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Abstract Stellar population synthesis is an important method inxgaénd star-cluster studies. In stellar
population synthesis models, a stellar spectral libramneisessary for the integrated spectra of the stellar
population. Usually, the stellar spectral library is uid for the transformation between the stellar atmo-
spheric parameters and stellar spectrum. The empiridddrsspectral library has distinct advantages over
the theoretical library. However, for the empirical spattibrary, the distribution of stars is irregular in
the stellar atmospheric parameter space, which makesatigianal interpolator difficult to get accurate
results. In this work, we will provide an improved radial lsfsinction interpolator which is implemented to
obtain the interpolated stellar spectra based on the erapstiellar spectral library. For this interpolator, we
use the relation between the standard variangethe Gaussian radial basis function and the density dis-
tribution of stars in the stellar atmospheric parametecsppa give the prior constraint on this Moreover,

we also consider the anisotropic radius basis function byattvantage of the local dispersion of stars in
the stellar atmospheric parameter space. Furthermoreseéhe empirical stellar spectral library MILES
to test this interpolator. On the whole, the interpolatos hagood performance except for the edge of the
low-temperature region. At last, we compare this interfoolavith the work in Cheng et al., and the inter-
polation result shows an obvious improvement. Users caly &g interpolator to retrieve the interpolated
spectra based on the stellar spectral library quickly asdyea

Key words: stars: fundamental parameters—stars: atmospheres—{Gatgobular clusters: general—
methods: numerical

1 INTRODUCTION Zhang et al. 2013 etc.), the below three key components
are incorporated for the integrated spectra of the stellar
A stellar population synthesis model is important in astrofopulations. 1. initial mass function (IMF), which pro-
nomical research. Most of the observational data are frondides the relative number for stars with an initial mags
stars, and these data can be applied in the study of syste-isochrone library, which is derived from the stellar evo-
s of stars (galaxies, star clusters, etc.). Stellar pojamat lution model and is used to give the stellar parameters (in-
synthesis modeling is a widely utilized tool in this kind of cluding the atmospheric parameters) for stars in a stellar
study because the stellar population is the basic ingrediepopulation; 3. the stellar spectral library, which is ald
t in a system of stars. Moreover, the integrated spectrurtd convert the stellar atmospheric parameters to the stella
of a stellar population contains a large amount of effectivespectra. At last, the integrated spectrum of stellar pepula
information, so the calculation of integrated spectra is-ne tion is the sum of the stellar spectrum.

essary for stellar population synthesis models. The stellar spectral library gives a correspondence be-

In the widely used evolutionary population synthe-tween the stellar atmospheric parameters and the spec-
sis models Bruzual & Charlot 2003 Molla etal. 2009  trum. A stellar spectral library can be divided to t-
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wo kinds: theoretical and empirical libraries. The the-kernel functions will influence the interpolation resulfs.
oretical spectra are calculated from the stellar atmoall the Gaussian kernel functions have the sama rela-
sphere model Kurucz 1992 Gonzalez Delgado et al. tively smallo in the sparse area will make the interpola-
2005 etc.), while the empirical spectra are from obser-tion results be discrete, however, a relatively larga the
vations Prugniel & Soubiran 20Q1e Borgne et al. 2003 dense area will oversmooth the interpolation results (lack
Sanchez-Blazquez et al. 2Q@Bhen et al. 2014 etc.). detailed information). In the work d€heng et al(2018,

For the empirical and theoretical spectral libraries the local average distance is utilized to give théor the
each one has its own advantages and disadvantagésaussian kernel function. This is because the distribution
Because the theoretical spectra are calculated from the &f stars in the spectral library is non-homogeneous in the
mospheric model, and they have larger coverage in ranggellar atmospheric parameter space.
of wavelength, spectral resolution and stellar atmospheri  In this work, we compare the interpolation calculation
parameters. However, they are limited by the incomp|et@f the RBF network with the calculation of the density field
atomic- and molecular-line lists, the uncertain abundanc# SPHs. Under this comparison, we include a constraint
pattern, the assumption and idealized treatment in the mo@bout theo in the Gaussian kernel function of RBF net-
el calculation, and so orK(irucz 2013. Unlike the theo- Work from the relation between the smoothing length and
retical spectral library, the empirical spectra are from ob the density in SPHs. Under this constraint, the size of
servations, they have limited wavelength, resolutionseoi for each kernel function is related to the local density of
and error that is increased from observation and data préample points in the parameter space. We apply this con-
cessing (e.g. flux calibration and stellar atmospheric pastraint to replace the coarse determination akout the
rameter extraction). They avoid many disadvantages of th&ork of Cheng et al(2018 for the RBF network Gaussian
theoretical spectra. The theoretical and empirical stellakernel function. Moreover, same as in SPHs, the spher-
spectral libraries are complementary. ically symmetric kernel function usually is not a better

Because the stars in a spectral library are discret€lection Bicknell & Gingold 1983 Shapiro etal. 1996
we need an interpolator to produce the spectra of any s&Wen etal. 1998 We will refer to the process of adaptive
of possible stellar atmospheric parameters. The distribiM00thed particle hydrodynamics (ASPH) simulation and
tion of stars in theoretical spectral libraries has less atl@k€ an anisotropic kernel function in the RBF interpola-
mospheric parameter limitations and usually is dense anton calculations. As a result, we will present an upgraded
regular. Under this situation, the classical linear interp RBF interpolator which can be employed for the spectral
lation method can produce a reliable interpolation resulic@lculation based on the empirical stellar spectral lijorar
However, for the empirical stellar spectral library, the s-  1he outline of this paper is as follows. In Sectign

tars are discrete in the atmospheric parameter space, a§ Priefly introduce the RBF network and its structure,
this irregular distribution makes the traditional intelpo €N explain the constraint on the kernel function applied

tor difficult to produce the expected interpolation results N this work and constructing the anisotropic kernel func-

Therefore, in the work dEheng et al(201§ we construct- 10N in the RBF network. In Sectiod, we implement the
ed an interpolator based on a radial basis function (RBFPE€tle Antennae Search algorithdicng & Li 2017 here-
network to get stellar spectra in the stellar populations syn@ftér BAS) to search for the best kernel function param-

thesis model. The algorithm is different from those usingEt€rs- In Sectiord, we present the interpolation spectra
polynomial form (e.gWu et al. 2011and Prugniel et al. and test this upgraded RBF interpolator by employing the
2011). medium-resolution Isaac Newton Telescope library of em-

0pirical spectra (hereafter MILESSanchez-Blazquez et al.
2006 Cenarro et al. 2007and compare it with our previ-
ous work inCheng et al(2018. At last, in Sectiorb, we
give the conclusion of this work.

The interpolator based on the RBF network is calle
the RBF interpolator in this text. The computational for-
mula for the RBF interpolator (Eq3)) is similar to the
formula for a field in the smoothed particle hydrodynamic
(SPH) simulation and the formula for the expected num=, ' eTHoD
ber in the likelihood estimation. All of them are based
on calculations of the kernel functions. In this work, a|n the stellar population synthesis model, the stellar spec
Gaussian function is implemented as the kernel function agal library provides a fast way to get the spectra of any
expressed in Equatiod), and ther is the standard devia- star compared with direct calculation by the stellar atmo-
tion used to characterize the effective region of the kernedpheric model. This process is a fitting or an interpolation
function. process of the spectra in the stellar atmospheric parameter

For the RBF interpolator, the kernel function does notspace (usually it includes three parameters: effective tem
have any strict constraint, and the different settings ef th peraturel s, logarithmic surface gravity acceleratitg
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Fig. 1 The three-layer structure of an RBF network is illus-
trated. The left part is the input layer amd 1, xo, ..., xp)
is the input sample coordinate in the-dimensional s-
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x (1,22, ...,2p) is the input point coordinate. The middle
is the hidden layer which is constituted by kernel functions
Ki(z — pi) (i = 1,2,...,m) andp; (p1, 2, 43, - 4D
is the central coordinate of theh kernel function inD-
dimensional space. The right is the output layer which is
the sum of the kernel function multiplied by the weight
factor y = >_1", ¢; - K;(z — p;)) and the size of the out-
put layer has no limitation. In the spectral interpolatign,
is the flux within a given wavelength interval. It is a one-
dimensional scalar, and the interpolation spectrum ctmsis
of the interpolated fluxes at different wavelengths.

For a sample with a huge sizéV}, a fast RBF net-
work can be constituted by a much smaller number of k-

pace. The middle part is a hidden layer that is constiernel functions in the hidden layen(< N). Usually, the

tuted by RBF functionsK;(x — u;), i = 1,2,3,...,m,
wi (1, pa, ps, ..., 4p); 1S the central coordinate &, (x—
wi) in the D-dimensional space and is the number of

RBF functions in the hidden layer. The right part is the*

output layer and, is the prediction value which is the sum
of RBF function multiplied by the corresponding weight
factore (c1, ca, €3, .0y Cm ).

and metallicity[Fe/H]). The stellar spectral library gives

K-means clustering methodlacQueen 196Ding & He
2009 is used to search for the kernel central coordinates
(1 = 1,2,3,...,m), then a linear regression method is
applied to get the weight factor array(c1, co, ¢3, ..., ¢m)
for the sample sef(x, y);, i = 1,2,3,...,N}.

The empirical stellar spectral library usually compris-
es several hundred or thousands of spectra. So in our work,
the number of kernel functions is set to be same as the

a correspondence between stellar atmospheric parameteggmple numbeN. Moreover, we do not need the calcu-

and stellar spectra.
In this section, we will provide a detailed introduction

lations with K-means and the linear regression. We take
the sample points as the centers of the kernel functions

of the RBF network and the upgraded RBF interpolator indirectly in the spectral RBF interpolatop( = x;, i =

our work. In Sectior?.1, we explain the RBF network and

1,2,3,..., N). The weight factor array of the kernel func-

its calculation process as an interpolator (RBF interpolation in the hidden layer is obtained by solving the system

tor). In Sectior2.2, we describe the kernel function of the
upgraded RBF interpolator in our work. In Sectid13, we

give a summary of the upgraded RBF interpolator in our

work.

2.1 RBF network and interpolator

An early introduction of RBF interpolator can be found in
Powell(1987. Broomhead & Lowg1988 introduced the
RBF into an artificial neural network (ANN) framework.

of linear equations

N
ZK](mzfmj)c]:yz (Z:1,2,3,,N) (1)
7j=1

In our works, the Gaussian kernel function
e~ Xii(@a—pa)*/(20%) ig ytilized,
-2l (wgi—ea )?
2052
Kj(x; —zj) =e J : 2

wherex,; andx, ; are the coordinates of theth and

Up to now, the RBF interpolation and fitting method hasjth sample point in theD-dimensional spaced( =
been applied widely in many fields (such as mineral anali, 2, 3, ..., D). The central coordinate of thgth kernel

ysis, aircraft design, image processing and pattern filassi
cation).

function K; is «;, ando; is the standard deviation of the
jth kernel functionk’; which can be applied to charac-

An RBF interpolator can be thought as an applicaterize the influence range of the kernel functiopis the

tion of an RBF network which is a kind of kernel method.
An RBF is also called a kernel function in this paper.

weight factor of thej th Gaussian kernel function. Solving
the linear Equationl), we can arrive at the weight factor

The construction of an RBF network is diagrammed inarrayc, if sample coordinates in s¢tcy, 2, 3, ..., xn}

Figure 1. Moreover, the sample in this work is a set of
points with the coordinate s¢tcq, o, ..., z;, ...,z y } and
the values{y1, v, ..., Yi, .-, yn } (€ (x1,22,...,2p); are
the i th sample point coordinate ifP-dimensional space.
In this paper, we us€} to represent a set in mathematics.
From Figurel, we can find the RBF network con-

are different from each othér After obtaininge, we can
get a simple formula for the interpolation calculation,

N
y(@) = Kjl@—z) ¢, ®3)
j=1

1 For a Gaussian kernel function, this conclusion can get d fa@tor

sists of three layers. The left is the input layer andarrayc from the Micchelli theoremNlicchelli 1986
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in Figure3). This situation results from observational and

k Wi .

PUA / theoretical limitation. In our work, we set a constraint
by including a relation between theand the spatial den-
< Kl\ . ); sity of sample points in the RBF network, and this relation
can be used to determine thevalue. Moreover, we also
( W ” . consider the anisotropy of the kernel function in the RBF
RN S network by referring to the ASPHs.

<m,( ) , ik In Section2.2.1, we give an introduction to the con-

straint ono. In Section2.2.2 we show generic Gaussian

\ AN " A
>\-/< M kernel function for the anisotropic situation in our works.

2.2.1 Theconstraint on o and its size calculation

Fig.2 A example of the 2D spatiat distribution for the . . . .
kernel function. Black points are the centers of the kerne|n this part, we introduce the smoothing length constraint

functions {pi,i = 1,2,3,...,m}). From left to right and  ©f SPHSs into the RBF network. Under this constraint, we

from bottom to top, 'the den5|ty of points decreases. Th&xplain the computing method offor the kernel function
radius of black rings characterize tleinfluence range in the RBF network.

for the classical RBF network. Red ellipses characterize |, the SPHs. the sample consists of particles with
a more reasonable influence range of kernel functions fQ[rhe coordinate sefz:, i — 1,2,3,.., N} and mass set

anisotropic distribution. ) ]
P {m;, i = 1,2,3,..., N}, in whichx; andm,; are the po-
sition and mass of théth particle respectively. The fluid

wherex is the input coordinate ang(x) is the interpola- densityp in the positionz; is
K2

tion result. For spectral interpolation calculatianandy

correspond to the stellar atmospheric parameter and the in-

terpolated flux within a wavelength interval, respectively pi ~ Z my - Wi (1 =1,2,3,...,N), 4)
The RBF network is based on the kernel functions.

However, a constant is usually used for all the Gaussian

kernel functions llowe 1989. For the irregular distribu-

tion of stars in the stellar spectral library, the choice lbf a

the kernel functions having the sameés not a better se-

whereN is the number of particle$V;; isa - K(x; — x;)
anda is the normalized coefficient. We utilize the Gaussian
kernel function

lection. Next, we will introduce the kernel function in our 1 -5P @g—wa >
spectral RBF interpolator. Wy = ——-¢ 2of , 5
P g T P X
22 Gaussian kernel function in the upgraded RBF whereD is the spatial dimension ang is the smoothing
inter polator length of thej th kernel function. Replacing:; with p,V;,
whereV; is the volume of thej th particle in SPHs, we

The constant in the Gaussian kernel functions has a dis-
advantage: large for the kernel function makes the inter-
polation results oversmoothed in a dense area, and a rela-

ave

tively smallo makes the interpolation results discrete in a N N 1 M
sparse area. In Figuz we present an example of a two- 7 ~ JX:W ViWij = ;p"vi'(m%) e ’
dimensional (2D} distribution, in which the black points (6)

are the centers of the kernel functiopps;, i = 1,2, 3, ...},

and the spatial density decreases from left to right and bot-  The fluid density varies with time. A better smooth-
tom to top, and an anisotropic distribution exists in the toping length should vary dynamically. Usually, =

left and bottom-right parts. The black rings charactettize t (po/p)"/P is utilized to give the current smoothing length
influence range of kernel functions in the traditional RBF (5, andp, are initial values of SPHs). This relation yields
network and the red eIIipses Slgnlfy a better choice for th% constraint on the by Spa[ia| density of Samp|e points_

anisotropic kernel functions. Here, we apply this relation in the kernel function of the
Stars in the empirical spectral library face a more com-
plex situation than Figur®. The distribution is nonunifor- ~ ? For spectroscopic observations, only solar neighborhoacs san

dits d it . ianifi tlv in the stell t be observed with high quality. In stellar theory, the brigkars allows
m and 1S density varies signimcantly in the stellar a mo'having a short evolutionary time scale. Both of them makeotteerved

spheric parameter space (a typical situation can be foungbectral sample have an obvious selection effect
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RBF network at different positions (in the stellar atmo-

spheric parameter space). We provide the constraint about

a,

(7)

whereV is used to characterize the particle volume which

=1 L
ocxpP x VD,

is related to the influence range of the kernel function.

Usually, the dimension numbé? is 3 for the stellar spec-
tral library.

Now, including the constraint (formula7))
Equation 6), we have

N
Pi jzzlpj (\/%)D €
(8)

wherecy = V/(oP). Equation 8) yields a set of nonlinear
equations for. However, they are difficult to solve.

To simplify Equation 8), we approximate
Equation 8) to the following expression by replac-
ing j with ¢ for the subscripts of andp,

D 2
~Yi=1(%d,i~%d,5)

2.02
J

(i=1,2,3,..,N),

D 2
~3d=1®d.i~%d,5)

N
Co P .
1~ Ry 207 (Z:1,2,3,...,N).
; (v2m)P
9)

This is becausg ando are continuous and the adaptive k-

ernel function (here, it is a Gaussian function) is for aloca
region. The terms in the equation become independent aff the isotropic Gaussian kernel function. If we

each other. From Equatiof)( we can apply the bisection
method to calculate; (i = 1,2, 3, ..., N) quickly. In this
process, the can be adjusted by the control parameter
From Equation 9), we can know is within the interval
of ((27)P/2/N, (2m)P/?], and its upper and lower limits
correspond tec and0 respectively fow.

In Figure 3, we display the resultings;
1,2,3,...,

(i

in the units of mean squared error (herealté8E). The

size ofc is relatively large in the sparse area and small in

the dense area.
We should also notice that the in Equation 9) is a

scalar, which corresponds to the isotropic kernel function

In fact, the anisotropic distribution of stars in the stella

atmospheric parameter space is common for the empirical

spectral library (displayed in Fi@).

2.2.2 Anisotropic Gaussian kernel function

N) for the dimensionless stellar atmospheric pa-
rameter of the MILES library. In this work, the coordinates
(Tes, 1g g, [Fe/H]) are dimensionless which are expressed
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Fig.3 The size ofs in the kernel function for the MILES
stellar spectral library. The coordinates of black points
are the dimensionless stellar atmospheric parameters of
the MILES library ((es/MSEr,,, (Igg)/MSE),, and
[Fe/H]/MSE g, i), and theMSE is the mean squared
error function). The radius of semitransparent spheres
around black points characterizes the correspongling

a better smoothing effect as shown in Fig@reSimilarly,
Bicknell & Gingold (1983 have even considered a kernel
function with different smoothing lengths in theand =
axis directions in a tidal destr simulation. Moreover, the
generalized anisotropic kernel function has been disdusse
by Shapiro et al(1996 andOwen et al(1998.

The anisotropic kernel function is the generalization
MIQSO
be >3 _ (x4 — pa)?/(202), which is the exponential part
of the isotropic Gaussian kernel function, then the corre-
sponding vectoM,,,;s, Of anisotropic kernel function can
be described by the following

3

M aniso = T~(il:— Z dk * (lL‘k _N/k) (10)

T The Tis
To1 Too To3 21727}1,2
T31 Ts2 Ts3 T3 — p3
Z11 Ri1 Ri2 Ris T1 — 1

= 0 222 0 R21 Ra2 Ras T2 — 2
0 0 Zss R31 R32 Rss T3 — U3

(d = 1,2,3),

whered andk are the dimensional subscripts, and the ma-

(Iirix T is a linear translation (frome — @ t0 Myi50)- The

generalized Gaussian kernel function result can be written
M2

ase aniso |

Matrix T' can be separated into two paffis= Z - R
as is evident in Equatiorl(). The diagonal matribZ is

This part gives the introduction of the anisotropic kernelutilized to provide a scaled transformation along the ax-

function by generalizing the Gaussian kernel function.

In SPHSs, the fluid varies with time and the deforma-

is, the matrixR is constituted by three orthogonal bases
and preforms a rotational transformation. Bd&hand R

tion usually is not isotropic. For an anisotropic deforma-change with the position of kernel function cengein the

tion, the isotropic kernel function usually is not able teeyi

stellar atmospheric parameter space. The isotropic kernel
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function can be recovered by settiig= R = 20 - Z, 1. Solving Equation §) to get ois,,; Of the isotropic
wherel is an identity matrix. Gaussian kernel function. In this step, we include pa-

In the stellar spectral library, most stars are distributed ~ rameterc, for all points.
along the main sequence and in the red giant region. Thesé- Inputtingois, ; in Equation (1) and calculating the
two parts are distributed almost along thg andlg g axis matrix Z;. In this stepg; is utilized to control the de-
directions, and the distribution of stars in differ¢ht/H] gree of anisotropy of kernel functions.
ranges only have a slight bias. Therefore, in most cases, thé- Rewriting the exponential part of Equatior§ Py
anisotropy is in the axis direction. To simplify the caleula ¢~ ~*/1" and solving it, we can obtain the lag}
tion process, in this work we ignore the rotational matrix ~ and7; (in this step, a new parametey is included
R by settingR = I and only conside#;, Zs2 andZs3 which corresponds ta, in the first step).

in the generic Gaussian kernel function. After those three steps, we arrive at the last kernel functio

The degree of anisotropy for the kernel function is de-of the RBF network, then solve the system of Equatids (
pendent on the ratio af11, Zz and Zs3. In our work, o obtain the weight factor array. At last, we get the last
the axial local dispersiol is used to give theZ for any  RBF network, and the calculation of spectral RBF interpo-

kernel function with central coordinaje, lator corresponds to EquatioB)(
The three control parameterg, ¢1, co are included,
_ (1—c1)Dy and the optimization calculation of these parameters is
Zad X Zaa = c1 + EE (d=1,2,3), shown below. For distinguishing the RBF interpolator in
d=1"d Cheng et al(2018 from that in this work, we name these
N S (g —ng)? two spectral RBF interpolatoi$BF18 andRBFpqate-
Dq = Z(Id,i —pa)? e 2

=1

(11) 3 OPTIMIZING THE RBF NETWORK CONTROL

wherec; is a control parameter which is utilized to adjust PARAMETERS

the degree_ OT anisotropy a_nd Fhe Gaussian fgnctlon IS ©MA/e can control the RBF network by adjusting the control
ployed to limit the calculation in the local region. So afterparameters{co, c1, ¢2) (Section2.3). In this section, we

the calculation of EquatiorL(), we can know the ratio of iy introduce the optimization process of these three con-
711, Za2 andZss in the matrixZ for all kernel functions trol parameters

and get the corresponding normalized maixThe last In this work, the MILES library is applied to build the

Z _is obta?ned by solvin.g the~Equati209)(again with the spectral RBF interpolatd BF upqace. The MILES empir-
anisotropic kernel function—[Z(z—w)I"

ical stellar spectral library includes 1000 stars obtained
with the 2.5 m Isaac Newton Telescope. The wavelength
2.3 Summary of the method ranges from3540.5 to 7409.6 A and the spectral resolu-
tion is ~ 2.3 A (Sanchez-Blazquez et al. 2QUBWHM).
Here, we provide a summary of the mathematical procesghe coverage of the stellar atmospheric parameters is:
of the RBF interpolator in this work. In general, as illus- 9748 <« 7.4 < 36000K, 0.00 < lgg < 5.50 and
trated in Figurel, there are two key parts for the RBF net- _9 93 < [Fe/H] < +1.65. The MILES spectral library
work that need to be considered, one is the kernel funthas a larger coverage in the parameter spaces than the other
tions { K1, K3, K3, ..., Kn }, the other is the coefficients empirical stellar spectral libraries used in the stellgoypo
array c. For the latterc can be obtained by solving the |ation synthesis model€enarro et al. 2097
system of linear equationd)(for the given kernel func- In this work, we utilize the semi-empirical BaSeL-
tions and the sampl(x, y);,i = 1,2,3,..., N}.Next,we 31 stellar spectral libraryLéjeune etal. 19971998
will list the determination process of the RBF kernel func-\yestera et al. 2002as the reference library to find the
tions{ K1, K2, K3, ..., Kn }. best control parameters of tHRBF,,qa: interpolator.
First of all, we use the stellar spectral library asBaSelL-3.1 is one of the widely used spectral libraries.
the sample of the RBF networKaxi,zs, x3,...,zy,} It provides an extensive and homogeneous grid of low-
corresponds to the stellar atmospheric parameters amdsolution spectra in the range @f — 1600 000 A for a
{y1,y2,¥s,---,yn } corresponds to the flux. We select the large range of stellar paramete2800 < Teg < 50 000 K;
Gaussian kernel function and set the central coordinates1.02 < lgg < 5.5 and—>5.0 < [Fe/H] < 1.0.
of all kernel functions as the coordinates of the sample  For avoiding extrapolation of the spectral RBF inter-
(n; = x;,i=1,2,3,..., N). Next, for thei th kernel func-  polator, the input parameter should be within the cover-
tion (i = 1,2, 3, ..., N), three steps will be executed. age area of stars in the MILES library. So in the BaSeL-
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Fig.4 The output of the optimization process by the BAS searchrilgo. The left panel displays the variation of object
function as a function of the iteration times. Red pointstheeobjective function values of tHeBF,,qate interpolator.
Black points are the objective function values of IRBF18 interpolator which is utilized as a comparison. The right
panel depicts the corresponding track of the p@int ¢1, ¢2). The cyan dashed line is displacement, and nodes are
the coordinates ofcy, c¢1, ¢2) at different iterations. The node color corresponds to taler of iterations, and 2000
iterations are shown here.
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4000 5000 6000 7000 4000 5000 6000 7000 4000 5000 6000 7000
Wavelength/A Wavelength/A Wavelength/A

Fig.5 The 12 interpolated spectra based on the MILES spectralrijby theRBF,q.¢c interpolator. Input stellar
parameters are expressed in each panel. Here the spectianamsionless. The first two lines show the interpolated
spectra of six main sequence stars Withy = 20000K andT,.z = 10000 K. The third line features the interpolated
spectra of three main sequence stars With = 5000 K. The fourth line showcases the interpolated spectra oétteéd
giant stars witil.g = 4360 K. In each line, the input stellar metallicity [Be/H] = 0.5,0.0 and—0.5.
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3.1 library, only those models within the coverage area

of MILES library are used here. A Gaussian smoothing -1

algorithm is applied to degrade the resolution of the out- MS - - TP-AGE

put spectra t@0 A (the resolution of BaSeL-3.1 in visible O e o % 530
wavelength). Iterative calculation is employed in the op- 1]

timization. In each iteration, hundreds of stars in BaSelL-
3.1 are selected as the input sample, and the output in-
terpolation spectra are utilized to compare with the origi-
nal spectra in BaSelL-3.1. The average value of the mean
squared error between interpolated spectra and original 41
spectra in BaSeL-3.1 is implemented as an objective func-
tion f(co, c1, c2) in the optimization process, and the best
(co, c1, c2) corresponds to the minimum ¢fco, c1, c2). 30000 25000 20000 15000 10000 5000
Many widely used optimization algorithms need mas- TerlK

sive computational capability to obtain the bést c1, c2). Fi . . _—

. . ; . 0 0.6 The positions (green points) of the stars in Figbire
BAS algorithm is selected){ang & Li 2017, which is @ Tne jsochrones are used to give the relative position. For
new and light algorithm by simulating the beetle behavioreach isochrone, stars from the zero-age main sequence to
In this work, the process of the BAS search is in threethe end of TP-AGB phases are displayed. The red dotted
dimensional (3D) space @y, c1, ¢;) and comprises four lines havelFe/H] = —0.5, black lines haveFe/H] = 0
steps. and green dashed lines hajfe/H] = 0.5. From left to

rightlg (age/yr) are7, 7.5, 8, 8.5, 9, 9.5 and 10 respec-

tively.

Ig (g/(cm - s72))

Stepl. Setting the initial position of the ‘beetlE,, the
initial distance of two antennas, and the initial step

. . o interpolator is lower than the result of tiRBF18 interpo-
lengthSy. For thei th iteration, it is referred to a®, P P

4 S lator. This means that spectral interpolafdBF ,pdate has
B , . . N a better performance thaBF18 in the spectral interpo-
Step2. Generating a unit vectdmwith random direction, . . . .
. . . " lation calculation of stars in the BaSeL-3.1 library.
d is used to give the relative position of two antennas.
Then, the left aptenna position hﬁl =P, —05- 4 RESULT AND ANALYSIS
A; - d, and the right antenna position hRs; = P; +
0.5-A;-d, In this section, we provide the interpolation results ared th
Step3. Calculating the objective function on two antennagnalysis OfRBF ,pdate iNterpolator based on the empirical
f(P3), f(Pri). The new position isP,.y, = P; +  stellar spectral library MILES. In Sectich1, we present

[f(Pri) = [(Pi)]/abs(f(Pri) — f(PLi)) - d - Si; the interpolated stellar spectra for different spectrpesy
Step4. If an iteration meets the critical condition, the-pro |n Sectiord.2, we give a test of thBBF 4.+ interpolator

cess jumps out of the iterations. If nat- = 1,  and compare the interpolated spectraRBF,qatc and

P; = P, and the loop goes back to Step2. RBF18 interpolators based on the MILES stellar spectral

o ] _ library. In Sectiom.3 we give an analysis and a discussion
During iteration, the distance between the two antemhas for the behavior of th&BF ate interpolator in our test.

and the step length; changes slowly. In our calculation,
Siy1 =b-S;andA; = c¢- Sl b is a constant coeﬁ?cient 41 Results
close to 1 butless than 1 andbs also a constant coefficient.

Figure4 depicts the iteration process of thg, c¢1,c2)  For the sake of clarity, we only show the interpolated spec-
in the optimization. In this figure, 2000 iterations aretra of 12 stars with typical stellar atmospheric parameters
shown. The left panel displays the objective function outin Figure5. All of the interpolated spectra are normalized
put, in which red points are the objective function valuesto their V-band flux. The 12 panels are divided into four
of the RBF ,p4ate iNterpolator. As a comparison, the black rows, and each row corresponds to three input stars with
points are the objective function value of RBF18 inter-  different metallicitiegFe/H] = —0.5, 0 and0.5 (the cor-
polator in the same calculation. In the right panel, the cyamesponding atmospheric parameters are depicted in each
dashed line traces the movement trail of the ‘beetle’, angbanel). In the first row, the input stars withg = 20 000 K
the color nodes are the ‘beetle’ positions at differentiter andlgg = 4.2 correspond to massive main-sequence stars
tions. The node color corresponds to the number of iteraand have a great effect on tthé&band flux of the stellar
tions. We can find the result @&y, ¢1, c2) converges to a population integrated spectra with stellar population age
fixed value at last. The objective function of tRBFpqate less thanl07-® yr. In the second row, the input stars with
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Tes = 10000K andlgg = 4.3 correspond to medium star in the MILES library has a correspondMEpE value,
mass main-sequence stars and have a great effect on twhich we presentin Figuré
B-band flux of integrated spectra with stellar population Figure 7 plots the overall result of thaISE dis-
age less tham0®® yr. In the third row, the input stars with ripution. The top-left panel displays the result in the
Tess = 5000 K andlgg = 4.5 correspond to a large num- 1o 7. 1o ¢, [Fe/H] space. For the sake of clarity, the top-
ber of low-mass main-sequence stars in the stellar POPYight panel features the projection BISE on thelg Thg
lation. They have a significant effect on the integraiéd  andlg ¢ plane, the bottom-left panel depicts the projection
band spectra of the stellar populations. In the last row, thgp, thelg ¢ and [Fe/H] plane and the bottom-right panel
input stars with7.g = 4360 K andlgg = 2.0 correspond  ghowcases the projection on thelL¢ and[Fe/H] plane.
to red giant stars. They are very bright and have a greator each panel, thelSE value is characterized by the gray
effect on the infrared band flux of the older stellar populaqeye| and point size. We can find that most stars have rel-
tion’s integrated spectra. atively smallMSE values. An obvious difference exists in
In Figure6, we plot the positions of these stars (in Fig. parts of the lower-temperature region, especially forsstar
5) on theT,# andlg g plane (the green points). Moreover, at the edge of the low-metallicity red giant region.
we present three sets of isochrones at metall[€ity H] = For a more detailed analysis of tRBF ,pqate inter-
—0.5, 0.and0.5 to give the locations of the stellar popu- polator, eight representative stellar spectra are shown in
lations. For each set of isochrones, from left to right therigyres (the positions of those eight test stars are marked
stellar ages args (age/yr) = 7, 7.5, 8, 8.5, 9, 9.5and  py red “+” symbols in Figurd). In each panel of Figurg,
10 respectively. The isochrones only show stars from the|ack lines are the original spectrum of the test star, aad th
zero-age main sequence phase to the end of thermally pulgreen and red translucent lines are the interpolated spectr
ing asymptotic giant branch (TP-AGB) phase. The relativeyf ihe test star bRBF,paatc andRBF18 interpolators, re-
positions between stars and isochrones correspond to t@%ectively. The interpolated spectra of tRBF ,pqate in-
above analysis of Figurg. In this figure, the isochrones terpolator and a copy of the original spectrum are moved
are the results of MIST[otter 2016 Choietal. 2018 pwards for the reason of clarity. The stellar atmospheric
They are calculated by employing the stellar evolutionyarameters and theSE value also are expressed in each

code MESA paxton et al. 2012013 2015 2018§. panel. Here the combination of green and black spectra
provides the direct spectral performance of RI&F ,,qate
4.2 Testsand comparison interpolator, and the combination of red and black spectra

gives the direct spectral performance of RBF18 inter-
In this part, we test th&BFypqate interpolator based the polator. Panels (a-d) list the representative spectra sf ma
empirical spectral Iibrary MILES in Sectio¢12.l and we sive main sequence, medium mass main sequence, low-
provide a comparison between t(ARBF pdate aNARBF18  mass main sequence and red giant test stars. We can find

interpolators in Sectiod.2.2 the interpolated spectra have a good match with the orig-
inal spectra. Most of the test stars have similar results in
4.2.1 Test of the RBF,pqaqte iNterpolator our test, but there are still a few test stars that have bad

test results. Panels (e-h) display four typical spectra tha
We test theRBF,pqate interpolator based on the MILES exhibit bad performance BYBF pdat. andRBF18 inter-
stellar spectral library. In the test, we delete one membepolators. They are in the red giant (g-h) and low-mass main
star from the MILES stellar spectral library and use the resequence (e-f) regions. This bad performance will be dis-
maining spectra as a library to calculate the spectrum ofussed in SectioA.3.
the deleted star. Every star in the MILES library has been
tested by the above process, and the comparison betwegn Comparison with RBF18 interpolator
interpolated and original spectra is utilized to invediga

the interpolation performance of theBF pqate interpola- | this section, we give a comparison between the
tor (the same test is also done for the spectral interpolatquFupdate andRBF18 interpolators by the test in Section
RBF18). 4.2.1 For any test star in the MILES library, we use the
The MSE between interpolated and original spec-MSErgr,,.... — MSErBr1s t0 characterize the discrep-
tra is employed to characterize the differends8§E =  ancy. The mean squared erM6E is larger than zero, and
\/Z,\(fint.,)\ — fori,x)?/len(fori,n), Where fin,,» and the smaller value oMSE means a better match between
fori,x are the normalized flux on theth wavelength in- the interpolated and original spectra of a test star in the
terval of the interpolated and original spectra, respettiv  MILES library. So, the negative value dSErgr,, ... —
andlen(fori, ») is the array length of the spectrum. Every MSErgris means that th&BF ., qatc interpolator has a
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Fig.7 The MSERgF,,.... based on MILES spectral library. The top-left panel displéye result in stellar atmospheric
parameter space. The points mark the positions of test stadsthe grey level and point size characterize the testtresu
MSE of the RBF pdate interpolator. HereMSE is the mean squared error between the interpolated and ifieair
spectra of a test star. The top-right panel depicts the gliojeon thelg T andlg g plane, the bottom-left panel displays
the projection on théz g and[Fe/H] plane and the bottom right panel gives the projection ongties and[Fe/H] plane.
The red “+” symbols and the corresponding letters expresgdsitions of the stars for which their spectra are shown in
Figure8.

better performance, and the positive value means that tH@) and (b) in Figur® give two typical test results, and both
RBF18 interpolator has a better performance. two interpolators have small&iSE. In the dense part of

In Figure9, MSEggr.,,,... — MSEgprus is shown in  low-temperature main sequence and red giant regions, the
the stellar atmospheric parameter space. The top-left panBBFupdate interpolator has better performance than the
gives the result ifl.¢, lg g and[Fe/H] space. The other RBF18 interpolator with a loweMSE value. Two typi-
three panels list the corresponding three projections th&@l test spectra are shown in panels (c) and (d) in Figure
are the same as those in Figtéhe point size character- and the green interpolated spectra have a better match with
izes the absolute value OfSErgr, ... — MSErsris, the original spectra than the red ones.
the point color signifies the valu8ISEgrgr,, ...
MSEgrpr1s. Here, blue and red points mean negative and

positive values OMSEggr,,..... ~MSErgr1s, respective- However for some test stars on the edge of the low-
ly. temperature region, bofRBF ,,4ate andRBF18 interpo-
On the whole, the test results of theBF pqate iN- lators have bad performance. The spectra of four typical

terpolator are better than those of IRBF'18 interpolator.  test stars in those regions are displayed in panels (e-h) of
In the high temperature main sequence region, it does nétigure8, and a corresponding detailed analysis will be giv-
have an obvious difference for the two interpolators. Panelen in Sectiord.3
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Fig.8 The spectra of eight test stars in the MILES library are sigdiby the red “+” symbols in Figurg. The stellar
atmospheric parameters and the test r@difiEl of RBF,,4ate andRBF18 interpolators also are listed. For every panel,
three spectra are included. The black line is the originatspm of test stars in the MILES library. The green and red
translucent lines are the interpolated spectra of test iR BF ,,4.te andRBF18 interpolators, respectively. For clarity,
the interpolated spectra by tRBF 4.t iNnterpolator are shifted upwards, and the correspondiiggnal spectrum also

has a copy spectrum that is moved upwards by the same distdooeover, for avoiding overlap, the red and green lines
are translucent. The first four panels (a-d) list four repreative test spectra in different areas of stellar atimesp
space. Panels (e) and (f) express the representative leadateted spectra in the low-mass main sequence region. The
last two panels, (g) and (h) provide the representative hi@dgolated spectra in the red giant branch region.

4.3 Analysisof result the test stars in panels (e) and (f) are adjacent and those in

panels (g) and (h) are adjacent. From the Gaussian kernel
Here, we will give an analysis of the test result in Sectionfunction (Eq. 8)), we know that the spectrum of the ad-
4.2 On the whole, th&BF,qate interpolator has better jacent star has a bigger effect than the distant one in the
performance than thBBF18 interpolator in the spectral interpolated calculation. Therefore, in the test, the walc
interpolation calculation. However, it has bad perforneanc lation of the deleted spectrum depends largely on the ad-
at the edge of the low-temperature region. A typical examjacent spectra in the stellar atmospheric parameter space.
ple of bad performance is displayed in the last four panel§or the test star in panel (e), star f has a big effect, which is
of Figure8. Panels (e) and (f) show the test result of twothe reason the interpolated spectrum in panel (e) is similar
test stars at the edge of the low-temperature main sequentsethe original spectrum in panel (f). For the interpolated
region, and panels (g) and (h) depict the test result of twspectra in panels (f), (g) and (h), the situations are simila
test stars at the edge of the red giant region. The positions For the empirical stellar spectral library, we list three
of these four test stars are shown in Figdr&Ve can find possible reasons for the bad test results.
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9 The discrepancy in thBISE between th&RBF,,4ate andRBF18 interpolators based on the MILES library. The

points mark the positions of test stars. The color of poifitaracterizes the valuelSErgr, ... — MSErsris, the
blue points mean negative value and the red points meanvgogélue. The point size signifies the absolute value of

MSERBF

— MSEgrsgri1s. The top-left panel displays the result in 3D stellar atniese parameters, the top-right

update

panel gives the projection on theT.# andlg g plane, the bottom-left panel displays the projection origheand[Fe/H]
plane, and the bottom-right panel shows the projection eietli.¢ and[Fe/H] plane.

1.

The finite spectra face a complex change in some stel- For the first reason, more targeted observational da-
lar atmospheric parameter regions. It means that the are needed. For the second reason, more potential pa-
library is incomplete and does not include enough typ+ameters of spectra should be given for a more strict con-
ical spectra. straint on the spectra. For the third reason, the spectra in

. Three stellar atmospheric parameters cannot solely déie library need a more detailed derivation of atmospher-

termine the spectra. It means that one set of stellar ate parameters, and we give a test by utilizing those self-
mospheric parameters in 3D space corresponds to seeensistent stellar atmospheric parameters. Here we con-
eral potential spectra with obvious differeA¢similar ~ sider a relatively new result oBharma et al(2016 to

to the description i\rentsen et al. 2019 test this idea. InSharma et al(2016, ~ 300 cool stars

. The stellar atmospheric parameters are not selfin the MILES library were refined. We replace the corre-

consistent. The stellar spectra do not vary with the stelsponding parameter of the MILES library by the results of
lar atmospheric parameters by a one-to-one relation Sharma et al(2016, and use them to teSBF paate IN-

3

elements in the stellar atmosphere. This problem does metdraobvious

terpolator as did in Sectiof.2.1 In Figurel0, we display

An example is thafFe/H] cannot describe the ratio of the different L .
fre/H] the test results. The top panel shows M8E distribution

effect on the high-temperature region, but cannot be ighorehe low-  of test stars based on the MILES library with the original

temperature region.

4

A simple example is that a smooth change of the spectra in¢hie s adding a set of random biases in the stellar atmosphericrgtess in the

lar atmospheric parameter space can be broken and becorseg e  library.
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35 straint expresses the relation betweendhaf a Gaussian
kernel function and the sample spatial density in the pa-
rameter space.

Cenarro et al. 2007 o @

i Moreover, we also consider the anisotropic kernel
function by relating it to the inhomogeneous distributidn o
stars in the stellar atmospheric parameter space. We use the

25 local axial direction dispersion to determine the anisoto
kernel function (Eqg. 11)). By including three control pa-
rametersy, c1, co, We can get an RBF network for spectral

: 2.0 interpolation calculation. Here we call it &BF date iN-

terpolator. The BAS search algorithm is applied to search

for the best control parametetg c1, co by matching with

L 15 the semi-empirical BaSelL-3.1 stellar spectral library.

Ig {g/lcm -s72))

Cenarro et al. 2007
+ Sharman et al, 2016

MSERBF,

: We also use a test to analyze the performance of the
RBF paate interpolator based on the MILES stellar spec-

10 tral library. In the test, we select any star in the MILES
library as the test object and compare the original with the
interpolated spectra which is calculated by RIBF ,,gate

1 Los interpolator based on the remaining stellar spectra in the

MILES library. We find that theRBF, pqate interpolator

has a good performance in general except for some test s-

L oo tars at the edge of the red giant and low-temperature main

sequence regions (Fig).

. o Three possible reasons can cause bad performance for
Fig.10 The MSE distribution of the test for the

RBF a0 interpolator on thag Tog andlg g plane. The empirical stellar spectral library. The firstis the incoetgl
u ate € . . .
top p§nel is the same as the top-right panel of Figre spectral coverage in the stellar atmospheric parameter s-

and gives the resultinyISE distribution of the test which Pace, the second is the existence of potential atmospheric
is based on the MILES library with its original stellar at- parameters and the third is inconsistent atmospheric pa-

mospheric parameter€énarro et al. 2097In the bottom  rameters. For the first two reasons, more observations are

Fhini/ll’ll\ivléessiig\rl;rtha\/ilﬁﬁ ?fiztrégliig)crieog tchoeoiessjéiigrsigrgg_ needed and additional atmospheric parameters should be
spheric parametgr§harma etal. 2096For every panel included in the stellar spectral library. For the last reaso

the grey level and the size of points characterizeMisE the modified stellar atmospheric parameters of the stellar
values. spectral library are needed. Moreover, we also provide a

comparison between theBF,,4atc interpolator and our
stellar atmospheric parameteenarro et al. 20971t is  early work inCheng et al(2018. The results show that
the same as the top-right panel in Figi@rend the bottom the RBF ,4ate interpolator has an obvious improvement,
panel features the MES distribution of the test based omxcept for the edge of the low-temperature region (8jg.
the MILES library with replaced stellar atmospheric pa-The same reasons make both interpolators not have a good
rameters of the cool starSllarma et al. 2036An obvi-  performance in these regions.
ous improvement appears in the bottom panel. This result At last, the code oRBF 4.t interpolator is written
demonstrates the self-consistent parameters of theibrain Python and you can find it 4ttp://www1.ynao.
are important for the spectral interpolation calculation.  ac.cn/ ~zhangfh/ . The code can be implemented for
different libraries and a user can apply it with the modi-
5 CONCLUSIONS fied stellar spectral library by adding additional spectra o

updating the stellar atmospheric parameters of the library
In stellar population synthesis models, the empiricalatel

spectral library is necessary for the integrated specttasof

stellar populations. In this work, we improve the RBF net-Acknowledgements This project was partly supported by
work by Comparing with the other kernel methods (SPHéhe Chinese Natural Science Foundation (grants 11973081,
and likelihood approximation) and give an upgraded Spec11573062 and 11521303), Youth Innovation Promotion
tral RBF interpolator. We include a constraint related ® th Association (grant 2012048) and the Yunnan Foundation
kernel function (Eq. 7)) in the RBF network. This con- (grant2011CI053).

Ig{gicm -s72))

T T T T T T T
4.6 4.4 4.2 4.0 3.8 3.6 3.4
g (Terr/K)


http://www1.ynao.ac.cn/~zhangfh/
http://www1.ynao.ac.cn/~zhangfh/

148-14 L.-T. Cheng & F.-H. Zhang: An Upgraded Spectral Interpolator Base on RBF

References Lowe, D. 1989, in 1989 First IEE International Conference on
Artificial Neural Networks, (Conf. Publ. No. 313), 171
Arentsen, A., Prugniel, P., Gonneau, A., et al. 2019, A&A762  \1acQueen, J. 1967, Some methods for classification and anal-
A138 ysis of multivariate observations., Proc. 5th Berkeley Sym

B'Ck”e:' G. V., & Gingold, R. A. 1983, ApJ, |273’ 749 Math. Stat. Probab., Univ. Calif. 1965/66, 1, 281-297 (1967
Broomhead, D. S., & Lowe, D. 1988, Complex Systems, 2, 321 Micchelli, C. A. 1986, Constructive Approximation, 2, 11

Bruzual, G., & Chariot, 5. 2003, MNRAS, 344, 1000 Molla, M., Garcia-Vargas, M. L., & Bressan, A. 2009, MNRAS
Cenarro, A. J., Peletier, R. F., Sanchez-Blazquez, Bl, €007, 398 451

ChMNRYASP’ 3;4’ 6648 C. Peletier. R.F.. et al. 2014. A Owen, J. M., Villumsen, J. V., Shapiro, P. R., & Martel, H. 899
en, Y.-P., Trager, S. C., Peletier, R. F., et al. , ABBS, ApJS, 116, 155

C:117L Zh £ K % &W L 2018 MNRAS. 476 Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192,
eng, L., zhang, i, kang, 2., ang, L. ’ ’ ' Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 2D8,

4071 Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 20,
Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102 Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 284, 3
Ding, C. H. Q., & He, X. 2004, in ACM International Conference pqyell, M. J. D. 1987, Radial Basis Functions for Multivétia

Proceeding Series, Vol. 69, Machine Learning, Proceedings Interpolation: A Review, Algorithms for Approximation
of the Twenty-first International Conference (ICML 2004), (USA: Clarendon Press), 143

Banff, Alberta, Canada, July 4-8, 2004, ed. C. E. Brodley Prugniel, P., & Soubiran, C. 2001, A&A, 369, 1048

(ACM) Prugniel, P., Vauglin, I., & Koleva, M. 2011, A&A, 531, A165
Dotter, A. 2016, ApJS, 222, 8 Sanchez-Blazquez, P., Peletier, R. F., Jiménez-\igehi et al.
Gonzalez Delgado, R. M., Cervifio, M., Martins, L. P., beiter, 2006, MNRAS, 371, 703

C., & Hauschildt, P. H. 2005, MNRAS, 357, 945 Shapiro, P. R., Martel, H., Villumsen, J. V., & Owen, J. M. 699
Jiang, X., & Li, S. 2017, arXiv:1710.10724 ApJS, 103, 269

Kurucz, R. L. 1992, in IAU Symposium, Vol. 149, The Stellar sharma, K., Prugniel, P., & Singh, H. P. 2016, A&A, 585, A64
Populations of Galaxies, ed. B. Barbuy & A. Renzini, 225 Westera, P., Samland, M., Bruzual, G., & Buser, R. 2002,

Kurucz, R. L. 2014, Problems with Atomic and Molecular  Astronomical Society of the Pacific Conference Series, Vol.
Data: Including All the Lines, Determination of Atmospleri 274, The BaSeL 3.1 models: metallicity calibration and appl

Parameters of B, 63 cation, ed. T. Lejeune & J. Fernandes, 166
Le Borgne, J. F,, Bruzual, G., Pello, R, et al. 2003, A&A240 wu, Y., Luo, A. L., Li, H.-N., et al. 2011, RAA (Research in
433 Astronomy and Astrophysics), 11, 924

Lejeune, T., Cuisinier, F., & Buser, R. 1997, A&AS, 125, 229 Zhang, F., Li, L., Han, Z., Zhuang, Y., & Kang, X. 2013,
Lejeune, T., Cuisinier, F., & Buser, R. 1998, A&AS, 130, 65 MNRAS. 428. 3390



	Introduction
	Method
	RBF network and interpolator
	Gaussian kernel function in the upgraded RBF interpolator
	The constraint on  and its size calculation
	Anisotropic Gaussian kernel function

	Summary of the method

	Optimizing the RBF network control parameters
	Result and analysis
	Results
	Tests and comparison
	Test of the RBFupdate interpolator
	Comparison with RBF18 interpolator

	Analysis of result

	Conclusions

