

11/6
14 . (49)

This circumstance is not satisfied for an ordinary X-ray
pulsar with a magnetic dipole moment of∼ 1020 Tm3

(White & Stella 1988), though it can be satisfied for
AMXPs.

So far, we have incorporated equations of an accretion
disk around AMXPs, then we applied some parameters
and investigated Equation (39) in the inner region of the
disk. The inner region is where the radiation pressure is
overpowered and electron scattering is the most important
source of opacity (Shakura & Sunyaev 1973). As a result,
in the innermost regions, the emitted spectrum of the
disk cannot be approximated by a blackbody spectrum.
Whereas if the accretion rates are high, radiation pressure
towards the inner edge of the accretion disk exceeds the
thermal pressure. Using the appropriate selection of the
magnetic field and accretion rate, then the inner region
solution is found below.

3 RESULT AND DISCUSSION

3.1 Global Solutions

Here, as was studied byTessema & Torkelsson(2011),
we integrate Equation (39) for the inner region inwards
from very small radius∼ 12.5 and Λ = 1/3π. The
dimensionless parametersγ, γdyn andαss are1, 10 and

10−2, respectively. Hence, the disk is overpowered by
radiation pressure and electron scattering whereRA <

RIM by increasing accretion rate. In this region, it is
possible to use the accretion rate up to the Eddington limit,
so that we takeṀ = 1.5× 1014 kg s−1 for our calculation
and we applyΛ = 1/3π for the analytical solution of
the disk, and solve Equation (39) for the inner region of
the disk starting fromrIM = 12.5. Our solutions for
the inner disk region of AMXPs with different dynamo
parameters such asǫ = 0.45, 0.15, 0,−0.15 and−0.45

are shown in Figure1. This figure depicts the variations
of Λ as a function ofr for all ǫ = 0.45, 0.15 and0. All
solutions are case V inner boundaries except−0.15 and
−0.45 (Tessema & Torkelsson 2011).

In Figure3, the high surface density results in a hot
flow. Here, the mid-plane temperature as a function of
radius in the inner region of the disk does not depend onΛ

so that as the radius decreases the temperature increases.
In Figure 4, we affirm that the high surface density

corresponds to a decrease in radial velocity and this radial
velocity is dependent onΛ. In this figure, as the inner edge
of the accretion disk approaches the surface of the star,
the radial velocity either goes to zero or infinity. Here, the
radial velocity decreases as the radius increases.

3.2 Accretion Torques

The torques on an NS range from material to mag-
netic. It is obtained from Equation (13) by mul-
tiplying 2πR and then integrating from the inner
radius of the disk,Rin, to the outer edge of the
disk, Rout, see, e.g.,Kluźniak & Rappaport (2007);
Tessema & Torkelsson(2010); Shi et al.(2015).

Ṁ
√

GMRin − Ṁ
√

GMRout =

−

∫ Rout

Rin

[

4π(µR−3)

µ0
(Bφ,dyn +Bφ,shear)

]

R2dR

−

[

3πy(GMR)1/2
]Rout

Rin

.

(50)
Note that the two expressions on the left hand side
of Equation (50) provide the rate at which angular
momentum is transported past the inner and outer
edges of the accretion disk, while the right hand side
shows the implications of magnetic and viscous torques
on the angular momentum balance. In this case, the
material, magnetic and viscous torque can be expressed in
Equations (51), (52), (53), (54), (55) and (56). Thus, the
material torque at the inner edge of the disk on the NS is
given by

Nin = Ṁ(GMRin)
1/2 = 1.4×1026 µ

2/7
15 M

3/7
1 Ṁ

6/7
14 r

1/2
in .

(51)
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Fig. 1 Result ofΛ as a function ofr for the AMXPs with accretion rateM = 1.5× 1014kg s−1 and the different dynamo
parameters are displayed withǫ = −0.45 (solid blue line), ǫ = −0.15 (red dotted line), ǫ = 0 (solid green line), ǫ = 0.15
(black dotted line) andǫ = 0.45 (solid black line). In Fig.2, theΣ is purely a decreasing function ofr for ǫ = 0 and0.45,
and increasing forǫ = −0.45.

Fig. 2 Result ofΣ as a function ofr for AMXPs with accretion rateM = 1.5 × 1014 kg s−1 and the different dynamo
parameters are displayed withǫ = −0.45 (solid blue line), ǫ = 0 (solid green line) andǫ = 0.45 (solid black line).

Here, in Figure5 we investigate the inner accretion torque
on the disk in the inner region of the disk. This material
torque increases as the accretion rate and the inner radius
increase.

The magnetic torque is the result of the coupling
between the vertical magnetic field of the star and the
toroidal magnetic field in the disk. Hence, the torque
acting on the lower surface of the disk can be written
(Ghosh & Lamb 1979) as

Nmag = −4π

∫ Rout

Rin

−(µR−3) (Bφ,dyn +Bφ,shear)R
2dR

µ0
.

(52)

This magnetic torque is separated into shear and dynamo
generated magnetic torque. Then, the shear magnetic
torque,Nmag,shear, is defined by

Nmag,shear =

∫ Rout

Rin

4π
−(µR−3)Bφ,shear

µ0
R2dR

≈ 4× 1026 γµ
2/7
15 M

3/7
1 Ṁ

6/7
14

∫ ∞

r0

[r−4(1− ωsr
3/2)]dr,

(53)
and the dynamo generated magnetic torque on the NS is

Nmag,dyn = −

∫ Rout

Rin

4π
−(µR−3)Bφ,dyn

µ0
R2dR. (54)
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Fig. 3 Result ofTc as a function ofr for AMXPs with accretion rateṀ = 1.5 × 1014kg s−1 and the different dynamo
parameters are displayed withǫ = −0.45 (solid blue line), ǫ = 0 (solid green line) andǫ = 0.45 (solid black line).

Fig. 4 Result ofVR as a function ofr for AMXPs with accretion rateṀ = 1.5 × 1014 kg s−1 and the different dynamo
parameters are displayed withǫ = −0.45 (solid blue line), ǫ = 0 (solid green line) andǫ = 0.45 (solid black line).

Here, the dynamo generated magnetic torque in the inner
region of the disk is defined by

Ndyn,inner = 7× 1026 ǫγ
1/2
dyn

µ
4/7
15 M

5/14
1 Ṁ

3/14
14

∫

inner

r−7/4dr.

(55)

On the other hand, the viscous torque in the inner region of
the disk is given by

Nvis = −3πyRin(GMRin)
1/2

= −1.3× 1027 µ
2/7
15 M

3/7
1 Ṁ

6/7
14 Λ(r0)r

1/2
in .

(56)

Moreover, as was investigated byTessema & Torkelsson
(2011), the standard accretion disk solution has a case D
inner region boundary when the viscous torque is neglected
in accretion disk theory. Hence, the angular momentum is
transported from the NS to the disk when it is in the case
V inner region boundary.

Except for the case whenǫ = 0, the dynamo magnetic
torque is importantly greater than the shear magnetic
torque, and both are greater forǫ = 0.15 than forǫ = 0.45.
Because of this effect, the central hole of the disk grows too
large whenǫ = 0.45. The overpowered torque atǫ = 0.45
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Fig. 5 This figure plots the material torque on AMXPs with differentaccretion rates by varying the inner region radius,
rin, of the disk.

Fig. 6 This figure plots the variation of viscous torque as a function of radius for AMXPs with different masses and radii
in the inner region of the disk.

is the viscous torque in this region, which is ignored as
displayed in Figure6 below.

3.3 Comparison with Observational Results

There is a large variation in the accretion rates among
AMXPs. The well studied system IGR J00291+5934 is
accreting at a rate of at least∼ 1014 kg s−1 based on its X-
ray flux (Burderi et al. 2007), while in some other systems,
for instance, SAX J1808.4-3658 (Bildsten & Chakrabarty

2001), the NS is accreting at a rate below1012 kg s−1 from
a brown dwarf companion. There is also great doubt in
the spin variations that have been reported for AMXPs.
For instance,Burderi et al.(2006) reportedv̇ for these spin
variations between−7.6× 10−14 and4.4× 10−13Hz s−1

for SAX J1808.4-3658, butHartman et al.(2008) noted
that the measurements of this source are plagued by more
variations in the pulse shape, and put an upper limit of
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2.5×10−14Hz s−1 on the spin variations and found a long-
term spin down oḟv = −5.6× 10−16Hz s−1.

On the other hand,Burderi et al.(2007) reported that
IGR J00291+5934 was spinning up at∼ 10−12Hz s−1

during the December 2004 outburst. More spin variations
have been observed in some AMXPs that depend on the
accreting torque, which is given by

N = 2πv̇I, (57)

whereI isKgm2 andv̇ isHz s−1.

4 CONCLUSIONS

In this paper, we have studied the interaction between
AMXPs and the inner region of the disk, which is
supported by the dynamo generated magnetic field. Hence,
we found that the fundamental equations of an accretion
disk around AMXPs give a more stable system than
the previous study. We have made an effort to find an
analytical solution by applying a numerical method for
an accretion disk around AMXPs in the inner region
of the disk, in which the accretion rate is high and
the disk is overpowered by radiation pressure and the
electron scattering region. Here, the analytical solution
of Equation (39) at the higher accretion rate in the inner
region of the accretion disk is greater than the radius of the
NS for different values of dynamo parameters,ǫ, and we
observed the behavior of these solutions in the inner region
in Figure1. We have formulated the numerical method for
the structure equation in the inner region of the disk and the
highest accretion rate is sufficient to make the innermost
region of the accretion disk be overpowered by radiation
pressure and electron scattering. We have ascertained
the relationship between surface density and radius in
Figure2. Then, in this figure, the surface density decreases
with radius. The viscous torque in the inner region of the
disk is ignored, which is displayed in Figure6. Hence, the
viscous torque on AMXPs decreases for different masses
and radii of the accretion disk. The accretion torque is
important in explaining the observed variations in the spin
frequency of AMXPs like IGR J00291+5934. Thus, we
have found that the spin derivatives for accretion rate
1.5 × 1014 kg s−1 in this model, which are in agreement
with RXTE observed data for AMXPs, are consistently
explained by this model.
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