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Abstract Fast Fourier transform based estimators are formulatedéasuring momentum power spectra,
including the auto power spectra of the momentum, the momnemtivergence, and the cross spectrum
of density fluctuation and momentum divergence. Algorithusisig the third order Bettle-Lemarié scaling
function to assign discrete objects to regular grids fot Famirier transform are proposed to clean alias
effects. Numerical experiments prove that the implem@natan achieve sub-percent precision till close
to the Nyquist frequency. The impact of removing bulk flow ba estimation of momentum power spectra
is derived theoretically and verified numerically. Subtirag bulk flow has little effects at large scales but
might induce meaningful differences in nonlinear reginmel probably it is not necessary to subtract bulk
flow for samples which peculiar velocities are exact or sigfitty accurate. Momentum power spectra of
dark matter samples from N-body simulation are measuredisedssed. As expected, the prediction of the
one loop Eulerian perturbation theory agrees with simaiatinly slightly better than the linear theory at
z = 0, but can be applied to higher redshift with improved accyrifeasurements of simulation data and
the one loop Eulerian theory both reveal that the momentuchd@ntains strong rotational part, and there
is a large stochastic component in the divergence of momemthich is not correlated with the density
field. The three kinds of momentum power spectra have thairavaracteristics.

Key words: large scale structure of Universe — cosmology: theory — wdshnumerical — methods:
statistical

1 INTRODUCTION ing with momentum is that there is not such an an-
noying uneven sampling problem as in the analysis of
The cosmic momentum, as a product of the dimensionlegge volume-weighted peculiar velocity field. If it is the
density and the peculiar velocity, is essentially the corevolume-weighted velocity field to be explored, special al-
of velocity correlation functions (e.gGorski etal. 1989  gorithms have to be devised to resample the peculiar veloc-
Wang et al. 201Band the kinematic Sunyaev-Zel'dovich ity field, such as algorithms implemented with Delaunay or
effect (kSz, e.g.Ma & Fry 2002 Park et al. 2016 There  Voronoi tessellation (e.gBernardeau & van de Weygaert
is also a strong link between the divergence of cosmic mo1996 Pueblas & Scoccimarro 2009 or interpolation
mentum and the Rees-Sciama effect (&Sgljak 199¢and  based on various kernel functions (e.G.plombi et al.
the integrated Sachs-Wolfe effect (ISW, egmith etal. 2007 Zheng et al. 201.3Yu et al. 2013. Even armed with
2009. Much attention has been paid to realize the potentialhese tools, accuracy control is yet very challenging to the
of momentum power spectrum in cosmology, including arestimation of statistics of volume-limited velocity fields
attempt to develop theoretical models (eumura etal. which actually varies by case. In contrast, the algorithm
2014 Carrasco et al. 2014%8enatore & Zaldarriaga 2015 of measuring momentum spectrum effectively is similar
Sugiyama et al. 20)6nd practices of probing the phys- to that of the density power spectrum, as already shown
ical Universe Park 2000 Park & Park 2006 Qinetal. by Park(2000, Park & Park(2006 and Howlett (2019.
2019. In these works, estimators for the momentum power spec-

. . . trum accounting for shot noises and proper weights, are
To facilitate research on cosmic momentum, reliable 9 prop 9

) . groposed and tested, setting up a solid basis for relevant
and accurate algorithms to estimate power spectrumofcos- ." . . .
. o . applications. However, if fast Fourier transform (hereaft
mic momentum is pivotal. One of the benefit of work-
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FFT) is adopted to realize these algorithms, the alias effeavhere the supscript refers to the complex conjugaig;
could be significantJing 2009, where treatment is absent is one of the three unit coordinate vectors defining a three-
in current procedures. dimensional Cartesian coordinate system.

Meanwhile it is worth addressing that the momentum  Shot noise can be derived followirigeebles(198Q
and the momentum divergence are different. The cosmisect. 41). The sample spake is divided into infinitesimal
momentum is mainly related to applications about correlaeells of volumedVy ; in which number of objects; = 1
tion functions of peculiar velocities, while the momentumor 0, and ifn; = 1 there is measurement of peculiar veloc-
divergence is connected to cosmological probes about thigy v;. Let}~;n; = N andn = (n;) = N/Vs,
temporal evolution of gravitational potential. The momen- 1 _
tum field is composed of its potential and curl components, p(k) = N Z njv]-e““"‘f , 4)
mathematically it is quite simple to take the spatial deriva j
tive of the momentum field to generate its divergence, bujnd
numerically measuring the power spectrum of momentum

divergence would require a different estimator which is not(P(k1) - P N3 Z ((njv;) - (npwy))ermi—thare
explicitly presented. Thereof the main purpose of this re- 3.b.57#E

port is to present a formal derivation and description of + i <n2v be i(ki—ka)T;
FFT-based estimators of the auto power spectra of the cos- N2 ;

mic momentum field, momentum divergence and the cross (5)

spectrum of density and momentum divergence, with arsincen; = 1 or0, nf =n,; = 1 or0, replacing the ensem-
appropriate prescription for cleaning shot noise and aliasble average with spatial averages yields
ing effect. As itis straightforward to apply these algomith (n2v2) = Z /N =6
s to non-uniform samples, estimators presented here are*' 777/ -, J B 5
about ideal samples free of effects of selection functions, P ©6)
=2

geometric masking and etc. ((njv;) - (neve))jze = n°Ep(ra — r1)dVs ;dVs,

In the next section, we will present algorithms for the where¢, = (p(r1) - p(r2)) is the scalar two-point corre-

estimation of power spectra of momentum. Sect®i$  |ation function of cosmic momentum. The raw power spec-
dedicated to investigation on effects of subtracting bulkrum turns to be as simple as

flow, momentum spectra of dark matter samples of a N- pe
body simulation are explored in SectidnThe last section Pp(k) = P,(k) + 2 (7)

is of discussion and conclusion. N
The aliasing effect is formulated with the approach
2 ESTIMATORS of Jing (2005. The sampling function corresponding to

grids for FFT is a sum of Dirac functiond(r/AL) =
2.1 Auto Power Spectrum of the Cosmic Momentum > ;6p(r/AL — J) in which J is an integer vector and
AL is the grid spacing. Let the window function used to
assign objects to grid points B&, the raw momentum be-
comesp(r) =1 (r/AL) [ p(r1)W (ry — r)dr; so that

At a given position- , the cosmic momentum of dark mat-
ter or structures like halos or galaxies, is defined by

p(r) = (1+6(r))v(r) 1) 1 .
k)= — /H (AL) anij(rj —r)e®Tdr
with ¢ being the number density contrast anthe peculiar N L J
velocity. For a sample of volum¥s, in Fourier space at (8)
wave vectork the momentum can be written in analoguesand the power spectrum would be constructed through
to a vector, s 1
(k) : / (r)ed P T
plk) = — [ p(r)e r
i ] G e
1 ke (2)
= VS (pél (’I’), Pés (7"), Pes (7’))6 dr
X ((njv;) - (neve) YW (r; —r1)W(re — r2)
= (pe, (k), pe, (k), e, (K)) > ((nyv, j
(pe, (K), e, (), pe, (K)) =

the momentum power spectrum is constructed by

3
p k = 6] [N (3) J
(k) = (p(k) ; pe, (k)ps, (K)), ©
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Since not zero, the shot noise will be directional dependent. To
i/H ik~7‘dr see the point, lev’ = v — vy, 4/ = k- v'/(kv') and
E/; ) (10) Mo =k wvo/(kwvy), such that
T

= Z op(k —2knJ)

2
(W) = (W) i} = 62 (W) +odud,  (14)

with ky = 7/AL being the Nyquist frequency, there is i, which 62, = Z;\le(vj — v3)?/N. Obviously the shot

the raw momentum power spectrum noise varies with,, and the strength of such dependence
Pp(k:) = P,(k)W2(k) is determined .by amplitude af,. Of course, in i§0tropi9
) Py, (k), thek directional dependence of shot noise vanish-
+ > W3k + 2knJ)Py(k + 2kn J) es andv?2) = o2/3.
J#0 (11)
n %3 Z W2(k + 2knJ) 2.3 Cross Spectrum of the Density and the

Momentum Divergence

which is very similar to the formula of matter power spec-|t js fairly trivial to construct the estimator for the cross

trum in Jing (2009 except for a factors topped on  gpectrum, in analogues to the last subsection,
the shot noise term, correction methodsJaig (2005,

Cuietal. (2008, Yang etal. (2009 and Colombi et al. ngp(kz) = Pso, (k:)WQ(k;)
(2009 all can be readily applied.

> Wk + 2knJ)

Haf
2.2 Auto Power Spectrum of the Momentum J#0 (15)
Divergence (0(k+2knJ) [k -p*(k + 2knJT))])
ik (v
The momentum divergence, = -V - p(r)/(Haf) 2 Z W2(k + 2knJ) .

. . : _ Haf N
in Fourier space i9,(k) = ik - p(k)/(Haf), f =

dlog D(a)/dloga and D(a) is the linear density growth
factor at redshift: = 1/a — 1. Practically, divergence
of momentum field is produced through(k) = ik -
p(k)/(Haf), such that

It is easy to see thawu) = wvpup, an interesting thing is

that non-zero bulk flow induces shot noise in the imaginary

part of the cross spectrum, and such shot noise will be zero

in the isotropic power spectruiisg, (k).

By, (k) = (0,0;) _ _ _
1 (12) 2.4 Testwith N-body Simulation Data

= (k- p(k)] [k - p"(K)]) -
(Haf)? 2.4.1 Algorithm setup and data preparation

Inserting Equation§) results in ) )
FFT is computed with the FFTW3 package

Py, (k) = Py, (k)W? (k) (Frigo & Johnson 2005 Assignment of objects to
9 FFT grids is implemented with the third-order orthogo-
t Hap? (Ha f) J%:OW (ke + 2kn ) nalized Battle-Lemarié spline functioiYgng et al. 2003
(13) practice shows that the adoption of the fifth-order B-spline
([l - p(k + 2kn )]k - P (K + 2kn J)]) function brings up minute differences less than 1%.
k2 (v?u?) 2 Samples used for our experiments are produced from
+ (Haf)? ; Wik + 2k J) data sets of a N-body simulation. The simulation is of pure
dark matter and realized with tligadget-2 code Springel
where(v?p?) = Z_j U?M?/N with pi; = k- v;/(kv;). 2005, which assumes a cold dark matter {CDM)
The shot noise in Equatioi8) deserves more atten- cosmology model with parametefs,, = 0.26, Q, =
tion. For a fair sample, such as a full simulation data, thq)_044, Qr = 0.74,h = 0.71, 05 = 0.8, ny = 1. The
condition}, v; = 0 tells that) S v;u; = 0. By virtue of  \yn consists ofV = 10243 particles within a periodic cu-
isotropy and homogeneity, velocity amplitudeshall not  pic pox of sizeLnoe = 1000 b~ Mpc, each particle has

be correlated with its directio, thus(v*1*) = 67(1”),  mass of6.72 x 10'° h~' M. Samples employed in this
and1/3 could be a convenient approximation(ie’). But  \york include

for samples constructed from observation of a finite space
of the Universe, or extracted as subsamples of the ful-1. outputs of the simulation at picked redshifts, mainly
| simulation, the bulk flowv, = 7, v;/N is generally the one at = 0 and the initial condition at = 80;
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2. ten random samples generated from the- 0 out- — atscales: < 0.7k precision of 0.5% can be ensured,
put by randomly relocating dark matter particles while ~ while at scale 06.5k v, the relative differences are less
preserving their velocities both in amplitude and direc-  than 0.2%;
tion. — even wherk is very closek y relative differences are

3. two sets of 64 subsamples:at 0 andz = 80 respec- generally less than 5%.
tively, constructed by evenly splitting the full sample
volume into4 x 4 x 4 non-overlapping cubes of size As areference, if NGP is used for object assignment, scales
250 Mpc h—1. where difference is larger than 1% ate).12k for these

power spectra, the aliasing damping is much more severe.

2.4.2 Shot noise

3 IMPACT OF SUBTRACTING BULK FLOW
Models of shot noise are checked with the ten random sam-

ples atz = 0. The randomization procedure erase any nontn the previous section the influence of non-zero bulk
trivial correlations among density and velocity, their rawflow on the shot noises of the momentum power spectra
power spectra are simply signals of shot noise. Meanwhil&as been analyzed. However effects of non-zero bulk flow
as only particle positions are changed,and (v?1?) are  could be more than the simple modulation to shot nois-
kept invariant, andy, = 0. In the experiment, the nearest es.Park & Park(2009 noticed the problem, andowlett

grid point (NGP) method is used to assign objects to FFT2019 carried out extensively numerical exploration with
grids, as for uniformly random samples NGP method ismock catalogues, they conjectured that removing the
exact Jing 2003. We did compare results using the third bulk flow from measured peculiar velocities brings little
order Bettle-Lemarié scaling function, in general the rechanges to power spectra, but are reminded that in practi-
sulting random fluctuation is less than 1%, whilst the syscal works it should be tested case by case. In this section
tematic difference is around 0.4% whérbecomes close we will mainly focus on the changes after subtracting bulk
to Nyquist frequency. flow from peculiar velocities to the estimated momentum

Comparison between measurements and models are power spectra.
resented in Figurd, it clearly indicates that performance
of models is satisfactory, except that fluctuation of mea3.1 Momentum
sured shot noise in cross-spectrum is larger than others. In
order to test effects of bulk flow on shot noise, an artificialSince aliasing can be well corrected in our algorithms, in
bulk flow of v, = 341 km s~ is added to the random sam- the following derivation we will not include aliasing effisc
ples along particular direction, and then power spectra ar@ny longer. In the case of the bulk flaw = >~ v;/N #
measured for comparison. By Figuteit is clear that the 0. itis always possible to define a new velocity by remov-

shot noise models are indeed working very well. ing the bulk flowv” = v—v, to generate a new momentum
fieldp’ = p—(1+9)v;, with zero bulk flow. The raw power

spectrum of the new momentum field is

2.4.3 Aliasing
L . . ~ 1 .
Aliasing effects in the power spectra are checked with the Py (k) =+ > ((nv}) - (ngwy))et ri=ro)
dark matter sample at = 0 of N-body simulation, the 7#L (16)
third order Bettle-Lemarié scaling function is adopted to 52,
assign objects upon FFT grids. As there istnge power + N’

spectra as a template for comparison, power spectra are es-

timated with different resolutions of FFT grids, then mea-Where shot noise is related to Equatiéhthrough
surements of low FFT resolutions are compared with those

of higher FFT resolutions (Fig). It appears that the per- Gr=> U'?/N +op =60+ (17)
formance of the algorithm is fairly satisfactory, the con- Jimj=1

sistency indicates that fdr scales below the Nyquist fre-
guencyky the aliasing damping to the power spectrum isb
tiny: y

Correlation functions in Equation§)(and (L6) are linked

I /
. L nN;V; - NpVy); = (N;V; -NpVy);
— the k scale above which deviations are larger than 1% (ny; - neve)je = (nj0j - neve)ie

are about).87ky, 0.82ky, 0.74ky and 0.85ky for + vp(ngne(vin; +vynp))jze  (18)
P,, Py,, Pse, and P; respectively; + 'U§<njné>j7éé ,
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Fig. 1 Raw power spectra of random samples, displayed as test ofigise models. Symbols are averages of ten random
samples, error bars are their standard deviatilbnss are the expectation of shot noise modelgis the angle between
bulk flow v, and wave vectok. Random samples with non-zero bulk flow are created by addilogy of v, = 341 km s~!
along particular direction.

in which v} = \v;| v, = |vp| andn; = v - vy /(vjvy). 3.2 Momentum Divergence
Note that there is the correspondence
The quantity implemented in the algorithm to estimate s-

<(nj,vj) (newe))j2e <> Pylk), tatistics of momentum divergence is constructed by

)i

<(n] (néve»J ¢ < Py (k) (19)
)
)i

(nme (V| + vire)) s < Popy (k) + Pop (—k) i ey~ L ik e 01
er() p()_N;H—a‘f.(njvj)e : ( )

<n]nl )
where P(k) = (5(k)5"(k)), Pay, (k) = (3(k)py' (k),
py(k) is the Fourier transform gfy(r) = pv’ - ve/ve = If v, # 0, with p, = k - v, /(kwy), there are
pv'n’, finally there is the relation

Py(k) =Py (k) + vy [Pép/ (k) + P}, (k) ([ik - (njv;)][=ik - (neve)]) e
b ” @0) = (ike - ([ —ik - (nev))])
+v2P(k) . 753 ez
+ ikvpy (nj[—ik - (nevy)] — ik - (njv})Ine) j20
In a practical application, and P, can be estimated vi- + k2vgui(ngne) jee(ng[—ik - (neve)]) jre
a Equation 12), P(k) can be measured through(k) = = (nj[—ik - (nevy)])jze — ikvppn(njng) jzi -

P(k)+1/N, while Py, = Py, (22)
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Fig. 2 Aliasing effects in power spectra of dark matterat 0 which object assignment upon FFT grids is realized with
the third order Bettle-Lemarié scaling functiaNgrr is the number of grids used for FFRy is the Nyquist frequency
of the measurement of lower FFT resolution in each pair ofgrapectra for comparison.

Subsequently if we let the divergence of momentum aftep, = o,, in an arbitrary selected direction is added to the
subtractingw;, be#’, we obtain the following equations,  dark matter sample at = 0 of the simulation to form a

" sample with non-zero bulk flow, then power spectra are es-
b

Py, (k) = Poy (k) + ik Taf [Pse; (k) — Pgﬁ% (k)] timated to check the resulting influence. Summary of our
) experiments is shown in FiguB Equations 20) and @3)
T k2l < Up ) P(k), are confirmed with excellent accuracy (better than 0.03%),
Haf even the statistical fluctuations due to the limited number
Pso, (k) = Psg, (k) — ik ;;fp(k) ) of modes at large scales are recovered perfectly.
(23) It is apparent that the modulation depends on the
Py, Py, Pso, and Py can be measured by amplitude ofv,, major contribution comes from? P, at
Equations {3) and (L5) respectively. large scales?, ~ (Haf)*k—2P, the relative difference
P,/Py — 1is roughlyk?v?/(Haf)* ~ 4(vy/100)%k? at
3.3 Numerical Experiments z ~ 0. If sample volume is large, the chance to have a

) large bulk flow is relatively small, it is expected thAf
It is well-known that bulk flow of a sample follows 4 |arge scales will not change significantly by subtracting

Maxwellian distribution the bulk flow, but at small scales one might have to consid-
5 /3 \3/?2 2 er the difference, as shown in the left panel of Figdre
P (vp)duvy = g <U—2) v} exp <—2> due, An important issue one has to bear in mind, what is p-
Vp Uy

(24) resented in Figurd is of dark matter. If at large scales
k <~ 0.1 h Mpc™1, peculiar velocities of biased objects
i vagdgk/@ﬂg Ws is the window function defining such as gala?des are only slightly biased with respec_t to the
the sample space in Fourier space (8ghcall et al. 1994 dark matter, i.e.b, ~ 1 (Chen etal. 2018 the correction

to the momentum power spectra of galaxies after remov-

Lietal. 2013. Usually th I i fficientl
‘eta 2 sually the sample space 1S sumciently ing bulk flow will be actually boosted by the square of the
large to approximate the mass-weighted velocity power

spectrumpP, with the linear power spectrum of density galaxy density bias parameter.

fluctuation P, by (Haf/k)?P,. The most likely speed A serious question is whethpror p’ should be used to

of bulk flow is \/2/30.,, the mean(v;) = \/8/(37)o,,  estimate the power spectra. Non-zero monople of peculiar
and the mean square speeg) = afb. The characteris- velocities can also emerge by systematics in peculiar ve-
tic speed of bulk flow corresponding to the volume of ourlocity estimation methods, i.e., the velocity zero poirft of
simulation iso,, = 51.5 km s™1, so an artificial bulk flow sets which might have distinct distribution function from

which is solely controlled by the variance?, =
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Fig. 3 Differences in measured momentum power spectra after remdowlk flow. An artificial bulk flow of speed
v, = 51.5 km s is added to the = 0 realization of the simulation to create a sample with bulwfla, = cos™! 1
is the angle betweek andw,. Top left: cross symbols are P, — P/, the solid line is vb(P(;p;) + Pg},;}) + v2 P, dotted
line is vy (Psp; + ng{,)’ anddashed lineis v} P (Eq. (20)). Top right crosses are Py, — Py, , solid line is ik (Pso, —
Pi)vy/(Haf) + k*ui(vp/Haf)?P in which the first term is drawn idotted line and the second term is tidashed line
(Eq. (23)). Bottom Ieft: crosses are the real part oPsg, — Psor , solid line is the expectation of zer®ottom right: the
imaginary part of’sg, — Pse, , solid lineis —kyu(vp/Ha f) P (Eq. 23)).
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Fig.4 Left panel: differences inP, after removing bulk flows of different amplitudes,, = 51.5 km s™!. Right panel:
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averages of the power spectra of the subsample without riegntheir bulk flows, error bars are their standard deviajon
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the intrinsic flow. If the measured bulk flow is caused bypower spectrum at >~ 0.1 h, being around 20% aP,
the peculiar velocity zero point offset alone, no doubt thand P, , ~10% of Ps,,.

one needs to deduct the measured bulk flow directly. If
peculiar velocities are given exactly, such as in sample
constructed from simulation data, the bulk flow is pure-
ly intrinsic, it is then another story. In order to clarifyeth

To assess precision of theoretical models, the objec-
?quantities estimated from the simulation should contains
stochastic fluctuation as little as possible, overlayingrer
. bars on the estimated power spectra only indicate a range
point, the power spectra of our 64 subsamples-at0 are - )

. : . . . of uncertainties, a method able to suppress sample variance
estimated with and without their particular bulk flow sub- .

. would be very helpful. We realize that at very large scales,

tracted respectively. Then averages of these power spectra

. oupling among Fourier modes is in fact weak, Fourier
are compared with the measurements of the sample of fufouPINg g

. . . . odes can be deemed evolving linearly, such that data sets
| size to check possible systematical biases. As expecte Ss .
. L at later epochs actually maintain approximately the same
by Equations20) and @3) after replacing; with o7, , we

. . . large scale stochastic fluctuations as the random setup in
can see from the right panel of Figutewhere subtracting g P

; . .~ the initial condition. We take the measured power spectra
bulk flows from the subsamples gives rise to systematlcall)() o . .
. S f the initial field granted as the linear templates, which
biased estimation of, and Py, at small scales, although

. P . . differ from linear theoretical models by less than 2% if
such biases seem not so significant against the fairly large

. . gnoring the cosmic variance. Thereafter using these lin-
dispersions among the measured momentum power spec- :

: . ear templates to normalize measured power spectra at later
tra of subsamples. Nevertheless it appears that there is MO < shall be able to alleviate cosmic variances
need to subtract the bulk flow in this case. Measured bullt< '
flow of real samples contains mingled contributions from  To check the conjecture, power spectra of the 64 sub-
both of the intrinsic flow and the velocity zero point offsets samples of the initial condition at = 80 are then mea-

one might have to inspect the strengths of the two sourcesured and linearly evolved to redshift= 0, forming the

carefully case by case. class of linear templates denotedi$=5"). Uncertainties
are then estimated for power spectra normalized by these
4 MOMENTUM POWER SPECTRA OF DARK linear templates. The technique is indeed very effective,
MATTER IN THE ACDM SIMULATION dramatically reduces the cosmic variances at large scales
k < 0.1 h Mpc~! (Fig. 6), and relative uncertainties in mo-
4.1 Atlarge Scales mentum power spectra drop t620% and become much

o stable. Comparison of linear theories with the measure-
As an application, momentum power spectra of dark mattel o nts of simulation is displayed in Figufe the advan-
in the ACDM simulation at many epochs from the initial

time of z = 80 to z = 0 are estimated with our algorithm-
s. The measured power spectra of the full simulation ar
shown in Figureb, it looks that linear theory matches sim-
ulations at large scales well, but the scale ranges allowed
by the simulation for accuracy examination are very nar4.2 Beyond Linear Regime
row, the box size of our simulation isGpc ! which in
Fourier space correspondskex 0.006, the strong fluctu- It is not an easy task to predict nonline&y, all nonlin-
ation at large scales in power spectra caused by a limitegar polyspectra on the right hand side of Equatiéni)
number of Fourier modes becomes an obstacle to obserege needed, among which however only the nonlinear mat-
the actual performance of theories. ter power spectrum over large scale range can be provid-
Considering that we have only one simulation at handed with good precision by either empirical fitting formu-
we estimated error bars as the standard deviation of thlae Smith et al. 2003Takahashi et al. 20}2r halo mod-
measurements of the 64 subsamples ofzhe 0 output el (e.g.Ma & Fry 200Q Scoccimarro et al. 20Q1At large
used in the last section, the shortcoming of this method iscales where nonlinearity is weak one could resort to the
that since the box size of subsamples is only one quartgrerturbative approach, such as the standard Eulerian per-
of the original full sample, error bars beldw<~ 0.025  turbation theory (SPT, AppendiB). The one loop ap-
are missing in our application thereof. We can see that urproximation of SPT on momentum power spectra (detail-
certainties at large scalds <~ 0.1 h Mpc~! are quite s in AppendixA) is compared with simulation results in
large (left panel of Fig6), which is known to be rough- Figure 8. The one loop SPT brings minor improvemen-
ly inversely proportional to the square root of numberst over linear theory for the case of = 0, but could be
of Fourier modes. Variances of momentum power spectrapplied to slightly deeper scales at high redshifts 1 if
are persistently several times stronger than that of densithe precision requirement is as moderate as-3@%.

tage of using the measured initial power spectra as a linear
prediction is obvious, results are much smooth and conver-
Gent.
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Fig.5 Power spectra of dark matter in oMCDM simulation at selected redshifts from= 0 to the simulation’s starting
epochz = 80, black dotted lineswhich are almost coincident with the measurements=at80 are of the linear theory.
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Fig.6 Left: relative uncertainties in power spectra of dark mattet at 0, being the normalized standard deviations
among measurements of 64 subsamples, which are also thigeelacertainties of the ratios of power spectra to the
linear theoryRight: the relative uncertainties d?/ P(:=80), P refers to power spectrum of the specific kindzat 0,

P(>=80) is the linear template as the power spectrum estimated frentorresponding subsample extracted from the
initial field (at = = 80) and linearly evolved ta = 0.

The one loop SPT is the simplest among perturbaThere are numerical codes implementing some of these
tion theories. In principle there is no real obstacle innovel approaches made available to the public, for ex-
adopting other theories advanced in recent years. Aample, theCLASS! (Lesgourgues 20)1 the RegPT?

a lengthy but incomplete list, there are the renormal{Taruya etal. 2012and theMPTbreeze® (Crocce et al.
ized perturbation theory (e.g.Crocce & Scoccimarro 2012. Development of momentum spectra in theories
2006ah, 2008 Bernardeau et al. 20p8&he closure theory at SPT beyond 1-loop level is beyond the scope of this
(Taruya & Hiramatsu 20Q8Hiramatsu & Taruya 2009  paper, but an intrinsic shortcoming of these perturbation
the renormalization group perturbation theory (e.g.theories is their ignorance of velocity vorticity, which is
McDonald 2007 Matarrese & Pietroni 20072008, and  likely the reason that these theories can not go deep into
many other variants to these new techniques (¥adageas

2008 Pietroni 2008Pietroni et al. 2012Bernardeau et al. 1 http://class-code.net

2012 Crocceetal. 2012 Anselmi & Pietroni 2012 2 http://www-utap.phys.s.u-tokyo.ac.jp/

Taruyaetal. 2012 Sugiyama & Futamase 201pp - a@aruyalregpt codehtml
3 http://maia.ice.cat/crocce/MPTbreeze/



http://class-code.net
http://www-utap.phys.s.u-tokyo.ac.jp/~ataruya/regpt_code.html
http://www-utap.phys.s.u-tokyo.ac.jp/~ataruya/regpt_code.html
http://maia.ice.cat/crocce/MPTbreeze/
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Fig. 7 Left panel: ratios of power spectra measured from simulation to theslirtheorysquare symbols are the averages
of the 64 subsamples while error bars are correspondinglatdrdeviationssolid horizontal lines are the unity ratio

and thedashed horizontal lines delimit the 10% deviation; linear theory predicts tb@f)) = D%(Haf/k)*P, Pe(f) =

ngz = D?P,, P, is the theoretical linear density power spectrum scaled=+o0. Right panel: measured power spectra
of the full sample, after normalization by linear templates
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Fig.8 Comparison of simulation with SPT at one loop level. To rexlsample variance, measured power spectra are
normalized byP(:=8) theoretical power spect@!) are normalized by>(© as well. P{") is given by Eq. A.7), Pe(;)

andP(;(;z are calculated with EqA(11).

the nonlinear regime. We notice that a recently developedne can reconstruct the vector velocity field from the it-
semi-analytical theory, namely the effective field theorys divergence field. But such operation is not applicable to
(EFT), could recover the nonlinear evolution of statisticsthe momentum field. The vorticity of momentum contains
beyond stream crossing of the cosmic large scale structurescomponent produced by the coupling between the spatial
much effectively (e.g.Carrasco et al. 201Baldauf et al. gradient of the density and the peculiar velocity,

2015 Foreman et al. 2036which is a practical solution

to fulfill the demand on theory of the precision cosmology. Vxp=(1+0)Vxv+Vixov. (25)

At large scales it is often assumed that the curl comObviously even iV x v = 0 as assumed generally in per-
ponent of peculiar velocity field is negligible, in prinagpl  turbation theoriesy x p # 0, and theP, is not equivalent
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Fig.9 Differences betweet,, P, and Psy, at four epochs of = 0, 1,2, 3 (in colors ofblack, red, blue andmagenta
correspondingly) respectivelashed lines are the prediction of Eulerian perturbation theory at o lievel (details in
AppendixA).

to P, atall (left panel of Fig9). The rotational partin mo-  alistic observational samples. Algorithms to clean alfas e
mentum in simulation indeed becomes very strong alreadfects using the third order Bettle-Lemarié scaling fuoicti

in a weakly nonlinear regime (Fi@). Eulerian perturba- are proposed and thoroughly tested with simulation data
tion theory at one loop (Appendik) is invoked to check sets; the experiment proves that the algorithm is able to
against simulation, the theory can only recof®y P, at  preserve sub-percent precision till close to the Nyquest fr

z = 0 at scalest < 0.1 h Mpc~!. We can see that even quency.

in perturbation theory, the relation between the momentum |t js pointed out that non-zero bulk flow could induce

and its divergence is complicated, actually we tried séverayqditional shot noises, but that is only part of the story.
empirical proposals, but it seems there are no simple waygy|k flow might induce much more complicated effects
to recoverP, from Py, . as already discussed Park & Park(2009 and Howlett
Momentum divergence can be decomposed as the supp19. Exact formulas are derived and numerically con-
of two parts, namely a pafty which is fully correlated  firmed to depicting the changes caused by removing bulk
with density fluctuation while the other ofig is notatal-  fiow from peculiar velocities. Subtracting bulk flow results
l, 6, = 0 + 6. The cross correlatiofsy, is effectively i, generally minuscule changes to momentum power spec-
(66), which does not contain any information @f. AS  tra at large scales, but might has non-negligible signifi-
illustrated in the right panel of Figur@ the power of);  cance in the nonlinear regime. Interestingly the real part o
is very large. We notice thalts, = 5;0Ps/0lnaisthe  p isimmune to bulk flow. Numerical experiment sug-
time derivative of density power spectrum (E4.9)), thus  gests that there is no need to subtract bulk flow from pe-
it is viable to straightforwardly derive the nonline&s,  culiar velocities for samples whose peculiar velocities ar
of dark matter from the nonlinear matter power spectrungyact or estimated with high accuracy. However, we need
produced either by halo model€¢oray & Sheth 2002 {5 address that comprehensive treatment of impact of bulk
Giocolietal. 2019 or empirical formulas $mith etal.  fiow on the estimation of statistics of momentum is actual-
2003 Takahashietal. 2012Mead et al. 201p The bad |y connected with the so called integral constraint prohlem
news is that, as we attempted, there is no such simple scaj{mich is not considered here, appropriate proposals to cor-

ing relation betweers and Py; as the one betweeRys  rect effects of bulk flow are left for future investigation.
and Pys found in Zheng et al(2013. One has to search

. . . To overcome the huge variances in power spectra at
for new ways to establish a link between nonlin€ar and o .
P large scales due to the limited number of Fourier modes,
50, -

P momentum power spectra of the initial cosmic fields at
5 DISCUSSION AND CONCLUSION z = 80 of the simulation are measured and linearly evolved
to specified redshifts, which are then used as linear tem-
In this report we present FFT-based estimators for autplates to normalize measurements at those redshifts. The
power spectra of momentum and momentum divergencenethod greatly reduce the sample variances at large scales,
and the cross spectrum of density fluctuation and momermaking the comparison with theoretical models much s-
tum divergence. Although these estimators are for the idemoother and clearer. Analysis of subsamples of our simu-
al sample free of observational effects, which nevertiseledation shows that, cosmic variancesiof, P, andFPs,, are
can be readily incorporated to proposals handling with reat ~20% level at large scales &f< 0.1 » Mpc™!, being
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much larger than the cosmic variances of the density powe¥, is the Diracd-function, and(...). refers to the irre-
spectrum. In the nonlinear regime, cosmic varianceB,0f ducible correlation.

and Py, keep at the same level, but the cosmic variances At scalesk < 1 hMpc~! power spectrum of the
of Psg, gradually decrease ©10% atk > 0.2 Mpc™'.  curl component of velocity is an order of magnitude low-
A quick comparison of momentum power spectra of darker than the irrotational part (e.g?ueblas & Scoccimarro
matter in simulation with theories indicates that if preci-2009 Zheng et al. 2018 the velocity field can be approx-

sion requirement is set to10%, at large scales the one jmated by the potentid#l = —V - v/(Haf) alone. In such
loop SPT agrees with simulation slightly better than thegnsatz there are

linear theory at = 0. Of course, the performance of one
loop SPT improves with increasing redshifts.

We also notice thaf, contains strong power from the
rotational part of momentum, and there is a considerably B;s,,(k — q,q, —k) = (Haf)*
large stochastic componentép which is completely not
correlated with the density fluctuation. The two ingredsent Tsvso(k —q,q,—k —q',q') = (Haf)
make it rather challenging to reconstruct the full momen-
tum field and its divergence beyond linear regime with the
information offered by the density and the cross correla-
tion between density and momentum divergence, the three
kinds of momentum power spectra have their own distinct-

Ps, = —i(Hafk/k*)Psg, P, = (Haf/k)*Ppe ,

kQ 23500 ;

/
5 T Tsos0
(A.3)
where f = dlnD(z)/dIna with D(z) being the linear
density growth factor at redshift= 1/a — 1. The corre-
pondmg approximation to EquatioA.() is then

ness.
E\° 2 Pyg
. . B P, =Py + —— Q| —5
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Appendix A: PREDICTION OF EULERIAN
1 k-
PERTURBATION THEORY AT ONE Bsgo = / . ‘213609(k —q,q,—k)dq,
LOOP LEVEL ON MOMENTUM (2 ) k2q
POWER SPECTRA / / (A.5)
Tsos0 =

The momentum power spectrum in Fourier space can be

T (k — —k—q',q)dqdq .
expressed as x Tsoso(k —q,9,—k — q',q')dqdq

P,=P, 4 1 [P® P, + Ps, ® P} If 6 and @ are both Gaussiary = 9§, Bsgy = 0 and
(2m)? (A.l)  Tss6 = 0, Equation A.4) reduces to the known Gaussian
+ 2Bsvy + Tsvsu » approximation (e.gMa & Fry 2002,

where P, (k) is the power spectrum of peculiar velocity, ) )
P(k) is the matter power spectrum (sometimes denoted as < k ) PG P+ —— k P ® Pr
(2m)?
(A.6)

Ps), Ps, is the anisotropic cross-power spectrum of den- Haf =
sity contrast and peculiar velocity. In Equation®) B, kPry, kPr,
and7s,s, are integrations over bispectrum and trispectrum * <?> (?)} ’
respectively

1 in which P, = D? P, with P, being the linear power spec-
(2r)3 /Bévv(k’ ~ 4.9, ~k)dg trum atz = 0, andD, = D(z)/D(z = 0).
1 , , At large scales where nonlinearity is weak one can in-
Tavaw = (2m) //va(k ~ 4.9~k —d,9)dgdq’, ke perturbative theories, such as the standard Eulerian
(A.2)  perturbation theory (SPT, Appendi®). Implementing
where Bs,, (k1, k2, k3)op (3>, ki = 0) = (d1v2 -v3)., the SPT power spectra (AppendB?2) and bispectrum
Tsvsv(k1, ko, ks, ka)op (>, ki = 0) = (0102 - 03V4)c , (AppendixB.3) to Equation A.4), after truncation of terms

Bévv =
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of order higher thaD?, yields Appendix B: EXPANSION SCHEME AND
COMPUTING FORMULAS

k 2
<1> = D?Py 4+ D*(P, P P
(Haf) 0+ ( 901+ cov + B)

Pco’u = PI + PII PB = 2k28599,05

cov cov?

k2 P,
I 0
Pl = ey ().

B.1. The Expansion

In SPT,d;, andd,, are expanded as

pir _ ¥ <@> o <@> O0p = DIy, Ok=> DO, (B.1)
v (2m)3 \ k2 kK2 )’ n=1 n=1
(A7)
in which B; o is given by Equation§.9), explicit formu- 61y = 6(1) are simply linear quantities, higher order terms
la to computeP,,,, is in AppendixB.4. are constructed via

The route leading to power spectrum of momentum di-

vergence in SPT is different. The starting point is the con-g,,, = !
tinuity equation (2m)"
x [ &q...d%qn0 i —k)E,0 o (gn),
aaé(aa;,t) SVl 40 v ) =0, (AS) / q q D(zi:q ) 1 (q1) 1) (qn)
Seljak (1996 has already utilized the equation to derive Ony = %
the power spectrum of the time derivative of the gravita- (277)
tional pgtential for investigatiop on the Rees—Sciqma ef- « dqndp( qu — k)G (q1) - 61 (an)-
fect. Smith et al(2009 also applied the same technique to
measure the integrated Sachs-Wolfe effectin N-body simu- (_5-2)
lation. Fourier transforming EquatioA) yieldsé, (k) =  The kernelsF;, and G,, are hqmogengqus functions of
%35(;@7 a)/d1n a, corresponding power spectra are wave vectordqs, .. ., g, }, of which explicit formulas can
be found inGoroff et al. (1986 and Jain & Bertschinger
Py (k) = i<85(kz,a) 00 (k:,a)>7 (1999.
P /2" 9lna  dlna (A.9)
P (k) = —(5(k AN .2. Power Spectra of§ and 6
50, () = 5 (0(0k) =51 =)
Inserting the expansion scheme of SPT (Eg)), § = Power spectra in the framework are organized in the form
>, Do, there is of
n—1 o
Py, = DRy + > D" [2 3520 — )00y 5an—j) Poy=Y D¥Poyuy,
! = - (B.3)
2(6(m) 07 * *
+ 1 ((n) (n) >} ) Pryn-1=2 Z(x(j)y@nﬂ-ﬁ + <x(n)y(n)>,
_ j=1
P(;gp = DgPO + Z Dgn |: Z 6(])6(277, J)
n j=1 wherez, y represend or 0 (for thed—o subscript is omitted
+ 180, >} by default in this papenP., o = Fo is the linear matter
(=) (A.10) power spectrum. Power spectrum corrected to 2-loop level

where we have used the property that odd order terms afe thus

zero. The difference betweely, or Pss, and P lies in

(2) — p2 4 6
coefficients associated with terms at different orderss it i Pry =D:Fo+ Do Pay s+ Do Poy

very convenient to calculate momentum power spectrum: = P,E;) + DSPyy 2, (B.4)
once higher-order correction termsﬂba-re ready, predic- Puy1 = 2Puy13 + Pry o2,
tion of P, or Psg, can be constructed simultaneousty, p _op Lop 4P
and Psy, to the order ofD? are simply Emith et al. 2009 zy,2 = S5 oy,15 zy,24 T S 29,33 5
Pe(pl) = D2Py + D*(6Py3 + 4Py) , in which explicit expressions P, ;; = (z(;)y[;) can

(A.11)  pe found in e.g.Bernardeau et al(2002, Carlson et al.

1) _ n2 4
Psg, = D2Po + D2 (4P13 + 2Pn) . (2009 and Taruya et al.(2009. Then 1-loop corrections
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to power spectra are

Po(k) k3 [ 12 9
=" drPy(kr) | —= —1 1
13 504 471‘2/0 T 0( 7’) T2 58+ 00r
3 1+7r
4 2 37,2
—42r —|——T2(r —1)*(7r —|—2)ln’1r],

Po(k) K* [ 24 ,
P, = — drPy(kr) | — — 202
50.18 = £ o7 4#2/0 rPo(kr) —5 — 202+ 56r
3 1+7r
4 2 3(r,.2
—30r —l—T—Q(r —1)%(5r +4)ln’1r] ,
Py(k) k3 [ 12 9
P, = — P, — —82+4
06,13 163 47T2/0 dr O(k/’?‘) 2 82 + 4r
—6r4+i(r2—1)3(r2+2)1n Lrr
r2 1- ’
(B.5)
and
1 k3 [
Py = %ﬁ/ drPy(kr)
(3r + Tz — 10r2?)?
dzPy (kV1+172—2r
/_ xo( T ) (1+72—2rx)?
I
Prpos = — —— P
00,22 = 52 47r2/0 drPy(kr)
1
/ dz Py (k\/1+7"2727":r)
—1
(3r + 72 — 10r2?) (7w — r — 6ra?)
(1+72—2rz)? ’
1 k3 [
P, =——" drPy(k
00,22 93 471'2/0 rPy(kr)
1 212
(Tx —r — 6ra?)
dwpy (k1472 = 2rz) -
/,1 v r e (I+72—2rz)?
(B.6)

B.3. The Density-velocity-velocity Bispectrum

The loop expansion for the density-velocity-velocity bis-

pectrum can be written down followingcoccimarro
(1997 andScoccimarro et al19989,

Bsgo = D2 Bseg.0 + DS Bsgg1 + - .. , (B.7)
in which the tree-level bispectrum is
Bsgg,o(ki1, ko, k3) = 2Py (k1) Po(k2)Ga(k1, k2)
+ 2P0(k:1 PO( ) (kl, ks3) (B.8)
+ 2Py (ko) Py(ks)Fa(ka, k3) .

Bsge as the integral of the bispectrumsgy is therefore
Bsoo = D2Bsos.o + DSBsgg1 + ..., and

Bsoo,o = 11 + 1> + I3, (B.9)
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where

1k

I =—--— P,
1 747T2/0 dr O(k’l“)

1
/ dz P, (k\/1+r2—2rx)
-1
1 k o
L=-"_p
2 7 anr 3 O(k)/o dr

/ dz Py (k\/ 1472 — 2T:E)

1
2
3

x(r — 7w + 6ra?)
1472 -

b
2rx

r3x(Tre — 1 — 62?)
1472 —2rx

3

k <,
h= =370 P(0) [ 67+ DR (ks

(B.10)
B.4. Convolution Terms

oo

k3
drPy(kr)

2
47 0

/_11 P, (k:\/ 1+7r2 — 2mz) dz

oo

drPy(kr)

PI

cov T

kS
ﬁ

/_ Py (k\/ 1472 — 27’x) 7d:p )

1472 —-2rz
(B.11)

PII _

cov
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