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Abstract We consider the coplanar planetary four-body problem, where three planets orbit a large star
without the cross of their orbits. The system is stable if there is no exchange or cross of orbits. Starting from
the Sundman inequality, the equation of the kinematical boundaries is derived. We discuss a reasonable
situation, where two planets with known orbits are more massive than the third one. The boundaries of
possible motions are controlled by the parameterc2E. If the actual value ofc2E is less than or equal to a
critical value(c2E)cr, then the regions of possible motions are bounded and therefore the system is stable.
The criteria obtained in special cases are applied to the Solar System and the currently known extrasolar
planetary systems. Our results are checked usingN -body integrator.
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1 INTRODUCTION

In our Solar System, eight planets orbit the Sun in the order
of Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus
and Neptune. The moons also orbit their planets in the de-
termined order. However, does this hierarchy of the Solar
System stay unchanged? This problem has attracted much
attention, and it has become a considerable challenge in
celestial mechanics. Many concepts were introduced to
solve this problem, such as Hill-type stability (Hill 1878),
Lagrange stability (Sosnitskii 1999), Sundman stability
(Lukyanov & Uralskaya 2012) and so on. In this paper, we
will focus on Hill-type stability.

Previous studies of Hill-type stability have established
several analytical criteria to judge the stability of the hi-
erarchical system. The concept of Hill-type stability dates
back to when Hill studied the Earth-Moon-Sun restricted
three-body problem (Hill 1878). Hill wondered whether
this Star-Planet-satellite system would remain in its hier-
archy. To answer the question, Hill used the Jacobi integral
of Moon to construct the boundaries of motions. As the
zero-velocity surface around Earth is closed, Moon can n-
ever escape from Earth and become a planet of Sun, which
means the system is Hill-type stable.

This concept has been extended to the general three-
body problem (Golubev 1967, 1968a,b; Saari 1974,
1984, 1987; Marchal & Saari 1975; Bozis 1976; Zare
1976, 1977; Szebehely 1977; Szebehely & Zare 1977;
Marchal & Bozis 1982; Sergysels 1986). In the general

case, it is the parameterc2E, wherec is the angular mo-
mentum andE is the energy of the system, which control-
s the topology of the zero-velocity surface. The system is
Hill-type stable if there is no exchange of bodies. There is a
critical value ofc2E corresponding to the middle collinear
equilibrium point. If the parameterc2E of the system is
less than or equal to the critical value, then the regions of
possible motions are triply connected and there could be
no exchange of bodies (i.e. the system is Hill-type stable).

The c2E condition has been extensively applied to
the hierarchical three-body system.Walker (1983b) in-
vestigated the stability of the star-planet-moon hierarchi-
cal three-body system. The hierarchical system, where
m1 ≫ m2, m3 andm1 form the inner binary withm2,
was sufficiently studied using two-body approximation-
s for the angular momentum and the energy of the sys-
tem (Donnison & Williams 1983, 1985; Donnison 1988,
2009, 2010, 2011). Petit et al.(2018) provided an inspiring
method to understand the Hill-type stability in the frame-
work of Angular Momentum Deficit. The Hill-type sta-
bility of a binary during encounters with a third star al-
so was determined by using thec2E condition (Donnison
1984b,a, 2006).

Four-body systems also widely exist in the Universe.
Gong and Liu extended the concept of Hill-type stability
to the four-body problem to study the stability of the hier-
archical system (Gong & Liu 2016; Liu & Gong 2017b,a).
In the (1-3) configuration four-body problem, where three
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bodies, constituting a subsystem, orbit a much larger body,
the system is Hill-type stable if the three-body subsystem
is Hill-type stable under the definition in the three-body
problem (Gong & Liu 2016; Liu & Gong 2017a). In the (1-
2-1) configuration four-body problem, where there is a bi-
nary subsystem, the system is Hill-type stable if there is no
exchange of bodies between the binary and the third body
(Liu & Gong 2017b). Under these definitions, if the crite-
ria for Hill-type stability are satisfied, then the hierarchy of
both four-body systems stay unchanged.

From this introduction, we know that the study of
Hill-type stability provides an analytical method to judge
whether the hierarchy of the system is stable in the three-
body problem and the four-body problem. But the Hill-
type stability criteria, derived in different models, are suf-
ficient conditions but not necessary. In the four-body prob-
lem, only two kinds of configurations have been studied. In
then(n ≥ 5)-body system, there is no definition of Hill-
type stability. Thus, empirical stability criteria and numer-
ical integration criteria have been proposed.

Walker et al., in a series of papers, outlined a method
to study the empirical stability of the hierarchicaln-body
system (Walker et al. 1980; Walker & Roy 1981, 1983a;
Walker 1983a; Walker & Roy 1983b). An expansion of the
force function of the hierarchicaln-body system was de-
rived in terms of a set of(n − 1)(n − 2) dimensionless
parametersǫki, ǫli, which are representative of the size of
the disturbances on the Keplerian orbits of various bodies.
The parameterΣi, in terms ofǫki andǫli, interpreted to be
a measure of the disturbance placed on the orbit ofmi by
other masses in the system. Generally, if eachΣi is less
than10−2, the hierarchical system is empirical stable.

The numerical work involves a wide range of simu-
lations of the system. Most of the works focused on the
three-body system and devoted to determining the bound-
ary of stability (Harrington 1972; Donnison & Mikulskis
1992, 1994). In then(n ≥ 4)-body problem, the multi-
planet systems are always unstable with respect to close
encounters if the initial semi-major axis difference,∆,
is less than 10 (Chambers et al. 1996). The time of first
close encounter is given approximately bylog t = b∆ +

c, where b and c are constants. Subsequently, many
researchers (Duncan & Lissauer 1997; Faber & Quillen
2007; Smith & Lissauer 2009; Obertas et al. 2017) fur-
ther discussed the approximate stability time for a system
which was taken to be the time when the orbits of two or
more planets crossed.Tamayo et al.(2016) also provided a
method to predict the stability of tightly packed planetary
systems using optimized machine-learning classifiers.

In this work, we study the stability of the planetary
four-body system, where three planets orbit a large star.
The mass of the star is much greater than the planets, and

the orbits of the planets do not cross at initial. The stability
of the system is defined as:

If there is no exchange or cross of orbits of the planets,
the planetary four-body system is stable.

Based on the definition, two analytical stability criteria
are derived in different situations, and then applied to the
Solar System and extrasolar systems.

2 THE COPLANAR PLANETARY FOUR BODY
MODEL

The four body system includes a massive star with three
much smaller planets orbiting in a planetary hierarchy,
which is shown in Figure1. Here,Pi denotes the position
of thei-th body, whilemi denotes the mass. The Jacobian
coordinates,ρi, i = 1, 2, 3, are defined as

ρ1 =
∣

∣

∣

−−−→
P0P1

∣

∣

∣
, ρ2 =

∣

∣

∣

−−−→
P01P2

∣

∣

∣
, ρ3 =

∣

∣

∣

−−−−→
P012P3

∣

∣

∣
, (1)

whereP01 is the barycenter ofP0 andP1, andP012 is the
barycenter ofP01 andP2.

The motions of the system are determined by the fa-
mous Sundman inequality (Sundman 1912), which is given
by

2E − 2U − c2

K
≥ 0, (2)

whereE is the total energy of the system,U is the poten-
tial energy,c is the angular momentum andK denotes the
moment of inertia. The expression of the potential energy
is

U =−G

(

m0m1

r01
+

m0m2

r02
+

m1m2

r12
+

m0m3

r03

+
m1m3

r13
+

m2m3

r23

)

,

(3)

whereG is the gravitational constant and

rij =
∣

∣

∣

−−→
PiPj

∣

∣

∣
, i < j. (4)

The moment of inertia can be given by (Gong & Liu
2016)

K =
m0m1

M1

ρ21 +
M1m2

M2

ρ22 +
M2m3

M3

ρ23, (5)

whereMi = Σi
k=0

mk, i = 0, 1, 2, 3.
The stability of the system is ensured if there is no

cross of the orbits or exchange of the order of the planets.
In other words, it requires that the regions of possible mo-
tions ofP1 are contained by the orbit ofP2 and meanwhile
the motions ofP3 are restricted outside. Considering the
reference frame rotating withP0 andP2. Their barycenter,
P02, is fixed at the origin of the coordinate system; thex

axis points fromP0 toP2; and they axis forms a right triad
with thex axis.
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Fig. 1 The coplanar planetary four body system.

Fig. 2 The four body system in the complex plane.

As

m0 ≫ mi, i = 1, 2, 3, (6)

it is reasonable to assume that

r01 ≈ ρ1, r02 ≈ ρ2, r03 ≈ ρ3. (7)

Denote the coordinates ofP1 and P3 as (x1, y1),
(x3, y3), respectively. Then, we introduce two complex
variables as

ξξξ =
x1

ρ2
+ i

y1
ρ2

, (8)

ηηη =
x3

ρ2
+ i

y3
ρ2

. (9)

Based on the geometrical relationship, we obtain











r02 = ρ2, r01 = |ξξξ| ρ2,
r03 = |ηηη| ρ2, r12 = |ξξξ − 1| ρ2,
r23 = |ηηη − 1| ρ2, r13 = |ξξξ − ηηη| ρ2.

(10)

Substitute Equations (3), (5), (7), and (10) into
Equation (2), and it becomes

2Eρ22 + 2GP (ξξξ,ηηη) ρ2 −
c2

Q (ξξξ,ηηη)
≥ 0, (11)

where

P (ξξξ,ηηη) =
m0m1

|ξξξ| +m0m2 +
m1m2

|ξξξ − 1| +
m0m3

|ηηη|
+

m1m3

|ξξξ − ηηη| +
m2m3

|ηηη − 1| ,
(12)

Q (ξξξ,ηηη) =
m0m1

M1

|ξξξ|2 + M1m2

M2

+
M2m3

M3

|ηηη|2 . (13)

Inequality (11) represents the regions of possible mo-
tions whose boundaries are determined by a quadratic e-
quation inρ2. If E ≥ 0, then there must be a body in the
system not moving on a closed orbit. This situation is not
considered in this work. So we only consider the case that
E < 0. As ρ2 > 0, the discriminant of roots must be non-
negative, which means

∆ = 4G2P 2 (ξξξ,ηηη) +
8c2E

Q (ξξξ,ηηη)
≥ 0. (14)

Inequality (14) gives the constraint of possible motion-
s ofP1 andP3, in terms of the coordinatesξξξ andηηη in the
complex plane. The schematic of the system in the com-
plex plane is shown in Figure2. If the conditions,

|ξξξ| < 1, |ηηη| > 1, (15)

always hold, the hierarchy of the system will never change
which makes the stability ensured.

The condition for equality of inequality (14) can be
rewritten as

c2E = −G2P 2 (ξξξ,ηηη)Q (ξξξ,ηηη)

2
, (16)

which means the boundaries of the regions of possible mo-
tions are controlled by the parameterc2E. In the three body
problem the parameterc2E determines the topology of the
regions of possible motions of the third body, but here it
limits the motions of bothP1 andP3.

Note that there are four dimensions because the coor-
dinatesξξξ andηηη are unknown, which makes it difficult to
draw the boundaries. Therefore, we consider two special
cases that the orbits ofP2 andP3 (orP2 andP1) are deter-
mined.

3 STABILITY CRITERIA WITH ORBITS OF TWO
PLANETS DETERMINED

In some planetary four-body system, it happens that two of
the planets are more massive than the third one and their or-
bits are considered unchanged for a long time. In this case,
it is not necessary to study the stability of the massive plan-
ets in the four-body model, because the smaller planet has
little influence on the motions of the massive planets. We
only need to study the motions of the third smaller planet
when we investigate the stability of the system. Back to our



144–4 C. Liu, S.P. Gong & J.F. Li: Stability of Planetary Four-body System

model, if the orbits of the two massive planets,P2 andP3

(orP2 andP1), are determined, the values of variableηηηηηηηηη (or
ξξξ) are also determined. Then, the regions of possible mo-
tions of another planet can be obtained by Equation (16).

3.1 Determining the Orbits of P2 and P3

If the orbits ofP2 andP3 are known and unchanged, and
there is no exchange of the orbits ofP2 andP3, thenηηη is
no longer a variable but a parameter in Equation (16), and
|ηηη| > 1. Equation (16) determines the zero velocity curves
and hence regions of possible motions ofP1 in the complex
plane. For a certain value of parametersηηη, the motions of
P1 in the complex plane are determined by the parameter
c2E, which is shown in Figure3.

In Figure3(a), the inner zero velocity curve is closed
and it does not contain the second planetP2. The motions
ofP1 are bounded and it can never exchange the orbits with
P2 or be captured byP2, which means that the system is
stable under the definition. The smaller values ofc2E make
the inner zero velocity curve smaller and hence the stability
of the system better. In Figure3(b), the inner zero velocity
curve contains the second planetP2. P1 can exchange the
orbits withP2 or be captured byP2, and in this case the
stability is uncertain. The increases of values ofc2E will
extend the inner zero velocity curve and finally, the regions
of possible motions will be simply connected.

Figure3(c) shows the critical case that the two regions
of possible motions aroundP0 andP2 turn from discon-
nected to connected. Figure3(d) is the local curve around
P2 in the critical case. The bifurcation of the curves hap-
pens at the equilibrium point to the left side ofP2. The
equilibrium points are given byZare(1977)







∆(ξξξ;ηηη) = 0,

d

dξξξ
∆(ξξξ;ηηη) = 0.

(17)

Substitution of Equation (14) into Equation (17) gives


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




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


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













c2E = −G2P 2 (ξξξ;ηηη)Q (ξξξ;ηηη)

2
,

Q

[

m0m1ξξξ

|ξξξ|3
+

m1m2(ξξξ − 1)

|ξξξ − 1|3
+

m1m3(ξξξ − ηηη)

|ξξξ − ηηη|3

]

− Pm0m1

M1

ξξξ = 0.

(18)
From the second of Equation (18), we can obtain the

coordinatesξξξe of the equilibrium point to the left side of
P2 numerically. Note that the solutions ofξξξe are associated
with the values of parameterηηη which is shown in Figure4a.
The absolute value of imaginary part ofξξξe is much less
than 1, so that in Figure4(b) we use|ξξξe| as thez-axis.

The first line of Equation (18) gives the expression of
the critical values ofc2E. The critical values, denoted as
(c2E)cr,ηηη, is associated with the equilibrium pointξξξe and
hence the values of parameterηηη. The relations between
(c2E)cr,ηηη with ηηη are shown in Figure4(c). The position-
s of P3 have an influence on the value of(c2E)cr,ηηη, and
the minimum of(c2E)cr,ηηη is denoted as

(c2E)cr = min
ηηη∈Ω

(

(c2E)cr,ηηη
)

, (19)

where Ω is the range ofηηη. For example, in Figure4
Ω = {ηηη : ηηη ∈ C, 1.6 ≤ |ηηη| ≤ 2.4}, whereC is the com-
plex field.

If the value ofc2E of the system is less than or equal to
(c2E)cr, the motions ofP1 are limited inside of the orbits
of P2, which is similar to the case shown in Figure3(a).
Besides, there is no exchange of the orbits ofP2 andP3

based on the assumptions. Thus, the stability of the system
is ensured. The stability criterion can be summarized as
follows.

Criterion I:
In the coplanar planetary four-body problem, three

planets,P1, P2, P3, orbit the star in a planetary hierarchy.
P2, P3 are more massive thanP1 and the orbits of two mas-
sive planets are determined. The system is stable if

(c2E)ac ≤ (c2E)cr, (20)

where(c2E)ac is the actual value ofc2E of the system and
(c2E)cr is given by Equation (19).

Based on the condition (6), it is possible to express
the real component ofξξξe and hence(c2E)cr in a closed
form. Denoteξξξe = xe + iye. As shown in Figure4(a),ye
is very small compared toxe and has little effect on the
value of(c2E)cr. Thus, we can setξξξ = x, wherex is real
and0 < x < 1, and then the solution of the second of
Equation (18), denoted asξξξa, is an approximation ofξξξe.

The equilibrium point lies to the left side ofP2. Denote

x = 1− µ, (21)

whereµ > 0 and usuallyµ < 0.1. Substitutingξξξ = 1 − µ

and after some simplifications, the second of Equation (18)
becomes
[

m1(1− µ)2 +m2 +m3 |ηηη|2
]

[

m0m1

(1− µ)2
− m1m2

µ2

]

−

m1(1− µ)

[

m0m1

1− µ
+m0m2 +

m1m2

µ
+

m0m3

|ηηη|

]

= 0.

(22)

Then, by multiplying both sides of Equation (22) by
(1 − µ)2µ2, it becomes a univariate equation of five de-
grees, which is

Σ5

i=0ciµ
i = 0, (23)
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where














































c5 = ǫ2 + ǫ3/ |ηηη| ,
c4 = −3ǫ2 − 3ǫ3/ |ηηη| ,
c3 = 3ǫ2 + 3ǫ3/ |ηηη| ,
c2 = (|ηηη|2 − 1/ |ηηη|)ǫ3,
c1 = 3ǫ1ǫ2 + 2ǫ22 + 2 |ηηη|2 ǫ2ǫ3,
c0 = −ǫ1ǫ2 − ǫ22 − |ηηη|2 ǫ2ǫ3,

(24)

and

ǫ1 =
m1

m0

, ǫ2 =
m2

m0

, ǫ3 =
m3

m0

. (25)

In Equation (24) only the main items in the coefficients
ci are retained while the items with relatively smaller val-
ues are omitted. Furthermore, asm0 is much larger than
other bodies, the magnitude of the coefficients can be di-
vided into different levels. The coefficients with a relative-
ly large order of magnitude arec5, c4, c3, while c0 is in the
order ofǫ2i . The order ofc1 andc2 is associated with the
parameter|ηηη|.

The Hill sphere aroundP2 is much smaller compared
to the sphere aroundP0 as m0 ≫ m2, which means
µ ≪ 1. We keep the smallest power inµ with the asso-
ciated coefficient for the group ofc5, c4, c3. Therefore, the
terms with the associated coefficientc5 andc4 are neglect-
ed. Thus Equation (23) can be reduced to

c3µ
3 + c2µ

2 + c1µ+ c0 = 0. (26)

The first and second order terms are retained as their coef-
ficientsc1 andc2 are related to the value of|ηηη|. This makes
the relative error much bigger if they are ignored.

Equation (26) is a cubic polynomial ofµ and its roots
can be solved using Cardano’s Formula. Therefore, an ap-
proximation to the solution of Equation (22) is given by

µa =
(

− q

2
+
√
∆
)1/3

+
(

− q

2
−
√
∆
)1/3

− c2
3c3

, (27)

where














p =
3c3c1 − c22

3c2
3

,

q =
27c23c0 − 9c3c2c1 + 2c32

27c3
3

,

(28)

and the discriminant of the cubic equation is

∆ = (p/3)
3
+ (q/2)

2
. (29)

Then, the first line of Equation (18) can be expanded
at the approximate solutionξξξa = 1− µa, which is

(

c2E
)

cr,ηηη
=
(

c2E
)

ξξξa
+
(

c2E
)′

ξξξa
(ξξξe − ξξξa)

+O
(

(ξξξe − ξξξa)
2
)

,
(30)

where ξξξe denotes the exact solution of the second of
Equation (18). Meanwhile,ξξξa = 1− µa is the approxima-
tion of the bifurcation point of the zero velocity surface, so
(

c2E
)′

ξξξa
≈ 0. Then Equation (30) becomes

(

c2E
)

cr,ηηη
=
(

c2E
)

ξξξa
+O

(

(ξξξe − ξξξa)
2
)

. (31)

Thus, Equation (19) can be rewritten as

(

c2E
)

cr
= −G2m5

0

2

max
ηηη∈Ω















(

ǫ1
1− µa

+ ǫ2 +
ǫ1ǫ2
µa

+
ǫ3
|ηηη|

)2

×

×
[

ǫ1(1− µa)
2 + ǫ2 + ǫ3 |ηηη|2

]















,

(32)

whereΩ is the range ofηηη.
The value of(c2E)cr monotone decreases with|ηηη| if

|ηηη| ≥
(

ǫ1(1 − µa)
2 + ǫ2

ǫ1/(1− µa) + ǫ2 + ǫ1ǫ2/µa

)1/3

. (33)

The right side of inequality (33) is less than 1, asP3 is
located outside of the orbit ofP2, i.e., |ηηη| > 1. Therefore,
denoterm = max |ηηη|, and Equation (32) becomes

(

c2E
)

cr
= −G2m5

0

2










(

ǫ1
1− µa

+ ǫ2 +
ǫ1ǫ2
µa

+
ǫ3
rm

)2

×

×
[

ǫ1(1 − µa)
2 + ǫ2 + ǫ3r

2

m

]











.

(34)

The value determined by Equation (34) also is an ap-
proximation of the exact critical value. The accuracy has
been verified with the results shown in Figure5. The rela-
tive error compared to the exact value tends to be less than
10−5 which means the approximation is also reasonable.

In Criterion I, the actual value(c2E)ac is based on the
total energyE and the corresponding angular momentum
c of the system. Using two body approximation, the energy
is (Liu & Gong 2017a):

E = −G

2

(

m0m1

a1
+

M1m2

a2
+

M2m3

a3

)

, (35)

and the corresponding angular momentum is

c =G1/2{m0m1(a1(1− e21)/M1)
1/2

+M1m2(a2(1− e22)/M2)
1/2

+M2m3(a3(1− e23)/M3)
1/2},

(36)

whereai andei (i = 1, 2, 3) are the semi-major axis and
eccentricity ofPi, respectively.
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Fig. 5 Comparison of the approximation and the exact solution of(c2E)cr. (a) Approximation and exact solution of
(c2E)cr, (b) relative error of(c2E)cr. G = 1, m0 = 1, m1 = 10−4, m2 = 10−3, m3 = 10−3, and1.6 < |ηηη| < 2.4. In
Fig. 5(a) the two surfaces are too close to distinguish. Fig.5(b) shows the relative error between the approximation and
the exact value of(c2E)cr.

Thus, we have

(c2E)ac =− G2m5
0

2
(ǫ1/α12 + ǫ2 + ǫ3/α32)×

[

ǫ1

√

α12(1− e2
1
) + ǫ2

√

1− e2
2

+ǫ3

√

α32(1 − e2
3
)

]2

,

(37)

where
αij =

ai
aj

, i, j = 1, 2, 3. (38)

Then the stability condition (20) given in Criterion I
can be rewritten as

A(1 − e21) +B
√

1− e2
1
+ C ≥ 0 , (39)

where


















































































A = (ǫ1/α12 + ǫ2 + ǫ3/α32) ǫ
2

1α12,

B = 2

[

ǫ2

√

1− e2
2
+ ǫ3

√

α32(1− e2
3
)

]

× (ǫ1/α12 + ǫ2 + ǫ3/α32) ǫ1
√
α12,

C =

[

ǫ2

√

1− e2
2
+ ǫ3

√

α32(1 − e2
3
)

]2

× (ǫ1/α12 + ǫ2 + ǫ3/α32)

−
(

ǫ1
1− µa

+ ǫ2 +
ǫ1ǫ2
µa

+
ǫ3
rm

)2

×
[

ǫ1(1− µa)
2 + ǫ2 + ǫ3r

2

m

]

.

(40)

If C ≥ 0 inequality (39) holds asA > 0 andB > 0.
If C < 0, this gives a solution of the form

e1 ≤

√

√

√

√1−
(

−B +
√
B2 − 4AC

2A

)2

. (41)

Theα12−e1 curves for different value ofα32 is shown
in Figure6. The regions on the left side of the curves are
stable. The inner planet with a small eccentricity is more
likely to be stable. The stable regions become larger if the
parameterα32 decreases. The relations betweenα32 and
α12 are shown in Figure7. The region on the left side
of the curve is ensured to be stable with the conditions
α32 > 1 andα12 < 1. The plot makes it clear that with the
increases of the parameterα32 the value ofα12 decreas-
es which means the ensured stable regions have shrunk.
Besides,rm = α32(1 + e3)/(1− e2) under the definition.

It needs to be pointed out that Sundman inequality is
a necessary condition for the possible motions so that the
stability criterion is sufficient but not necessary. We can
conclude that the stable regions in Figure6 absolutely are
stable. Nevertheless, the real stable regions may be larger
than that the criterion gives. Therefore, the trend shown in
Figure7 represents the results of the criterion but it may be
not real situations.

If m3 = 0, the problem degenerates into a three-body
case. Similarly, the stable regions in theα12− e1 plane are
shown in Figure8. The solid line is the boundary of the
three-body problem while the others are the boundaries for
differentα32 in the four-body case. In general, the third
planet reduces the stable regions of the inner planet which
makes the stability worse.

3.2 Determining the Orbits of P1 and P2

If P1 andP2 are massive and their orbits are determined
without exchange of orbits ,ξξξ is no longer a variable but
a parameter in Equation (16), and|ξξξ| < 1. Equation (16)
determines the zero velocity curves and hence regions of



144–8 C. Liu, S.P. Gong & J.F. Li: Stability of Planetary Four-body System

0.05 0.1 0.15 0.2 0.25

12

0

0.2

0.4

0.6

0.8

1

e
1

32
=3.0

32
=2.0

32
=1.7

32
=1.5

Fig. 6 The α12 − e1 curves for different values ofα32.
The parameters of the system are given asG = 1, m0 =
1, m1 = 10−4, m2 = 10−3, m3 = 10−3, e2 = 0.02,
and e3 = 0.02. Hereα12 = a1/a2 andα32 = a3/a2.
The regions on the left side of the curves are ensured to be
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m3 = 10−3, ande1 = e2 = e3 = 0.02. Hereα12 = a1/a2
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Fig. 8 Theα12 − e1 curves. The parameters of the four-
body system are given asG = 1, m0 = 1, m1 = 10−4,
m2 = 10−3, m3 = 10−3, ande1 = e2 = 0.02. Here
α12 = a1/a2 andα32 = a3/a2. For the three-body case,
m3 = 0. The regions on the left side of the curves are
ensured to be stable.

possible motions ofP3 in the complex plane. For a cer-
tain value of parametersξξξ, the motions ofP3 in the com-
plex plane are determined by the parameterc2E, which is
shown in Figure9.

In Figure9(a), the outer zero velocity curve is closed
and contains the second planetP2. P3 is located at the out-
side and can never exchange the orbits withP2 or be cap-
tured byP2, which means the system is stable under the
definition. The smaller values ofc2E will extend the out-
er zero velocity curve and make the stability of the system
better. In Figure9(b), the outer region of possible motions
contains the second planetP2. P3 can exchange the orbit-
s with P2 or be captured byP2, and the stability is not
ensured in this case. The increases of values ofc2E will
extend both the inner region and outer region of possible
motions ofP3. Finally, the regions of possible motions will
be simply connected.

Figure9(c) shows the critical case that the outer re-
gion and the region aroundP2 turn from disconnected to
connected. Figure9(d) is the local curve aroundP2 in the
critical case. The bifurcation of the curves happens at the
equilibrium point to the right side ofP2. The equilibrium
points are given byZare(1977)







∆(ηηη;ξξξ) = 0,

d

dηηη
∆(ηηη;ξξξ) = 0.

(42)

Substituting Equation (14) into Equation (42) gives


































c2E = −G2P 2 (ηηη;ξξξ)Q (ηηη;ξξξ)

2
,

Q

[

m0m3ηηη

|ηηη|3
+

m1m3(ηηη − ξξξ)

|ηηη − ξξξ|3
+

m2m3(ηηη − 1)

|ηηη − 1|3

]

− PM2m3

M3

ηηη = 0.

(43)
From the second of Equation (43), we can obtain the

coordinatesηηηe of the equilibrium point to the right side of
P2 numerically. Similarly to the work in Section3.1, the
solutions ofηηηe are associated with the values of parameter
ξξξ. The absolute value of imaginary part ofηηηe is much less
than 1.

The critical values, denoted as(c2E)cr,ξξξ, is associat-
ed with the equilibrium pointηηηe and hence the values of
parameterξξξ. The positions ofP1 have an influence on the
value of(c2E)cr,ξξξ, and the minimum of(c2E)cr,ξξξ is de-
noted as

(c2E)∗cr = min
ξξξ∈Ω∗

(

(c2E)cr,ξξξ
)

, (44)

whereΩ∗ is the value range ofξξξ.
If the value ofc2E of the system is less than or equal to

(c2E)∗cr, the motions ofP3 are limited outside of the orbits
of P2, which is similar to the case shown in Figure9(a).
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Besides, there is no exchange of the orbits ofP1 andP2

based on the assumptions. Thus, the stability of the system
is ensured.

Criterion II:
In the coplanar planetary four-body problem, three

planets,P1, P2, P3, orbit the star in a planetary hierarchy.
P1, P2 are more massive thanP3 and the orbits of two
massive planets are determined. The system is stable if

(c2E)ac ≤ (c2E)∗cr, (45)

where(c2E)ac is the actual value ofc2E of the system and
(c2E)∗cr is given by Equation (44).

Similarly, it is possible to express the real component
of ηηηe and hence(c2E)∗cr in a closed form. Denoteηηηe =

xe + iye andye is very small compared toxe. Thus, we
can setηηη = x, wherex is real andx > 1, and then the
solution of the second of Equation (43), denoted asηηηa, is
an approximation ofηηηe.

The equilibrium point lies to the right side ofP2.
Denote

x = 1 + δ, (46)

whereδ > 0 and usuallyδ < 0.1. Substitutingηηη = 1 + δ

and after some simplifications, the second of Equation (43)
becomes
[

m1 |ξξξ|2 +m2 +m3(1 + δ)2
]

[

m0m3

(1 + δ)2
+

m2m3

δ2

]

−

m3(1 + δ)

[

m0m1

|ξξξ| +m0m2 +
m2m3

δ
+

m0m3

1 + δ

]

= 0.

(47)

Then, by multiplying both sides of Equation (47) by
(1+δ)2δ2, it becomes a univariate equation of five degrees,
which is

Σ5

i=0diδ
i = 0 , (48)

where














































d5 = −ǫ2 − ǫ1/ |ξξξ| ,
d4 = −3ǫ2 − 3ǫ1/ |ξξξ| ,
d3 = −3ǫ2 − 3ǫ1/ |ξξξ| ,
d2 = (|ξξξ|2 − 1/ |ξξξ|)ǫ1,
d1 = 3ǫ2ǫ3 + 2ǫ22 + 2 |ξξξ|2 ǫ1ǫ2,
d0 = ǫ2ǫ3 + ǫ22 + |ξξξ|2 ǫ1ǫ2,

(49)

and
ǫ1 =

m1

m0

, ǫ2 =
m2

m0

, ǫ3 =
m3

m0

. (50)

In Equation (49) only the main items in the coefficients
di are retained while the items with relatively smaller value
are omitted. Furthermore, asm0 is much larger than other
bodies, the magnitude of the coefficients can be divided
into different levels. The coefficients with a relatively large
order of magnitude ared5, d4, d3. The order ofc2 , c1 and

c0 are associated with the parameter|ξξξ|. Besides, the Hill
sphere aroundP2 is much smaller compared to the sphere
aroundP0 as the large mass ofP0, which meansδ ≪ 1. We
keep the smallest power inδ with the associated coefficient
for the group ofd5, d4, d3. Therefore, the terms with the
associated coefficient ofd5 andd4 are neglected.

Thus, Equation (48) can be reduced to

d3δ
3 + d2δ

2 + d1δ + d0 = 0. (51)

Here the first and second order terms are retained as the co-
efficientsd1 andd2 are related to the value of|ξξξ|. It makes
the relative error much bigger if these two terms are ig-
nored.

Equation (51) is a cubic polynomial ofδ and its roots
can also be solved using Cardano’s Formula. Therefore, an
approximation to the solution of Equation (47) is given by

δa =

(

− t

2
+
√

∆2

)1/3

+

(

− t

2
−
√

∆2

)1/3

− d2
3d3

,

(52)

where














s =
3d3d1 − d22

3d2
3

,

t =
27d23d0 − 9d3d2d1 + 2d32

27d3
3

,

(53)

and the discriminant of the cubic equation is

∆2 = (s/3)
3
+ (t/2)

2
. (54)

Then, the first line of Equation (43) can be expanded
at the approximate solutionηηηa = 1 + δa, which is

(

c2E
)∗

cr,ξξξ
=
(

c2E
)∗

ηηηa

+
[

(

c2E
)∗

ηηηa

]′

(ηηηe − ηηηa)

+O
(

(ηηηe − ηηηa)
2
)

,
(55)

where ηηηe denotes the exact solution of the second of
Equation (43). Meanwhile,ηηηa = 1 + δa is the approxima-
tion of the bifurcation point of the zero velocity surface, so
[

(

c2E
)∗

ηηηa

]′

≈ 0. Then Equation (55) becomes

(

c2E
)∗

cr,ξξξ
=
(

c2E
)∗

ηηηa

+O
(

(ηηηe − ηηηa)
2
)

. (56)

Thus, Equation (44) can be rewritten as

(

c2E
)∗

cr
= −G2m5

0

2

× max
ξξξ∈Ω∗















(

ǫ1
|ξξξ| + ǫ2 +

ǫ2ǫ3
δa

+
ǫ3

1 + δa

)2

×

×
[

ǫ1 |ξξξ|2 + ǫ2 + ǫ3(1 + δa)
2

]















,

(57)

whereΩ∗ is the range ofξξξ.
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Fig. 9 Zero velocity curves ofP3. (a)c2E = −4.44× 10−9, (b) c2E = −4.41× 10−9, (c) c2E = −4.4299380× 10−9,
(d) c2E = −4.4299380× 10−9, aroundP3. G = 1, m0 = 1, m1 = m2 = 9.55206 × 10−4, m3 = 9.55206 × 10−5,
ξξξ = 0.5 + 0.5i. The values of parameterc2E are given in each subfigure.

The value of(c2E)∗cr monotonically increases with|ξξξ|
when

|ηηη| ≤
(

ǫ2 + ǫ3(1 + δa)
2

ǫ2 + ǫ3/(1 + δa) + ǫ2ǫ3/δa

)1/3

. (58)

The right side of inequality (58) is greater than 1 as
three mass parameters are much smaller thanδa. As P1

locates inside of the orbit ofP2, |ξξξ| < 1. Therefore, denote
ρm = min |ξξξ|, and Equation (57) becomes

(

c2E
)∗

cr
= −G2m5

0

2










(

ǫ1
ρm

+ ǫ2 +
ǫ2ǫ3
δa

+
ǫ3

1 + δa

)2

×

×
[

ǫ1ρ
2

m + ǫ2 + ǫ3(1 + δa)
2
]











.

(59)

The value determined by Equation (59) also is an ap-
proximation of the exact critical value. The accuracy has
been verified with the results shown in Figure10. The rel-
ative error compared to the exact value tends to be less than
0.005 which means the approximation is also reasonable.

In Criterion II, the actual value(c2E)ac can also be ex-
pressed by Equation (37). Substitutions of Equations (37)
and (59) into the stability condition (45) give

D(1 − e23) + E
√

1− e2
3
+ F ≥ 0 , (60)

where


















































































D =(ǫ1/α12 + ǫ2 + ǫ3/α32) ǫ
2

3α32 ,

E =2

[

ǫ1

√

α12(1− e2
1
) + ǫ2

√

1− e2
2

]

× (ǫ1/α12 + ǫ2 + ǫ3/α32) ǫ3
√
α32 ,

F =

[

ǫ1

√

α12(1− e2
1
) + ǫ2

√

1− e2
2

]2

× (ǫ1/α12 + ǫ2 + ǫ3/α32)

−
(

ǫ1
ρm

+ ǫ2 +
ǫ2ǫ3
δa

+
ǫ3

1 + δa

)2

×
[

ǫ1ρ
2

m + ǫ2 + ǫ3(1 + δa)
2
]

.

(61)

If F ≥ 0 inequality (60) holds asD > 0 andE > 0.
If F < 0, this gives a solution of the form

e3 ≤

√

√

√

√1−
(

−E +
√
E2 − 4DF

2D

)2

. (62)

The α32 − e3 curves for different values ofα12 are
shown in Figure11. The regions below the curves are sta-
ble. The outer planet with a small eccentricity is more like-
ly to be stable. The stable regions increase if the parame-
ter α12 increases. The relations betweenα12 andα32 are
shown in Figure12. The region on the upper side of the
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Fig. 10 Comparison of the approximation and the exact solution of(c2E)∗cr. (a) Approximation and exact solution of
(c2E)∗cr, (b) relative error of(c2E)∗cr. G = 1, m0 = 1, m1 = 10−3, m2 = 10−3, m3 = 10−4, and0.1 < |ξξξ| < 0.5. In
Fig. 10(a) the two surfaces are too close to distinguish. Fig.10(b) shows the relative error between the approximation and
the exact value of(c2E)∗cr.

curve is ensured to be stable with the conditionsα32 > 1

andα12 < 1. The plot makes it clear that with the increas-
es of the parameterα12 the value ofα32 decreases which
means the ensured stable regions have increased.

This is the same as saying that the stability crite-
rion is sufficient but not necessary. We can conclude
that the stable regions in Figure11 absolutely are stable.
Nevertheless, the real stable regions may be larger than that
the criterion gives. Therefore, the trend shown in Figure12
represents the results of the criterion but it may be not real
situations.

If m1 = 0, the problem degenerates into a three-body
case. Similarly, the stable regions in theα32 − e3 plane are
shown in Figure13. The solid line is the boundary of the
three-body problem while the others are the boundaries for
differentα12 in the four-body case. In general, the inner
planet reduces the stable regions of the outer planet which
makes the stability worse.

4 APPLICATION TO THE SOLAR SYSTEM AND
EXTRASOLAR PLANETARY SYSTEMS

The stability criteria are applied to the Solar System, as the
orbits of the planets in the Solar System are approximately
coplanar, and there is no cross of planets’ orbits. Therefore,
the Solar System can be divided into different planetary
four-body systems.

As Jupiter and Saturn are more massive than the
other planets, it is reasonable that all the combination-
s of the four-body system include Jupiter and Saturn.
For a Sun-Planet-Jupiter-Saturn (or Sun-Jupiter-Saturn-
Planet) system, using the criterion obtained in Section3.1
(or Sect.3.2), the results are shown in Table1.

Table 1 Stability of the Planetary Four-body Systems in
the Solar System

P1 P2 P3 Criterion I or II

Mercury Jupiter Saturn Unsatisfied
Venus Jupiter Saturn Unsatisfied
Earth Jupiter Saturn Unsatisfied
Mars Jupiter Saturn Unsatisfied
Jupiter Saturn Uranus Unsatisfied
Jupiter Saturn Neptune Unsatisfied
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Fig. 11 The α32 − e3 curves for different value ofα12.
The parameters of the system are given asG = 1, m0 = 1,
m1 = 10−3, m2 = 10−3, m3 = 10−4, e1 = 0.02, and
e2 = 0.02. Hereα12 = a1/a2 andα32 = a3/a2. The
regions below the curves are ensured to be stable.

All of the systems listed in Table1 do not satisfy
Criterion I or II. The system still could be stable as the
criterion is a sufficient condition but not necessary.

Now we will consider the possible application-
s of the stability to extrasolar systems. There are 672
multiple-planet systems listed at the websitehttp://
exoplanet.eu/catalog/. Among them, five four-

http://exoplanet.eu/catalog/
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Table 2 Stability of the Five Extrasolar Four-body Systems

Star Planet Mp ap ep Mstar (c2E)ac (c2E)cr Criterion I Integration
(MJup) (AU) (MSun) or (c2E)∗

cr
or II Results

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

GJ 676 A d 0.014 0.0413 0.1500
GJ 676 A GJ 676 A b 6.7 1.8120 0.3230 0.7251 –9.1502e-06 –2.00563e-05 unsatisfied unstable

GJ 676 A c 6.8 6.6000 0.2000
GJ 876 d 0.022 0.0208 0.0810

GJ 876 GJ 876 c 0.856 0.1296 0.0020 0.3193 –4.61805e-07 –3.45491e-07 satisfied stable
GJ 876 b 1.94 0.2083 0.0000

HD 125612 c 0.058 0.0500 0.2700
HD 125612 HD 125612 b 3 1.3700 0.4600 0.9660 –1.70786e-06 –3.04841e-06 unsatisfied unstable

HD 125612 d 7.2 4.2000 0.2800
PSR 1257 12 b 7e-05 0.1900 0.0000

PSR 1257 12 PSR 1257 12 c 0.013 0.3600 0.0186 1.4337 –2.67709e-15 –2.476e-15 satisfied stable
PSR 1257 12 d 0.012 0.4600 0.0252

ups And b 0.62 0.0590 0.0119
ups And ups And c 9.1 0.8610 0.2445 1.2851 –2.66322e-05 –2.72339e-05 unsatisfied unstable

ups And d 23.6 2.5500 0.3160

The four-body systems consist of a star and three planets, which are shown in Cols (1)–(2). The mass of the planet in Col (3)is shown in
the unit of Jupiter mass, while in Col. (6) the mass of the staris in the unit of Sun mass.ap andep in Cols. (4)–(5) are semi-major axis and
eccentricity of the planet, respectively. The mass and the orbital parameters of the systems are obtained by the websitehttp://exoplanet.

eu/catalog/. The last column lists the numerical integration results byusing theN -body integrator.
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Fig. 12 Theα12−α32 curve. The parameters of the system
are given asG = 1, m0 = 1, m1 = 10−3, m2 = 10−3,
m3 = 10−4, ande1 = e2 = e3 = 0.02. Hereα12 = a1/a2
andα32 = a3/a2. The regions on the upper side of the
curve are ensured to be stable with the conditionsα32 > 1
andα12 < 1.
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Fig. 13 Theα32 − e3 curves. The parameters of the four-
body system are given asG = 1, m0 = 1, m1 = 10−3,
m2 = 10−3, m3 = 10−4, ande1 = e2 = 0.02. Here
α12 = a1/a2 andα32 = a3/a2. For the three-body case,
m1 = 0. The regions on the right side of the curves are
ensured to be stable.

body systems satisfy the conditions that three planets orbit
the star without orbits crossing and two of the planets in
the systems are 10 times massive than the third one.

Criterion I and II are applied to these systems and the
results are shown in Table2. Criterion I (or II) determines
the value of(c2E)cr (or (c2E)∗cr). The expression of the
actual value(c2E)ac is given by Equation (37).

Two of the planetary systems, GJ 876d,c,b,
PSR 1257 12b,c,d, listed in Table2 satisfy the Criterion I
or II, which means they are stable. The motions of the
smallest planet are bounded by the orbit of its massive
planetary neighbor. The other systems where the criteria
are unsatisfied have the possibility to change their order of
planetary orbits.

The results are checked by the directN -body inte-
grations. The systems are integrated with the Mercury
integrator package (Chambers & Migliorini 1997) using
the Bulirsch-Stoer integrator (Stoer & Bulirsch 1980). We
adopt a timestep as0.02 times of the period of the inner
planet. The integrations continue until the orbits of two or
more planets cross or106 inner orbital periods elapse. A
closer encounter is defined as the distance between any
pair of planets become less than the sum of the Hill ra-
dius of the two planets, while the Hill radius is given by
RH = a (µ/3)

1/3, wherea is the semi-major axis andµ
is the dimensionless mass. As shown in the last column
of Table2, the integration results match the criteria well.
For the systems which satisfy the criteria, they are ensured
to be stable if the orbits of the massive planets keep un-
changed. For those unsatisfied with the criteria, they be-
come unstable obviously during the integrations.

http://exoplanet.eu/catalog/
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5 CONCLUSIONS

This work concentrates on the stability of the coplanar
planetary four-body problem by studying the topology of
the regions of possible motions.

For a planetary four-body system, two stability criteria
are obtained. The special systems which satisfy Criteria I
and II are definitely to be stable under the definition.
Criteria I and II are appropriate for the case that two of the
planets with known orbits are more massive than the third
one. There is a critical constant, and if the actual value of
c2E is less than or equal to the critical constant, the mo-
tions of the third planet are bounded and hence the system
is stable.

All of the combinations in the Solar System listed in
Table1 are unsatisfied. Two of the extrasolar systems list-
ed in Table2 are stable. The applications of the criteria
are limited as the simplification by fixing the two massive
planets on determined orbits. In fact, the criteria are ap-
plicative even if we just know the regions of motions of the
massive planets. Besides, as the planetary three-body prob-
lem has been well studied, the motions of the sub-system
consisting of the star and the two massive planets could be
studied first, which makes the applications more reason-
able.
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Saari, D. G. 1974, SIAM J. Appl. Math., 26, 806
Saari, D. G. 1984, Celestial Mechanics, 33, 299
Saari, D. G. 1987, Celestial Mechanics, 40, 197
Sergysels, R. 1986, Celestial Mechanics, 38, 207
Smith A. W., Lissauer J. J. 2009, Icarus, 201, 381
Sosnitskii S. P. 1999, Astronomical Journal, 117, 3054
Stoer, J., & Bulirsch, R. 1980, Introduction to Numerical

Analysis (New York: Springer-Verlag)
Sundman, K. F. 1912, Acta Mathematica, 36, 105
Szebehely, V. 1977, Celestial Mechanics, 15, 107
Szebehely, V., & Zare, K. 1977, Astronomy Astrophysics, 58,

145
Tamayo, D., et al. 2016, The Astrophysical Journal Letters,832,

L22
Walker, I. W. 1983a, Celestial Mechanics, 29, 149
Walker, I. W. 1983b, Celestial Mechanics, 29, 215
Walker, I. W., & Roy, A. E. 1981, Celestial Mechanics, 24, 195
Walker, I. W., & Roy, A. E. 1983a, Celestial Mechanics, 29, 117
Walker, I. W., & Roy, A. E. 1983b, Celestial Mechanics, 29, 267
Walker, I. W., Emslie, A. G., & Roy, A. E. 1980, Celestial

Mechanics, 22, 371
Zare, K. 1976, Celestial Mechanics, 14, 73
Zare, K. 1977, Celestial Mechanics, 16, 35


	Introduction
	The Coplanar Planetary Four Body Model
	Stability Criteria with orbits of two planets determined
	Determining the Orbits of P2 and P3
	Determining the Orbits of P1 and P2

	Application to the Solar System and Extrasolar Planetary Systems
	Conclusions

