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Abstract We consider the coplanar planetary four-body problem, wlileree planets orbit a large star
without the cross of their orbits. The system is stable ifétie no exchange or cross of orbits. Starting from
the Sundman inequality, the equation of the kinematicahbauies is derived. We discuss a reasonable
situation, where two planets with known orbits are more iwasthan the third one. The boundaries of
possible motions are controlled by the parametdt. If the actual value of?E is less than or equal to a
critical value(cE)..., then the regions of possible motions are bounded and trertife system is stable.
The criteria obtained in special cases are applied to thar Sylstem and the currently known extrasolar
planetary systems. Our results are checked udidgpdy integrator.

Key words. methods: analytical — methods: numerical — celestial meidsa— planets and satellites:
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1 INTRODUCTION case, it is the parametet E, wherec is the angular mo-

) ) ) mentum and¥ is the energy of the system, which control-
In our Solar System, eight planets orbit the Sun in the ordeg ¢ topology of the zero-velocity surface. The system is

of Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranugjjj|type stable if there is no exchange of bodies. There is a
and Neptune. The moons also orbit their planets in the d&sitica| value ofc £ corresponding to the middle collinear

termined order. However, does this hierarchy of the S°|aéqui|ibrium point. If the paramete”E of the system is
System stay unchanged? This problem has attracted muglks than or equal to the critical value, then the regions of
attention, and it has become a considerable challenge {f,ssible motions are triply connected and there could be

celestial mechanics. Many concepts were introduced 3, exchange of bodies (i.e. the system is Hill-type stable).
solve this problem, such as Hill-type stabilitifi{l 1878),

Lagrange stability $osnitskii 1999, Sundman stability The ¢E condition has been extensively applied to

(Lukyanov & Uralskaya 2012and so on. In this paper, we the hierarchical three-body systeMlalker (1983)) in-
will focus on Hill-type stability. vestigated the stability of the star-planet-moon hierarch

Previous studies of Hill-type stability have established®@l three-body system. The hie.rarchicgl systgm, where
several analytical criteria to judge the stability of the hi "! > Ma, M andml form the inner binary W'tMQ’_
erarchical system. The concept of Hill-type stability date was sufficiently studied using two-body approximation-

back to when Hill studied the Earth-Moon-Sun restricted® for the a_ngular mqmentum and the energy of the sys-
three-body problemHill 1878). Hill wondered whether e @onnison & Williams 19831985 Donnison 1988

this Star-Planet-satellite system would remain in its-hier2009 2010 2011). Petit et al(201§ provided an inspiring
archy. To answer the question, Hill used the Jacobi integra{PethOd to understand the H'”'WP? stability |-n the frame-
of Moon to construct the boundaries of motions. As theW,0_rk of A”Q“'ar Momentum Deficit. The H|II?type sta-
zero-velocity surface around Earth is closed, Moon can nt’”'ty of a bmary during gncounters W't_h a third ;tar al-
ever escape from Earth and become a planet of Sun, whicip Was determined by using theF condition Ponnison
means the system is Hill-type stable. 1984ba, 2009.

This concept has been extended to the general three- Four-body systems also widely exist in the Universe.
body problem Golubev 1967 1968ab; Saari 1974 Gong and Liu extended the concept of Hill-type stability
1984 1987 Marchal & Saari 1975 Bozis 1976 Zare to the four-body problem to study the stability of the hier-
1976 1977 Szebehely 1977Szebehely & Zare 1977 archical system@ong & Liu 2018 Liu & Gong 2017ka).
Marchal & Bozis 1982 Sergysels 1986 In the general In the (1-3) configuration four-body problem, where three
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bodies, constituting a subsystem, orbit a much larger bodyhe orbits of the planets do not cross at initial. The stahbili
the system is Hill-type stable if the three-body subsystenof the system is defined as:

is Hill-type stable under the definition in the three-body Ifthere is no exchange or cross of orbits of the planets,
problem Gong & Liu 2016 Liu & Gong 20174. Inthe (1-  the planetary four-body system is stable.

2-1) configuration four-body problem, where there is a bi-  Based on the definition, two analytical stability criteria
nary subsystem, the system is Hill-type stable if there is nare derived in different situations, and then applied to the
exchange of bodies between the binary and the third bodgolar System and extrasolar systems.

(Liu & Gong 2017bH. Under these definitions, if the crite-

ria for Hill-type stability are satisfied, then the hieraycdf 2 THE COPLANAR PLANETARY FOUR BODY

both four-body systems stay unchanged. MODEL

From this introduction, we know that the study of . . .
. . : ) . The four body system includes a massive star with three
Hill-type stability provides an analytical method to judge o .
much smaller planets orbiting in a planetary hierarchy,

whether the hierarchy of the system is stable in the three-

body problem and the four-body problem. But the Hill- which .|s shown in F|gur«1. Here, P; denotes the pos'“of‘
. o . o of thei-th body, whilem, denotes the mass. The Jacobian
type stability criteria, derived in different models, atd-s

- - coordinatesp;, i = 1, 2, 3, are defined as
ficient conditions but not necessary. In the four-body prob- Pirt

. ) . . N
lem, only two kinds of configurations have been studied. In o1 = ‘P_OP_ 1" o = ‘P01P2
then(n > 5)-body system, there is no definition of Hill-

type stability. Thus, empirical stability criteria and nem  whereFy; is the barycenter ofy and P, and P2 is the

ical integration criteria have been proposed. barycenter of); and P».

Walker et al., in a series of papers, outlined a method ~ The motions of the system are determined by the fa-
to study the empirical stability of the hierarchicabody =~ Mous Sundman inequalitgundman 1912which is given
system YWalker et al. 1980Walker & Roy 1981 1983a by )

Walker 1983aWalker & Roy 1983p. An expansion of the 9E —oU — < >0, )
force function of the hierarchical-body system was de- _ K _

rived in terms of a set ofn — 1)(n — 2) dimensionless WhereZ is the total energy of the systei, is the poten-
parametersy,;, ¢;;, which are representative of the size of tial energyc is the angular momentum arid denoFes the
the disturbances on the Keplerian orbits of various bodiegnoment of inertia. The expression of the potential energy
The parameteX;, in terms ofey; ande;;, interpretedto be IS
a measure of the disturbance placed on t_he orpimoby g mem, moma | mama | moms
other masses in the system. Generally, if eaghis less - + + +

—
,P3 = ‘P012P3‘ (D

To1 T02 12 03

than10~2, the hierarchical system is empirical stable. s s (3)
The numerical work involves a wide range of simu- +? + K) J

lations of the system. Most of the works focused on the

three-body system and devoted to determining the boundhereG is the gravitational constant and

ary of stability Harrington 1972 Donnison & Mikulskis o P—P) i< @)

1992 1994. In then(n > 4)-body problem, the multi- * I J:

planet systems are always unstable with respect to close The moment of inertia can be given b@gng & Liu
encounters if the initial semi-major axis differena®, 2014

is less than 10Ghambers et al. 1996The time of first
close encounter is given approximately log ¢t = bA + K = o p? Mymo P Moms 02,
¢, where b and ¢ are constants. Subsequently, many M Mo Ms
researchers Quncan & Lissauer 1997Faber & Quillen  \whereM; = S _gmy,i=0,1,2,3.
2007 Smith & Lissauer 2009 Obertas et al. 20)7fur- The stability of the system is ensured if there is no
ther discussed the approximate stability time for a systengross of the orbits or exchange of the order of the planets.
which was taken to be the time when the orbits of two onn other words, it requires that the regions of possible mo-
more planets crossefiamayo et al(2016 also provided a  tions of P; are contained by the orbit @, and meanwhile
method to predict the stability of tightly packed planetarythe motions ofP; are restricted outside. Considering the
systems using optimized machine-learning classifiers.  reference frame rotating with, and . Their barycenter,

In this work, we study the stability of the planetary Py,, is fixed at the origin of the coordinate system; the
four-body system, where three planets orbit a large stamxis points fromP, to P,; and they axis forms a right triad
The mass of the star is much greater than the planets, amdth thez axis.

®)
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Fig.1 The coplanar planetary four body system.

Fig.2 The four body system in the complex plane.

As

m0>>miai:152735 (6)

it is reasonable to assume that

To1 = P1, T2 = P2,

Denote the coordinates aP, and Ps; as (z1,v1),
(z3,ys3), respectively. Then, we introduce two complex

T03 R P3. (7)

variables as
x )
e=2 8)
P2 P2
xr
n="2 4% 9)
P2 P2

Based on the geometrical relationship, we obtain

To2 = P2, T01:|§|P27
ro3 = [n| p2, r12 = [§ — 1] pa, (10)
T3 = | — 1| p2, 713 = € =1l p2.

Substitute Equations3], (5), (7), and (0) into

Equation ), and it becomes

02

2Ep3 +2GP (Em) p2— =—+— >0,  (11)

Q& mn)

144-3
where
P(fa”?) _ momi + moms + mims + moms
€ €1 T gy,
+ mims moms
€—nl  In—1]
momi .2 Mims  Moms o
= . 13
Qem = 6 + 2+ =l (13)

Inequality (L1) represents the regions of possible mo-
tions whose boundaries are determined by a quadratic e-
quation inps. If £ > 0, then there must be a body in the
system not moving on a closed orbit. This situation is not
considered in this work. So we only consider the case that
E < 0. As py > 0, the discriminant of roots must be non-
negative, which means

8c*E
Q(&mn)

Inequality (L4) gives the constraint of possible motion-
s of P, and P, in terms of the coordinat&sandy in the
complex plane. The schematic of the system in the com-
plex plane is shown in Figur2 If the conditions,

€l <1,

always hold, the hierarchy of the system will never change
which makes the stability ensured.

The condition for equality of inequalityl@) can be
rewritten as

A =4G*P% (¢,m) + > 0. (14)

In| > 1, (15)

CGPP2(Em)Q (&)

9 )
which means the boundaries of the regions of possible mo-
tions are controlled by the parametE. In the three body
problem the parametef E determines the topology of the
regions of possible motions of the third body, but here it
limits the motions of both?; and Ps.

Note that there are four dimensions because the coor-
dinates¢ andn are unknown, which makes it difficult to
draw the boundaries. Therefore, we consider two special
cases that the orbits ¢, andP; (or P, andP;) are deter-
mined.

E = (16)

3 STABILITY CRITERIA WITH ORBITSOF TWO
PLANETSDETERMINED

In some planetary four-body system, it happens that two of
the planets are more massive than the third one and their or-
bits are considered unchanged for a long time. In this case,
itis not necessary to study the stability of the massiveplan
ets in the four-body model, because the smaller planet has
little influence on the motions of the massive planets. We
only need to study the motions of the third smaller planet
when we investigate the stability of the system. Back to our
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model, if the orbits of the two massive planels,and Ps
(or P, and ), are determined, the values of variafpléor

C. Liu, SP. Gong & J.F. Li: Stability of Planetary Four-body System

The first line of Equation¥8) gives the expression of
the critical values of? E. The critical values, denoted as

€) are also determined. Then, the regions of possible mo<?E)..,, is associated with the equilibrium poigt and

tions of another planet can be obtained by Equatid). (

3.1 Determining the Orbitsof P, and Ps

If the orbits of P, and P; are known and unchanged, and

there is no exchange of the orbits Bf and Ps, thenn is
no longer a variable but a parameter in Equatib),(and

hence the values of parametgr The relations between
(c*E) ¢y With 7 are shown in Figurd(c). The position-
s of P; have an influence on the value ofE).,,, and
the minimum of(c?E)..,., is denoted as

(*E)r = min ((CQE)CT.M) , (29)

neqQ

In| > 1. Equation {6) determines the zero velocity curves where (2 is the range ofp. For example, in Figuret

and hence regions of possible motiong®fin the complex
plane. For a certain value of parametgrshe motions of

Py in the complex plane are determined by the parameter

c?E, which is shown in Figur8.

Q= {n:neC,16<|n| <24}, whereC is the com-
plex field.

If the value ofc? E of the system is less than or equal to
(c?E),, the motions ofP, are limited inside of the orbits

In Figure3(a), the inner zero velocity curve is closed Of 1, which is similar to the case shown in Figus).

and it does not contain the second plaRet The motions

Besides, there is no exchange of the orbitsPefand P;

of P, are bounded and it can never exchange the orbits withased on the assumptions. Thus, the stability of the system
P, or be captured by, which means that the system is iS ensured. The stability criterion can be summarized as

stable under the definition. The smaller valueg?df make

follows.
Criterion I:

the inner zero velocity curve smaller and hence the stabilit
of the system better. In FiguBgb), the inner zero velocity In the coplanar planetary four-body problem, three
curve contains the second plar&t P, can exchange the planets,P’;, P», Ps, orbit the star in a planetary hierarchy.
orbits with P, or be captured by?, and in this case the %, P; are more massive than and the orbits of two mas-
stability is uncertain. The increases of values:tE will  sive planets are determined. The system is stable if

extend the inner zero velocity curve and finally, the regions

(E)ac < (CE)er, (20)

of possible motions will be simply connected.

Figure3(c) shows the critical case that the two regionswhere(02 E)q. is the actual value o2 E of the system and

of possible motions arounfy, and P, turn from discon-
nected to connected. Figud&) is the local curve around

(c?E),, is given by EquationX9).
Based on the conditiorg), it is possible to express

P in the critical case. The bifurcation of the curves hap+he real component of. and hencec?E)., in a closed

pens at the equilibrium point to the left side 8. The
equilibrium points are given bgare(1977)
A(&m) =0,
d (17)
—A(&n) =0.
0 &mn)

Substitution of Equation1d) into Equation 17) gives

2p_ @GP En Q&)
2 9
0 momi€  mimo(€ — 1) N mims(§ —n)]
€|° € —1p & —nl’
Pm0m1
- e=o.

(18)
From the second of Equatiod ), we can obtain the
coordinateg,. of the equilibrium point to the left side of
P, numerically. Note that the solutions&f are associated
with the values of parametgmwwhich is shown in Figurda.
The absolute value of imaginary part &f is much less
than 1, so that in Figuré(b) we us€é. | as thez-axis.

form. Denotet. = x. + iy.. As shown in Figurel(a), y.
is very small compared to. and has little effect on the
value of(c?E).,.. Thus, we can s& = x, wherez is real
and0 < x < 1, and then the solution of the second of
Equation (8), denoted a§,, is an approximation of..

The equilibrium point lies to the left side é%. Denote

le_:uv (21)

wherep > 0 and usuallyu < 0.1. Substitutingg =1 —
and after some simplifications, the second of Equati@ (
becomes

2 mommi mimsz
m11u2+m2+m3n}{ - ]
=) =~ e

mom mim mom
ml(l—,u){ 0 1+m0m2+ ! 2—1—&}:0.
L—p 7 n|

(22)

Then, by multiplying both sides of Equatio22) by
(1 — w)?p?, it becomes a univariate equation of five de-
grees, which is

22 gcat’ = 0, (23)
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Fig.3 Zero velocity curves of?, for different values of:?E. (a) c?E = —6.10 x 107, (b) ¢?E = —5.95 x 1072,
(€) 2E = —6.0724345 x 1079, (d) > E = —6.0724345 x 10~°, aroundPs. G = 1, mo = 1, m; = 9.55206 x 103,
ma = ms3 = 9.55206 x 104, = 1.5 + 1.54.
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Fig.4 The relations betweefy, (¢*E)..., with 7. () The solutions of. on the complex plane, (), —n, — €. | surface,
(€) e — 1y — (PE)ery SurfaceG = 1,mg = 1,m; = 9.55206 x 107%, mg = m3 = 9.55206 x 10~%, 1.6 < |n| < 2.4.
7, denotes the real componentpivhile n, denotes the imaginary component.
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where where £, denotes the exact solution of the second of
cs =€z + €3/ ], Equation (8). Meanwhile£, = 1 — 1, is the approxima-
cy = —3e3 — 3e3/ I, tion of the bifurcation point of the zero velocity surface, s
2 li ~ .
¢s = 3es + 3es/ Inl, (c E)sa ~ 0. Then Equation30) becomes
2 = (nf* =1/ InDes ¢ : : :
) ) (c E)Cm’ = (c E)Ea +0 ((ﬁe — &) ) . (31)
c1 = 3ere0 + 262 + 2 In|” ezes,
2 2 Thus, Equationi9) can be rewritten as
co = —€1€2 — €5 — [N|” €€,
and (CQE) B 7G2m8
m m m er
61:—1, 62:—2, 63:—3. (25) 2 9
mo mo mo
. .. . .. a + €2 + fe + S X (32)
In Equation 24) only the main items in the coefficients max 1— g I n|
¢; are retained while the items with relatively smaller val- neq

) . x e (1 = pia)? 2}
ues are omitted. Furthermore, as is much larger than {61( Ha)” + €2 + €3]

other bodies, the magnitude of the coefficients can be di- .
) . . . . . where( is the range of.
vided into different levels. The coefficients with a relativ 5 i
. . L The value of(¢* F').. monotone decreases witl if
ly large order of magnitude arg, c4, c3, While ¢g is in the

order ofe?. The order ofc; andc, is associated with the ) 1/3

parametefn|. In| > ( all —pa)"+ ez ) . (33)
The Hill sphere around, is much smaller compared €1/(1 = pia) +e2 + €162/ a

to the sphere aroun®, as mg > mo, which means

u < 1. We keep the smallest power jnwith the asso-

ciated coefficient for the group ef, c4, c3. Therefore, the

terms with the associated coefficiegtandc, are neglect-

The right side of inequality33) is less than 1, ag3 is
located outside of the orbit df, i.e.,|n| > 1. Therefore,
denoter,, = max |n|, and Equation32) becomes

ed. Thus Equatior?@) can be reduced to ( ) ) G2m}
AE) =-—21-20
cr 2
cap® + cop® + e+ co = 0. (26) . e e\ 2 (34)
_ _ _ ( et o+ —3) x
The first and second order terms are retained as their coef- L= pa Ha  Tm :
ficientsc; andc, are related to the value @f|. This makes x [e1(1 = pa)? + €2 + €372,
the relative error much bigger if they are ignored.
Equation 6) is a cubic polynomial of: and its roots The value determined by Equatiod4j also is an ap-
can be solved using Cardano’s Formula. Therefore, an a,@roximation of the exact critical value. The accuracy has
proximation to the solution of Equatio@2) is given by been verified with the results shown in FigieThe rela-

tive error compared to the exact value tends to be less than
1/3 1/3 ¢ =5 whi i ioni
(1o = (7g I \/Z) I (7g B \/Z) ~ 2 o 10 WhIFh means the appromma’gon is _also reasonable.
2 c3 In Criterion |, the actual valug* E),. is based on the
total energyl’ and the corresponding angular momentum

where . L
3cser — 2 c of the system. Using two body approximation, the energy
=732 is (Liu & Gong 2017
3
(28)
27c3co — 9ezcacy + 2¢3 G (momy  Mimos  Mamg
== 3 E = — — 35
27¢3 2(a1+a2+a3), (35)
and the discriminant of the cubic equation is . .
and the corresponding angular momentum is
A = (p/3)* +(q/2)*. 29
ol > ¢ =G {moma(ax (1 — &) /M)
Then, thg first line of Equatiorilg) can be.expanded + Myma(as(1 — e2)/Ms)'/? (36)
at the approximate solutigqy, = 1 — 1, Which is + Mams(as(1 — e§)/M3)1/2},

2 _ (.2 2 )/
(C E)cr,'r] - (C E)ga + (C E)ga (€e —&a) (30) wherea; ande; (i = 1,2, 3) are the semi-major axis and
+0 (¢ —¢.)°), eccentricity ofP;, respectively.
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Fig.5 Comparison of the approximation and the exact solutioicét))..... (a) Approximation and exact solution of
(?E),., (b) relative error of ¢’E) ... G = 1,mg = 1, my = 1074, my = 1073, m3 = 1072, and1.6 < |p| < 2.4. In
Fig. 5(a) the two surfaces are too close to distinguish. B{h) shows the relative error between the approximation and

the exact value ofc*E)..,..

Thus, we have

G?*m?
(PE)ge = — > O (€1/a1a + €3 + €3/aizp) X
|:61 aia(l —e?) +eay/1— €3 (37)
2
+e34/asza(l — 6%)] )
where o
aU:_'L7 15.7:1)273 (38)
a;

Then the stability condition20) given in Criterion |
can be rewritten as

A(l—€3)+ By/1—-e2+C >0, (39)
where
A= (e1/a12 + €2 + €3/az2) Eaa,
B=2 |:€2\/1 — €2+ ez /asa(l — e%)]
X (€1/a12 + €2 + €3/ a32) €14/12,
2
C= [62\/1 —e2+ 63\/a32(1 - 6%)} (40)

X (e1/a12 + €2 + €3/ z2)

2
€ €1€ €
< L et 12+_3)
1 — g Ha T'm
X [61(17#,1)24*624*637’7271}.

If C > 0 inequality @9 holds asA > 0 andB > 0.
If C < 0, this gives a solution of the form

2
.\ < 1_<B+\/BQ4AC>. 1)

2A

Thea1s —eq curves for different value af s is shown
in Figure6. The regions on the left side of the curves are
stable. The inner planet with a small eccentricity is more
likely to be stable. The stable regions become larger if the
parametervs> decreases. The relations betweep and
a1 are shown in Figuré. The region on the left side
of the curve is ensured to be stable with the conditions
asza > 1 andags < 1. The plot makes it clear that with the
increases of the parametes, the value ofa,, decreas-
es which means the ensured stable regions have shrunk.
Besidesy,,, = asa(1 + e3)/(1 — ez) under the definition.

It needs to be pointed out that Sundman inequality is
a necessary condition for the possible motions so that the
stability criterion is sufficient but not necessary. We can
conclude that the stable regions in Figérabsolutely are
stable. Nevertheless, the real stable regions may be larger
than that the criterion gives. Therefore, the trend shown in
Figure7 represents the results of the criterion but it may be
not real situations.

If ms = 0, the problem degenerates into a three-body
case. Similarly, the stable regions in thge, — ¢; plane are
shown in Figure8. The solid line is the boundary of the
three-body problem while the others are the boundaries for
different aso in the four-body case. In general, the third
planet reduces the stable regions of the inner planet which
makes the stability worse.

3.2 Determining the Orbitsof P, and P,

If P, and P, are massive and their orbits are determined
without exchange of orbits§ is no longer a variable but

a parameter in Equatiori@), and|¢| < 1. Equation 16)
determines the zero velocity curves and hence regions of
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possible motions of; in the complex plane. For a cer-
tain value of paramete& the motions ofP; in the com-
plex plane are determined by the parametd?, which is
shown in Figureo.

In Figure9(a), the outer zero velocity curve is closed
and contains the second plad&t P; is located at the out-
side and can never exchange the orbits wWihor be cap-
tured by %, which means the system is stable under the
definition. The smaller values ef E will extend the out-
er zero velocity curve and make the stability of the system
better. In Figureé(b), the outer region of possible motions
contains the second plangt. P; can exchange the orbit-

s with P, or be captured by, and the stability is not
ensured in this case. The increases of values af will
extend both the inner region and outer region of possible
motions ofPs. Finally, the regions of possible motions will
boe simply connected.

Figure 9(c) shows the critical case that the outer re-
gion and the region aroun®, turn from disconnected to
connected. Figurg(d) is the local curve aroung in the
critical case. The bifurcation of the curves happens at the
equilibrium point to the right side of,. The equilibrium
points are given byare(1977)

A(m;€) =0,
d (42)
Substituting Equationl{d) into Equation 42) gives
2 p2 . .
2p. _GP (né)@(n,ﬁ)’
momsn  mamsm—§)  mams(n— 1)
Q 3 3 3
n] n — ¢ i — 1]
- P]\/Igmg -0
My 1T
(43)

From the second of EquatioAd), we can obtain the

coordinateg). of the equilibrium point to the right side of
P, numerically. Similarly to the work in Sectio8.1, the
solutions of. are associated with the values of parameter

£. The absolute value of imaginary partmpfis much less
than 1.

The critical values, denoted 48*F),.,.¢, is associat-

ed with the equilibrium poing). and hence the values of
paramete€. The positions of?;, have an influence on the
value of (¢*E).,.¢, and the minimum of ’E).,.¢ is de-

Fig.8 Theajs — e; curves. The parameters of the four- noted as

body system are g|ven &»B=1,my =1, m1 = 1074,
mo 1073, 1073, ande; = e, = 0.02. Here
a1z = ay/as andagg = a3/a2 For the three-body case

ms = 0. The regions on the left side of the curves areWhereQ

ensured to be stable.

(E);

(CQE);« = gnelg}k ((CQE)CT,E) P
is the value range .
If the value ofc? E of the system is less than or equal to

the motions of; are limited outside of the orbits

(44)

cr?

of P,, which is similar to the case shown in Figd@).



C. Liu, SP. Gong & J.F. Li: Stability of Planetary Four-body System 144-9

Besides, there is no exchange of the orbitPpfand P, ¢, are associated with the paramelr Besides, the Hill

based on the assumptions. Thus, the stability of the systesphere around, is much smaller compared to the sphere

is ensured. aroundP, as the large mass &%), which meang < 1. We
Criterion Il: keep the smallest power énwith the associated coefficient
In the coplanar planetary four-body problem, threefor the group ofds, d4, ds. Therefore, the terms with the

planets,P;, P», P3, orbit the star in a planetary hierarchy. associated coefficient @f andd, are neglected.

Py, P, are more massive thaR; and the orbits of two Thus, Equation48) can be reduced to

massive planets are determined. The system is stable if
d353 + d262 +di6+dy =0. (51)
(C2E)ac < (C2E)Zra (45)

Here the first and second order terms are retained as the co-
where(c?E),. is the actual value of E of the system and  efficientsd; andd, are related to the value ¢|. It makes

(¢?E);, is given by Equation44). the relative error much bigger if these two terms are ig-
Similarly, it is possible to express the real componentored.
of . and hencdc?E)?, in a closed form. Denotg. = Equation 1) is a cubic polynomial o6 and its roots

Te + 1y andy, is very small compared to.. Thus, we  can also be solved using Cardano’s Formula. Therefore, an

can set) = z, wherez is real andz > 1, and then the approximation to the solution of Equatio#?) is given by
solution of the second of EquatioA3), denoted ag,, is

. . 1/3 1/3
an appr0X|mat|on Of)e. _ _E /A _E — /A
611 — ( 2 + 2 + 9 2

The equilibrium point lies to the right side afs.

(52)
Denote ds
z =143, (46) © 3dy
whered > 0 and usuallyy < 0.1. Substitutingp = 1+3J  where
and after some simplifications, the second of Equati@ ( 5 — 3dsdy — d3
becomes 3d3 (53)
27d3dy — 9dsdad; + 2d3
2 2 moms moms _ t = 340 34201 2 7
and the discriminant of the cubic equation is
e [t mom - ] o “
47) Ao = (s/3)" +(1/2)". (54)
Then, by multiplying both sides of Equatioa?) by Then, thg first line O.f EquatiorQ) caq be. expanded
(1+6)262, it becomes a univariate equation of five degrees@t the approximate solutiap, = 1 + d,, which is
which is 2 o * 9 2y ]
Z?:Odiél = 0, (48) (C E)cr,f = (C E)',’a + |:(C E)"')a:| (,,’e - l”a) (55)
where + 0 ((Me —ma)?) .
ds = —€2 — 61/ |§|7 .
where n. denotes the exact solution of the second of
dy = =32 — 3e1/ [¢], Equation ¢3). Meanwhilen, = 1 + §, is the approxima-
ds = —3ez — 3e1/ €], 49 tion of the bifurcation point of the zero velocity surface, s
!/
dy = (|€]> =1/ |€])er, (49) {(C2E):; } ~ 0. Then Equationg5) becomes
dq :36263+26§+2|€|26162, « N
2 2 (C2E)c’r'§ - (CQE)W +0 ((ne - na)2) : (56)
d() :€2€3+62+|§| €1€2, ? @
and Thus, Equation44) can be rewritten as
miq mo ms
= — = — = — 50 2 5
€1 m07 €2 m07 €3 mo ( ) (CQE) ZT _ G mg
In Equation 49) only the main items in the coefficients 2 5
d; are retained while the items with relatively smaller value (6_1 T oeo 4+ €2€3 + €3 ) « (57)
are omitted. Furthermore, a$, is much larger than other X max (3 da 1+, ,

bodies, the magnitude of the coefficients can be divided ger

into different levels. The coefficients with a relativelyda
order of magnitude aré;, d4, ds. The order ot , ¢c; and  whereQ* is the range of.

[l 6 + 2+ a1+,
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Fig.9 Zero velocity curves of’s. (a)c?E = —4.44 x 1079, (b) ?E = —4.41 x 1072, (¢) 2 E = —4.4299380 x 1079,
(d) E = —4.4299380 x 1079, aroundPs. G = 1, mg = 1, m1 = ma = 9.55206 x 1074, m3 = 9.55206 x 107,
& = 0.5 + 0.5i. The values of parametet E are given in each subfigure.

The value of ¢? E)?, monotonically increases witl§|
when

In| < ( e2 + €3(1 + 0a)’ )1/3
- 62+63/(1+5a)+6263/5a ’

The right side of inequality59) is greater than 1 as
three mass parameters are much smaller tharAs P,
locates inside of the orbit dfz, |£| < 1. Therefore, denote
pm = min €|, and Equation§7) becomes

(58)

* :_G2m8

cr 2

€ €9€ € 2

1 2€3 3

— X
(pm+62+ 5 +1+5a>

x [e1p2, + €2 + €3(1 4 64)°]

(¢°E)

(59)

The value determined by Equatiobdj also is an ap-

proximation of the exact critical value. The accuracy has

been verified with the results shown in Figur@ The rel-

ative error compared to the exact value tends to be less than
0.005 which means the approximation is also reasonable.

In Criterion I, the actual valug-? E),,. can also be ex-
pressed by Equatior87). Substitutions of Equation87)
and 69) into the stability condition45) give

D(1—e3)+E\/1—-e2+F>0, (60)

where

D =(e1/an2 + €2 + €3/ aza) €332,

E =2 |:€1\/0412(1 —6%) + €24/1 —6%:|

X (€1/a12 + €3 + €3/ az2) €31/32

2
F= [61\/0&12(1 —e2) +eay/1 —e%}

X (€1/c12 + €2 + €3/ uz2)

2
€1 €9€3 €3
| —+e+ +
<pm g da 1+5a>

X [elpfn +e+es(1+ 5a)2} .

(61)

If F > 0inequality 0) holds asD > 0 andE > 0.
If £ < 0, this gives a solution of the form

2
e <.l <—E+\/E2 —4DF> 62
2D

The azo — e3 curves for different values ofi» are
shown in Figurell. The regions below the curves are sta-
ble. The outer planet with a small eccentricity is more like-
ly to be stable. The stable regions increase if the parame-
ter ao increases. The relations between andas, are
shown in Figurel2. The region on the upper side of the
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x
o ©
&

cr

relative error of (c ZE) :

(a) (b)

Fig.10 Comparison of the approximation and the exact solutiofcdE)?,. (a) Approximation and exact solution of
(*E)%,, (b) relative error of ¢?E)%,.. G = 1, mg = 1,my = 1073, my = 1073, m3 = 1074, and0.1 < [¢| < 0.5. In

Fig. 10(a) the two surfaces are too close to distinguish. E@jb) shows the relative error between the approximation and
the exact value ofc®>E)?,..

curve is ensured to be stable with the conditiogs > 1  Table 1 Stability of the Planetary Four-body Systems in
andais < 1. The plot makes it clear that with the increas- the Solar System
es of the parameter;» the value ofas, decreases which

. . Py Ps P3 Criterion | or Il

means the ensured stable regions have increased. , —
o ) - ) Mercury  Jupiter Saturn Unsatisfied
This is the same as saying that the stability crite- Venus Jupiter  Saturn Unsatisfied
rion is sufficient but not necessary. We can conclude Barth  Jupiter  Safurn Unsatisfied
. . . Mars Jupiter Saturn Unsatisfied
that the stable regions in Figuld absolutely are stable. Jupiter  Saturn  Uranus Unsatisfied
Nevertheless, the real stable regions may be larger than tha Jupiter _ Saturn _ Neptune Unsatisfied

the criterion gives. Therefore, the trend shown in Figize
represents the results of the criterion but it may be not real
situations.

If my = 0, the problem degenerates into a three-body 08}
case. Similarly, the stable regions in g — e3 plane are
shown in Figurel3. The solid line is the boundary of the 061

three-body problem while the others are the boundaries for ~ ©

different ay5 in the four-body case. In general, the inner o4r
planet reduces the stable regions of the outer planet which o2l
makes the stability worse.
OO 5 10 15 2‘0 25 30
4 APPLICATION TO THE SOLAR SYSTEM AND Y32

EXTRASOLAR PLANETARY SYSTEMS Fig.11 The oo — eg curves for different value ofvy,.

The parameters of the system are givetiras 1, mg = 1,
The stability criteria are applied to the Solar System, asthm; = 1073, ms = 1073, m3 = 1074, ¢; = 0.02, and

orbits of the planets in the Solar System are approximatelgz = 0.02. Hereais = a1/a2 andas, = as/as. The
coplanar, and there is no cross of planets’ orbits. Thegefor "€9i0NSs below the curves are ensured to be stable.
the Solar System can be divided into different planetary

four-body systems. All of the systems listed in Tabld& do not satisfy
As Jupiter and Saturn are more massive than th&riterion | or Il. The system still could be stable as the

other planets, it is reasonable that all the combinationcriterion is a sufficient condition but not necessary.

s of the four-body system include Jupiter and Saturn. Now we will consider the possible application-

For a Sun-Planet-Jupiter-Saturn (or Sun-Jupiter-Saturrs of the stability to extrasolar systems. There are 672

Planet) system, using the criterion obtained in SecBidn multiple-planet systems listed at the webditet p: / /

(or Sect.3.2), the results are shown in Talle exopl anet . eu/ cat al og/ . Among them, five four-
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Table 2 Stability of the Five Extrasolar Four-body Systems

Star Planet M, ap ep Mstar (2E)qc (c2E)¢r  Criterion | Integration
(Myup)  (AU) (Msun) or (c2E)%, orll Results
1) 2 3 () 5) 6 () (8 ) (10)
GJ676 Ad 0.014 0.0413  0.1500
GJ676 A GJ676 Ab 6.7 1.8120 0.3230 0.7251 -9.1502e-06 838065 unsatisfied unstable

GJ676 Ac 6.8 6.6000 0.2000
GJ876d 0.022 0.0208 0.0810
GJ 876 GJ876¢ 0.856 0.1296  0.0020 0.3193 —4.61805e-07 49R.d57 satisfied stable
GJ876b 1.94 0.2083  0.0000
HD 125612 ¢ 0.058 0.0500 0.2700
HD 125612 HD 125612 b 3 1.3700 0.4600 0.9660 —1.70786e-06 04831e-06 unsatisfied unstable
HD 125612 d 7.2 4.2000 0.2800
PSR 125712 b 7e-05 0.1900 0.0000
PSR 1257 12 PSR 1257 12 ¢ 0.013 0.3600 0.0186 1.4337 —2.61809e -2.476e-15 satisfied stable
PSR 1257 12d 0.012 0.4600 0.0252
ups And b 0.62 0.0590 0.0119
ups And ups And ¢ 9.1 0.8610 0.2445 1.2851  -2.66322e-05 3298205 unsatisfied unstable
ups And d 23.6 2.5500 0.3160

The four-body systems consist of a star and three planetshveie shown in Cols (1)—(2). The mass of the planet in Coig3hown in
the unit of Jupiter mass, while in Col. (6) the mass of the istém the unit of Sun mass., ande, in Cols. (4)—(5) are semi-major axis and
eccentricity of the planet, respectively. The mass and thitad parameters of the systems are obtained by the wditsitp: / / exopl anet .
eu/ cat al og/ . The last column lists the numerical integration resultaibing theN-body integrator.

100 body systems satisfy the conditions that three planets orbi
80 the star without orbits crossing and two of the planets in
the systems are 10 times massive than the third one.
~ 60
CH 0 Criterion | and Il are applied to these systems and the
results are shown in Tabe Criterion | (or IlI) determines
20 the value of(c?E).. (or (c*E)%,). The expression of the
5 S :
S o4  os o8 1 actual valugc¢*E),. is given by Equation37).
“12 Two of the planetary systems, GJ 878,

Fig. 12 Theay» —ass curve. The parameters of the systemPSR 1257124, listed in Table2 satisfy the Criterion |

aregivenasy = 1, mg = 1, m; = 1073, my = 1073, or Il, which means they are stable. The motions of the

ms =104, ande; = ex = e = 0.02. Hereays = a1/a2  smallest planet are bounded by the orbit of its massive

andasy = as/ap. The regions on the upper side of the pianetary neighbor. The other systems where the criteria

glrjmzjvo?jri ?nsured to be stable with the conditions> 1 are unsatisfied have the possibility to change their order of
' planetary orbits.

The results are checked by the diréétbody inte-
grations. The systems are integrated with the Mercury
integrator packageGhambers & Migliorini 199Y using
the Bulirsch-Stoer integratoBfoer & Bulirsch 1980 We
adopt a timestep a&02 times of the period of the inner
planet. The integrations continue until the orbits of two or
more planets cross di0® inner orbital periods elapse. A
closer encounter is defined as the distance between any
; pair of planets become less than the sum of the Hill ra-
0 s 10 15 20 25 30 dius of the two planets, while the Hill radius is given by

ag, Ry =a (u/?,)l/g, wherea is the semi-major axis and

. is the dimensionless mass. As shown in the last column
Fig.13 Theass — e3 curves. The parameters of the four- . : oo
body system are given & — 1, mo = 1, m; — 10-°, of Table2, the |nteg_rat|0n _results mfitch the criteria well.
mo = 1073, my = 1074, ande; = ey = 0.02. Here Forthe systems which satisfy the criteria, they are ensured
a1z = ay/az andaze = ag/as. For the three-body case, to be stable if the orbits of the massive planets keep un-
m1 = 0. The regions on the right side of the curves arechanged. For those unsatisfied with the criteria, they be-
ensured to be stable. come unstable obviously during the integrations.



http://exoplanet.eu/catalog/
http://exoplanet.eu/catalog/

C. Liu, SP. Gong & J.F. Li: Stability of Planetary Four-body System 144-13

5 CONCLUSIONS Donnison, J. R. 2011, MNRAS, 415, 470

) - Donnison, J. R., & Mikulskis, D. F. 1992, MNRAS, 254, 21
This work concentrates on the stability of the coplanarpgnnison, J. R., & Mikulskis D. F. 1994, MNRAS, 266, 25

planetary four-body problem by studying the topology of ponnison, J. R., & Williams, 1. P. 1983, Celestial Mechan&s,
the regions of possible motions. 123

For a planetary four-body system, two stability criteria ponnison, J. R., & Williams, I. P. 1985, MNRAS, 215, 567
are obtained. The special systems which satisfy Criteria buncan, M. J., & Lissauer, J. J. 1997, Icarus, 125, 1
and Il are definitely to be stable under the definition.Faber, P., & Quillen, A. C. 2007, MNRAS, 382, 1823
Criteria | and Il are appropriate for the case that two of theGolubev, V. G. 1967, Soviet Physics Doklady, 12, 529
planets with known orbits are more massive than the thirdsolubev, V. G. 1968a, Soviet Physics Doklady, 13, 373
one. There is a critical constant, and if the actual value ofcolubev, V. G. 1968b, Doklady. Akad. Nauk., 180, 308
¢?E is less than or equal to the critical constant, the mo-Gong, S., & Liu, C. 2016, MNRAS, 462, 547

tions of the third planet are bounded and hence the systefd@"ington. R. S. 1972, Celestial Mechanics, 6, 322
is stable Hill, G. W. 1878, American Journal of Mathematics, 1, 5

All of the combinations in the Solar System listed in Liu, C., & Gong, S. 2017, Astrophysics and Space Sciend, 36

Tablel are unsatisfied. Two of the extrasolar systems Iist-L_ 12; %G S. 2017b. MNRAS. 469. 3576
ed in Table2 are stable. The applications of the criteria U, L., & 50NG, . ’ SRS

re limited the simplification by fixing the two m iy Lukyanov, L. G., & Uralskaya, V. S. 2012, MNRAS, 421, 2316
are ed as the simplincation by g the two mass eMarchal, C., & Bozis, G. 1982, Celestial Mechanics, 26, 311

planets on determined orbits. In fact, the criteria are @Parchal, C., & Saari, D. G. 1975, Celestial Mechanics, 1% 11

plicative even if we just know the regions of motions of the qartas A. van Laerhoven. C.. & Tamayo D. 2017, Icarus, 293
massive planets. Besides, as the planetary three-body prob -,

lem has been well studied, the motions of the sub-systenpaiit A C. Laskar, J., Boué, G. 2018, AGA. 617, A93
consisting of the star and the two massive planets could bgaari p. G. 1974, SIAM J. Appl. Math., 26, 806
studied first, which makes the applications more reasonsaari, D. G. 1984, Celestial Mechanics, 33, 299
able. Saari, D. G. 1987, Celestial Mechanics, 40, 197
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