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Abstract Stellar population synthesis is an important method in galaxy and star-cluster studies. In stellar
population synthesis models, a stellar spectral library isnecessary for the integrated spectra of the stellar
population. Usually, the stellar spectral library is utilized for the transformation between the stellar atmo-
spheric parameters and stellar spectrum. The empirical stellar spectral library has distinct advantages over
the theoretical library. However, for the empirical spectral library, the distribution of stars is irregular in
the stellar atmospheric parameter space, which makes the traditional interpolator difficult to get accurate
results. In this work, we will provide an improved radial basis function interpolator which is implemented to
obtain the interpolated stellar spectra based on the empirical stellar spectral library. For this interpolator, we
use the relation between the standard varianceσ in the Gaussian radial basis function and the density dis-
tribution of stars in the stellar atmospheric parameter space to give the prior constraint on thisσ. Moreover,
we also consider the anisotropic radius basis function by the advantage of the local dispersion of stars in
the stellar atmospheric parameter space. Furthermore, we use the empirical stellar spectral library MILES
to test this interpolator. On the whole, the interpolator has a good performance except for the edge of the
low-temperature region. At last, we compare this interpolator with the work in Cheng et al., and the inter-
polation result shows an obvious improvement. Users can apply this interpolator to retrieve the interpolated
spectra based on the stellar spectral library quickly and easily.

Key words: stars: fundamental parameters—stars: atmospheres—(Galaxy:) globular clusters: general—
methods: numerical

1 INTRODUCTION

A stellar population synthesis model is important in astro-
nomical research. Most of the observational data are from
stars, and these data can be applied in the study of system-
s of stars (galaxies, star clusters, etc.). Stellar population
synthesis modeling is a widely utilized tool in this kind of
study because the stellar population is the basic ingredien-
t in a system of stars. Moreover, the integrated spectrum
of a stellar population contains a large amount of effective
information, so the calculation of integrated spectra is nec-
essary for stellar population synthesis models.

In the widely used evolutionary population synthe-
sis models (Bruzual & Charlot 2003; Mollá et al. 2009;

Zhang et al. 2013, etc.), the below three key components
are incorporated for the integrated spectra of the stellar
populations. 1. initial mass function (IMF), which pro-
vides the relative number for stars with an initial massM ;
2. isochrone library, which is derived from the stellar evo-
lution model and is used to give the stellar parameters (in-
cluding the atmospheric parameters) for stars in a stellar
population; 3. the stellar spectral library, which is utilized
to convert the stellar atmospheric parameters to the stellar
spectra. At last, the integrated spectrum of stellar popula-
tion is the sum of the stellar spectrum.

The stellar spectral library gives a correspondence be-
tween the stellar atmospheric parameters and the spec-
trum. A stellar spectral library can be divided to t-
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wo kinds: theoretical and empirical libraries. The the-
oretical spectra are calculated from the stellar atmo-
sphere model (Kurucz 1992; González Delgado et al.
2005, etc.), while the empirical spectra are from obser-
vations (Prugniel & Soubiran 2001; Le Borgne et al. 2003;
Sánchez-Blázquez et al. 2006; Chen et al. 2014, etc.).

For the empirical and theoretical spectral libraries,
each one has its own advantages and disadvantages.
Because the theoretical spectra are calculated from the at-
mospheric model, and they have larger coverage in range
of wavelength, spectral resolution and stellar atmospheric
parameters. However, they are limited by the incomplete
atomic- and molecular-line lists, the uncertain abundance
pattern, the assumption and idealized treatment in the mod-
el calculation, and so on (Kurucz 2014). Unlike the theo-
retical spectral library, the empirical spectra are from ob-
servations, they have limited wavelength, resolution, noise
and error that is increased from observation and data pro-
cessing (e.g. flux calibration and stellar atmospheric pa-
rameter extraction). They avoid many disadvantages of the
theoretical spectra. The theoretical and empirical stellar
spectral libraries are complementary.

Because the stars in a spectral library are discrete,
we need an interpolator to produce the spectra of any set
of possible stellar atmospheric parameters. The distribu-
tion of stars in theoretical spectral libraries has less at-
mospheric parameter limitations and usually is dense and
regular. Under this situation, the classical linear interpo-
lation method can produce a reliable interpolation result.
However, for the empirical stellar spectral library, the s-
tars are discrete in the atmospheric parameter space, and
this irregular distribution makes the traditional interpola-
tor difficult to produce the expected interpolation results.
Therefore, in the work ofCheng et al.(2018) we construct-
ed an interpolator based on a radial basis function (RBF)
network to get stellar spectra in the stellar population syn-
thesis model. The algorithm is different from those using
polynomial form (e.g.Wu et al. 2011and Prugniel et al.
2011).

The interpolator based on the RBF network is called
the RBF interpolator in this text. The computational for-
mula for the RBF interpolator (Eq. (3)) is similar to the
formula for a field in the smoothed particle hydrodynamics
(SPH) simulation and the formula for the expected num-
ber in the likelihood estimation. All of them are based
on calculations of the kernel functions. In this work, a
Gaussian function is implemented as the kernel function as
expressed in Equation (5), and theσ is the standard devia-
tion used to characterize the effective region of the kernel
function.

For the RBF interpolator, the kernel function does not
have any strict constraint, and the different settings of the

kernel functions will influence the interpolation results.If
all the Gaussian kernel functions have the sameσ, a rela-
tively smallσ in the sparse area will make the interpola-
tion results be discrete, however, a relatively largeσ in the
dense area will oversmooth the interpolation results (lack
detailed information). In the work ofCheng et al.(2018),
the local average distance is utilized to give theσ for the
Gaussian kernel function. This is because the distribution
of stars in the spectral library is non-homogeneous in the
stellar atmospheric parameter space.

In this work, we compare the interpolation calculation
of the RBF network with the calculation of the density field
in SPHs. Under this comparison, we include a constraint
about theσ in the Gaussian kernel function of RBF net-
work from the relation between the smoothing length and
the density in SPHs. Under this constraint, the size ofσ

for each kernel function is related to the local density of
sample points in the parameter space. We apply this con-
straint to replace the coarse determination aboutσ in the
work of Cheng et al.(2018) for the RBF network Gaussian
kernel function. Moreover, same as in SPHs, the spher-
ically symmetric kernel function usually is not a better
selection (Bicknell & Gingold 1983; Shapiro et al. 1996;
Owen et al. 1998). We will refer to the process of adaptive
smoothed particle hydrodynamics (ASPH) simulation and
take an anisotropic kernel function in the RBF interpola-
tion calculations. As a result, we will present an upgraded
RBF interpolator which can be employed for the spectral
calculation based on the empirical stellar spectral library.

The outline of this paper is as follows. In Section2,
we briefly introduce the RBF network and its structure,
then explain the constraint on the kernel function applied
in this work and constructing the anisotropic kernel func-
tion in the RBF network. In Section3, we implement the
Beetle Antennae Search algorithm (Jiang & Li 2017, here-
after BAS) to search for the best kernel function param-
eters. In Section4, we present the interpolation spectra
and test this upgraded RBF interpolator by employing the
medium-resolution Isaac Newton Telescope library of em-
pirical spectra (hereafter MILES,Sánchez-Blázquez et al.
2006; Cenarro et al. 2007), and compare it with our previ-
ous work inCheng et al.(2018). At last, in Section5, we
give the conclusion of this work.

2 METHOD

In the stellar population synthesis model, the stellar spec-
tral library provides a fast way to get the spectra of any
star compared with direct calculation by the stellar atmo-
spheric model. This process is a fitting or an interpolation
process of the spectra in the stellar atmospheric parameter
space (usually it includes three parameters: effective tem-
peratureTeff , logarithmic surface gravity accelerationlg g



L.-T. Cheng & F.-H. Zhang: An Upgraded Spectral Interpolator Base on RBF 148–3

Fig. 1 The three-layer structure of an RBF network is illus-
trated. The left part is the input layer andx (x1, x2, ..., xD)
is the input sample coordinate in theD-dimensional s-
pace. The middle part is a hidden layer that is consti-
tuted by RBF functionsKi(x − µi), i = 1, 2, 3, ...,m,
µi (µ1, µ2, µ3, ..., µD)i is the central coordinate ofKi(x−
µi) in theD-dimensional space andm is the number of
RBF functions in the hidden layer. The right part is the
output layer andy is the prediction value which is the sum
of RBF function multiplied by the corresponding weight
factorc (c1, c2, c3, ..., cm).

and metallicity[Fe/H]). The stellar spectral library gives
a correspondence between stellar atmospheric parameters
and stellar spectra.

In this section, we will provide a detailed introduction
of the RBF network and the upgraded RBF interpolator in
our work. In Section2.1, we explain the RBF network and
its calculation process as an interpolator (RBF interpola-
tor). In Section2.2, we describe the kernel function of the
upgraded RBF interpolator in our work. In Section2.3, we
give a summary of the upgraded RBF interpolator in our
work.

2.1 RBF network and interpolator

An early introduction of RBF interpolator can be found in
Powell(1987). Broomhead & Lowe(1988) introduced the
RBF into an artificial neural network (ANN) framework.
Up to now, the RBF interpolation and fitting method has
been applied widely in many fields (such as mineral anal-
ysis, aircraft design, image processing and pattern classifi-
cation).

An RBF interpolator can be thought as an applica-
tion of an RBF network which is a kind of kernel method.
An RBF is also called a kernel function in this paper.
The construction of an RBF network is diagrammed in
Figure 1. Moreover, the sample in this work is a set of
points with the coordinate set{x1,x2, ...,xi, ...,xN} and
the values{y1, y2, ..., yi, ..., yN} (xi (x1, x2, ..., xD)i are
the i th sample point coordinate inD-dimensional space.
In this paper, we use{} to represent a set in mathematics.

From Figure1, we can find the RBF network con-
sists of three layers. The left is the input layer and

x (x1, x2, ..., xD) is the input point coordinate. The middle
is the hidden layer which is constituted by kernel functions
Ki(x − µi) (i = 1, 2, ...,m) andµi (µ1, µ2, µ3, ..., µD)i
is the central coordinate of thei th kernel function inD-
dimensional space. The right is the output layer which is
the sum of the kernel function multiplied by the weight
factor (y =

∑m
i=1 ci ·Ki(x−µi)) and the size of the out-

put layer has no limitation. In the spectral interpolation,y

is the flux within a given wavelength interval. It is a one-
dimensional scalar, and the interpolation spectrum consists
of the interpolated fluxes at different wavelengths.

For a sample with a huge size (N ), a fast RBF net-
work can be constituted by a much smaller number of k-
ernel functions in the hidden layer (m ≪ N ). Usually, the
K-means clustering method (MacQueen 1967; Ding & He
2004) is used to search for the kernel central coordinates
µi (i = 1, 2, 3, ...,m), then a linear regression method is
applied to get the weight factor arrayc (c1, c2, c3, ..., cm)

for the sample set{(x, y)i, i = 1, 2, 3, ..., N}.
The empirical stellar spectral library usually compris-

es several hundred or thousands of spectra. So in our work,
the number of kernel functionsm is set to be same as the
sample numberN . Moreover, we do not need the calcu-
lations with K-means and the linear regression. We take
the sample points as the centers of the kernel functions
directly in the spectral RBF interpolator (µi = xi, i =

1, 2, 3, ..., N ). The weight factor arrayc of the kernel func-
tion in the hidden layer is obtained by solving the system
of linear equations

N∑

j=1

Kj(xi − xj) · cj = yi (i = 1, 2, 3, ..., N) . (1)

In our works, the Gaussian kernel function
e−

∑D
d=1(xd−µd)

2/(2σ2) is utilized,

Kj(xi − xj) = e

−

∑D
d=1(xd,i−xd,j)

2

2σ2
j , (2)

wherexd,i andxd,j are the coordinates of thei th and
j th sample point in theD-dimensional space (d =

1, 2, 3, ..., D). The central coordinate of thej th kernel
functionKj is xj , andσj is the standard deviation of the
j th kernel functionKj which can be applied to charac-
terize the influence range of the kernel function.cj is the
weight factor of thej th Gaussian kernel function. Solving
the linear Equation (1), we can arrive at the weight factor
arrayc, if sample coordinates in set{x1,x2,x3, ...,xN}
are different from each other1. After obtainingc, we can
get a simple formula for the interpolation calculation,

y(x) =

N∑

j=1

Kj(x− xj) · cj , (3)

1 For a Gaussian kernel function, this conclusion can get a fixed factor
arrayc from the Micchelli theorem (Micchelli 1986)
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Fig. 2 A example of the 2D spatialσ distribution for the
kernel function. Black points are the centers of the kernel
functions ({µi, i = 1, 2, 3, ...,m}). From left to right and
from bottom to top, the density of points decreases. The
radius of black rings characterize theσ influence range
for the classical RBF network. Red ellipses characterize
a more reasonable influence range of kernel functions for
anisotropic distribution.

wherex is the input coordinate andy(x) is the interpola-
tion result. For spectral interpolation calculation,x andy
correspond to the stellar atmospheric parameter and the in-
terpolated flux within a wavelength interval, respectively.

The RBF network is based on the kernel functions.
However, a constantσ is usually used for all the Gaussian
kernel functions (Lowe 1989). For the irregular distribu-
tion of stars in the stellar spectral library, the choice of all
the kernel functions having the sameσ is not a better se-
lection. Next, we will introduce the kernel function in our
spectral RBF interpolator.

2.2 Gaussian kernel function in the upgraded RBF
interpolator

The constantσ in the Gaussian kernel functions has a dis-
advantage: largeσ for the kernel function makes the inter-
polation results oversmoothed in a dense area, and a rela-
tively smallσ makes the interpolation results discrete in a
sparse area. In Figure2, we present an example of a two-
dimensional (2D)σ distribution, in which the black points
are the centers of the kernel functions{µi, i = 1, 2, 3, ...},
and the spatial density decreases from left to right and bot-
tom to top, and an anisotropic distribution exists in the top-
left and bottom-right parts. The black rings characterize the
influence range of kernel functions in the traditional RBF
network and the red ellipses signify a better choice for the
anisotropic kernel functions.

Stars in the empirical spectral library face a more com-
plex situation than Figure2. The distribution is nonunifor-
m and its density varies significantly in the stellar atmo-
spheric parameter space (a typical situation can be found

in Figure3). This situation results from observational and
theoretical limitations2. In our work, we set a constraint
by including a relation between theσ and the spatial den-
sity of sample points in the RBF network, and this relation
can be used to determine theσ value. Moreover, we also
consider the anisotropy of the kernel function in the RBF
network by referring to the ASPHs.

In Section2.2.1, we give an introduction to the con-
straint onσ. In Section2.2.2, we show generic Gaussian
kernel function for the anisotropic situation in our works.

2.2.1 The constraint on σ and its size calculation

In this part, we introduce the smoothing length constraint
of SPHs into the RBF network. Under this constraint, we
explain the computing method ofσ for the kernel function
in the RBF network.

In the SPHs, the sample consists of particles with
the coordinate set{xi, i = 1, 2, 3, ..., N} and mass set
{mi, i = 1, 2, 3, ..., N}, in whichxi andmi are the po-
sition and mass of thei th particle respectively. The fluid
densityρ in the positionxi is

ρi ≈
N∑

j=1

mj ·Wij (i = 1, 2, 3, ..., N), (4)

whereN is the number of particles,Wij is a ·K(xi −xj)

anda is the normalized coefficient. We utilize the Gaussian
kernel function

Wij =
1

(
√
2πσj)D

· e
−

∑D
d=1(xd,i−xd,j)

2

2·σ2
j , (5)

whereD is the spatial dimension andσj is the smoothing
length of thej th kernel function. Replacingmj with ρjVj ,
whereVj is the volume of thej th particle in SPHs, we
have

ρi ≈
N
∑

j=1

ρj ·Vj ·Wij =
N
∑

j=1

ρj ·Vj ·
1

(
√
2πσj)D

·e

−

∑D
d=1(xd,i−xd,j)

2

2·σ2
j .

(6)

The fluid density varies with time. A better smooth-
ing length should vary dynamically. Usually,σ = σ0 ·
(ρ0/ρ)

1/D is utilized to give the current smoothing length
(σ0 andρ0 are initial values of SPHs). This relation yields
a constraint on theσ by spatial density of sample points.
Here, we apply this relation in the kernel function of the

2 For spectroscopic observations, only solar neighborhood stars can
be observed with high quality. In stellar theory, the brightstars allows
having a short evolutionary time scale. Both of them make theobserved
spectral sample have an obvious selection effect
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RBF network at different positions (in the stellar atmo-
spheric parameter space). We provide the constraint about
σ,

σ ∝ ρ
−1
D ∝ V

1
D , (7)

whereV is used to characterize the particle volume which
is related to the influence range of the kernel function.
Usually, the dimension numberD is 3 for the stellar spec-
tral library.

Now, including the constraint (formula (7)) in
Equation (6), we have

ρi ≈
N∑

j=1

ρj ·
c0

(
√
2π)D

·e
−

∑D
d=1(xd,i−xd,j)

2

2·σ2
j (i = 1, 2, 3, ..., N),

(8)
wherec0 ≡ V/(σD). Equation (8) yields a set of nonlinear
equations forσ. However, they are difficult to solve.

To simplify Equation (8), we approximate
Equation (8) to the following expression by replac-
ing j with i for the subscripts ofσ andρ,

1 ≈
N∑

j=1

c0

(
√
2π)D

· e
−

∑D
d=1

(xd,i−xd,j)
2

2·σ2
i (i = 1, 2, 3, ..., N) .

(9)
This is becauseρ andσ are continuous and the adaptive k-
ernel function (here, it is a Gaussian function) is for a local
region. The terms in the equation become independent of
each other. From Equation (9), we can apply the bisection
method to calculateσi(i = 1, 2, 3, ..., N) quickly. In this
process, theσ can be adjusted by the control parameterc0.
From Equation (9), we can knowc0 is within the interval
of ((2π)D/2/N, (2π)D/2], and its upper and lower limits
correspond to∞ and0 respectively forσ.

In Figure 3, we display the resultingσi (i =

1, 2, 3, ..., N ) for the dimensionless stellar atmospheric pa-
rameter of the MILES library. In this work, the coordinates
(Teff , lg g, [Fe/H]) are dimensionless which are expressed
in the units of mean squared error (hereafterMSE). The
size ofσ is relatively large in the sparse area and small in
the dense area.

We should also notice that theσi in Equation (9) is a
scalar, which corresponds to the isotropic kernel function.
In fact, the anisotropic distribution of stars in the stellar
atmospheric parameter space is common for the empirical
spectral library (displayed in Fig.3).

2.2.2 Anisotropic Gaussian kernel function

This part gives the introduction of the anisotropic kernel
function by generalizing the Gaussian kernel function.

In SPHs, the fluid varies with time and the deforma-
tion usually is not isotropic. For an anisotropic deforma-
tion, the isotropic kernel function usually is not able to give

Fig. 3 The size ofσ in the kernel function for the MILES
stellar spectral library. The coordinates of black points
are the dimensionless stellar atmospheric parameters of
the MILES library (Teff/MSETeff

, (lg g)/MSElg g and
[Fe/H]/MSE[Fe/H], and theMSE is the mean squared
error function). The radius of semitransparent spheres
around black points characterizes the correspondingσ.

a better smoothing effect as shown in Figure2. Similarly,
Bicknell & Gingold (1983) have even considered a kernel
function with different smoothing lengths in they andz
axis directions in a tidal destr simulation. Moreover, the
generalized anisotropic kernel function has been discussed
by Shapiro et al.(1996) andOwen et al.(1998).

The anisotropic kernel function is the generalization
of the isotropic Gaussian kernel function. If we letM2

iso

be
∑3

d=1(xd − µd)
2/(2σ2), which is the exponential part

of the isotropic Gaussian kernel function, then the corre-
sponding vectorManiso of anisotropic kernel function can
be described by the following

Maniso = T · (x− µ) =
3

∑

k=1

Tdk · (xk − µk) (10)

=





T11 T12 T13

T21 T22 T23

T31 T32 T33









x1 − µ1

x2 − µ2

x3 − µ3





=





Z11 0 0
0 Z22 0
0 0 Z33









R11 R12 R13

R21 R22 R23

R31 R32 R33









x1 − µ1

x2 − µ2

x3 − µ3





(d = 1, 2, 3),

whered andk are the dimensional subscripts, and the ma-
trix T is a linear translation (fromx − µ to Maniso). The
generalized Gaussian kernel function result can be written
ase−M2

aniso .

Matrix T can be separated into two partsT = Z · R
as is evident in Equation (10). The diagonal matrixZ is
utilized to provide a scaled transformation along the ax-
is, the matrixR is constituted by three orthogonal bases
and preforms a rotational transformation. BothZ andR
change with the position of kernel function centerµ in the
stellar atmospheric parameter space. The isotropic kernel



148–6 L.-T. Cheng & F.-H. Zhang: An Upgraded Spectral Interpolator Base on RBF

function can be recovered by settingI = R =
√
2σ · Z,

whereI is an identity matrix.

In the stellar spectral library, most stars are distributed
along the main sequence and in the red giant region. These
two parts are distributed almost along theTeff andlg g axis
directions, and the distribution of stars in different[Fe/H]

ranges only have a slight bias. Therefore, in most cases, the
anisotropy is in the axis direction. To simplify the calcula-
tion process, in this work we ignore the rotational matrix
R by settingR = I and only considerZ11, Z22 andZ33

in the generic Gaussian kernel function.

The degree of anisotropy for the kernel function is de-
pendent on the ratio ofZ11, Z22 andZ33. In our work,
the axial local dispersionD is used to give thẽZ for any
kernel function with central coordinateµ,

Zdd ∝ Z̃dd = c1 +
(1− c1)Dd

(
∑3

d=1 D
2
d)

1/2
(d = 1, 2, 3),

Dd =

√√√√
N∑

i=1

(xd,i − µd)2 · e
−

∑3
d=1

(xd,i−µd)2

2σ2

(11)
wherec1 is a control parameter which is utilized to adjust
the degree of anisotropy and the Gaussian function is em-
ployed to limit the calculation in the local region. So after
the calculation of Equation (11), we can know the ratio of
Z11, Z22 andZ33 in the matrixZ for all kernel functions
and get the corresponding normalized matrixZ̃. The last
Z is obtained by solving the Equation (9) again with the
anisotropic kernel functione−[Z̃(x−µ)]2 .

2.3 Summary of the method

Here, we provide a summary of the mathematical process
of the RBF interpolator in this work. In general, as illus-
trated in Figure1, there are two key parts for the RBF net-
work that need to be considered, one is the kernel func-
tions {K1,K2,K3, ...,KN}, the other is the coefficients
arrayc. For the latter,c can be obtained by solving the
system of linear equations (1) for the given kernel func-
tions and the sample{(x, y)i, i = 1, 2, 3, ..., N}. Next, we
will list the determination process of the RBF kernel func-
tions{K1,K2,K3, ...,KN}.

First of all, we use the stellar spectral library as
the sample of the RBF network,{x1,x2,x3, ...,xN , }
corresponds to the stellar atmospheric parameters and
{y1, y2, y3, ..., yN} corresponds to the flux. We select the
Gaussian kernel function and set the central coordinates
of all kernel functions as the coordinates of the sample
(µi = xi, i = 1, 2, 3, ..., N ). Next, for thei th kernel func-
tion (i = 1, 2, 3, ..., N ), three steps will be executed.

1. Solving Equation (9) to get σiso,i of the isotropic
Gaussian kernel function. In this step, we include pa-
rameterc0 for all points.

2. Inputtingσiso,i in Equation (11) and calculating the
matrix Z̃i. In this step,c1 is utilized to control the de-
gree of anisotropy of kernel functions.

3. Rewriting the exponential part of Equations (9) by
e−[Z̃(x−µ)]2 and solving it, we can obtain the lastZi

andTi (in this step, a new parameterc2 is included
which corresponds toc0 in the first step).

After those three steps, we arrive at the last kernel function
of the RBF network, then solve the system of Equations (1)
to obtain the weight factor arrayc. At last, we get the last
RBF network, and the calculation of spectral RBF interpo-
lator corresponds to Equation (3).

The three control parametersc0, c1, c2 are included,
and the optimization calculation of these parameters is
shown below. For distinguishing the RBF interpolator in
Cheng et al.(2018) from that in this work, we name these
two spectral RBF interpolatorsRBF18 andRBFupdate.

3 OPTIMIZING THE RBF NETWORK CONTROL
PARAMETERS

We can control the RBF network by adjusting the control
parameters(c0, c1, c2) (Section2.3). In this section, we
will introduce the optimization process of these three con-
trol parameters.

In this work, the MILES library is applied to build the
spectral RBF interpolatorRBFupdate. The MILES empir-
ical stellar spectral library includes∼ 1000 stars obtained
with the 2.5m Isaac Newton Telescope. The wavelength
ranges from3540.5 to 7409.6 Å and the spectral resolu-
tion is ∼ 2.3 Å (Sánchez-Blázquez et al. 2006, FWHM).
The coverage of the stellar atmospheric parameters is:
2748 < Teff < 36000K, 0.00 < lg g < 5.50 and
−2.93 < [Fe/H] < +1.65. The MILES spectral library
has a larger coverage in the parameter spaces than the other
empirical stellar spectral libraries used in the stellar popu-
lation synthesis models (Cenarro et al. 2007).

In this work, we utilize the semi-empirical BaSeL-
3.1 stellar spectral library (Lejeune et al. 1997, 1998;
Westera et al. 2002) as the reference library to find the
best control parameters of theRBFupdate interpolator.
BaSeL-3.1 is one of the widely used spectral libraries.
It provides an extensive and homogeneous grid of low-
resolution spectra in the range of91 − 1 600 000 Å for a
large range of stellar parameters:2000 < Teff < 50 000K;
−1.02 < lg g < 5.5 and−5.0 < [Fe/H] < 1.0.

For avoiding extrapolation of the spectral RBF inter-
polator, the input parameter should be within the cover-
age area of stars in the MILES library. So in the BaSeL-
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3.1 library, only those models within the coverage area
of MILES library are used here. A Gaussian smoothing
algorithm is applied to degrade the resolution of the out-
put spectra to20 Å (the resolution of BaSeL-3.1 in visible
wavelength). Iterative calculation is employed in the op-
timization. In each iteration, hundreds of stars in BaSeL-
3.1 are selected as the input sample, and the output in-
terpolation spectra are utilized to compare with the origi-
nal spectra in BaSeL-3.1. The average value of the mean
squared error between interpolated spectra and original
spectra in BaSeL-3.1 is implemented as an objective func-
tion f(c0, c1, c2) in the optimization process, and the best
(c0, c1, c2) corresponds to the minimum off(c0, c1, c2).

Many widely used optimization algorithms need mas-
sive computational capability to obtain the best(c0, c1, c2).
BAS algorithm is selected (Jiang & Li 2017), which is a
new and light algorithm by simulating the beetle behavior.
In this work, the process of the BAS search is in three-
dimensional (3D) space of(c0, c1, c2) and comprises four
steps.

Step1. Setting the initial position of the ‘beetle’P0, the
initial distance of two antennasA0 and the initial step
lengthS0. For thei th iteration, it is referred to asPi,
Ai, Si;

Step2. Generating a unit vectord with random direction,
d is used to give the relative position of two antennas.
Then, the left antenna position hasPl,i = Pi − 0.5 ·
Ai · d, and the right antenna position hasPr,i = Pi +

0.5 ·Ai · d;
Step3. Calculating the objective function on two antennas

f(Pl,i), f(Pr,i). The new position isPnew = Pi +

[f(Pr,i)− f(Pl,i)]/abs(f(Pr,i)− f(Pl,i)) · d · Si;
Step4. If an iteration meets the critical condition, the pro-

cess jumps out of the iterations. If not,i+ = 1,
Pi = Pnew and the loop goes back to Step2.

During iteration, the distance between the two antennasAi

and the step lengthSi changes slowly. In our calculation,
Si+1 = b · Si andAi = c · Si, b is a constant coefficient
close to 1 but less than 1 andc is also a constant coefficient.

Figure4 depicts the iteration process of the(c0, c1, c2)
in the optimization. In this figure, 2000 iterations are
shown. The left panel displays the objective function out-
put, in which red points are the objective function values
of theRBFupdate interpolator. As a comparison, the black
points are the objective function value of theRBF18 inter-
polator in the same calculation. In the right panel, the cyan
dashed line traces the movement trail of the ‘beetle’, and
the color nodes are the ‘beetle’ positions at different itera-
tions. The node color corresponds to the number of itera-
tions. We can find the result of(c0, c1, c2) converges to a
fixed value at last. The objective function of theRBFupdate
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Fig. 6 The positions (green points) of the stars in Figure5.
The isochrones are used to give the relative position. For
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the end of TP-AGB phases are displayed. The red dotted
lines have[Fe/H] = −0.5, black lines have[Fe/H] = 0
and green dashed lines have[Fe/H] = 0.5. From left to
right lg (age/yr) are7, 7.5, 8, 8.5, 9, 9.5 and 10 respec-
tively.

interpolator is lower than the result of theRBF18 interpo-
lator. This means that spectral interpolatorRBFupdate has
a better performance thanRBF18 in the spectral interpo-
lation calculation of stars in the BaSeL-3.1 library.

4 RESULT AND ANALYSIS

In this section, we provide the interpolation results and the
analysis ofRBFupdate interpolator based on the empirical
stellar spectral library MILES. In Section4.1, we present
the interpolated stellar spectra for different spectral types.
In Section4.2, we give a test of theRBFupdate interpolator
and compare the interpolated spectra byRBFupdate and
RBF18 interpolators based on the MILES stellar spectral
library. In Section4.3, we give an analysis and a discussion
for the behavior of theRBFupdate interpolator in our test.

4.1 Results

For the sake of clarity, we only show the interpolated spec-
tra of 12 stars with typical stellar atmospheric parameters
in Figure5. All of the interpolated spectra are normalized
to theirV -band flux. The 12 panels are divided into four
rows, and each row corresponds to three input stars with
different metallicities[Fe/H] = −0.5, 0 and0.5 (the cor-
responding atmospheric parameters are depicted in each
panel). In the first row, the input stars withTeff = 20 000K

andlg g = 4.2 correspond to massive main-sequence stars
and have a great effect on theU -band flux of the stellar
population integrated spectra with stellar population age
less than107.5 yr. In the second row, the input stars with
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Teff = 10 000K and lg g = 4.3 correspond to medium
mass main-sequence stars and have a great effect on the
B-band flux of integrated spectra with stellar population
age less than108.5 yr. In the third row, the input stars with
Teff = 5000K andlg g = 4.5 correspond to a large num-
ber of low-mass main-sequence stars in the stellar popu-
lation. They have a significant effect on the integratedV -
band spectra of the stellar populations. In the last row, the
input stars withTeff = 4360K andlg g = 2.0 correspond
to red giant stars. They are very bright and have a great
effect on the infrared band flux of the older stellar popula-
tion’s integrated spectra.

In Figure6, we plot the positions of these stars (in Fig.
5) on theTeff andlg g plane (the green points). Moreover,
we present three sets of isochrones at metallicity[Fe/H] =

−0.5, 0 and0.5 to give the locations of the stellar popu-
lations. For each set of isochrones, from left to right the
stellar ages arelg (age/yr) = 7, 7.5, 8, 8.5, 9, 9.5 and
10 respectively. The isochrones only show stars from the
zero-age main sequence phase to the end of thermally puls-
ing asymptotic giant branch (TP-AGB) phase. The relative
positions between stars and isochrones correspond to the
above analysis of Figure5. In this figure, the isochrones
are the results of MIST (Dotter 2016; Choi et al. 2016).
They are calculated by employing the stellar evolution
code MESA (Paxton et al. 2011, 2013, 2015, 2018).

4.2 Tests and comparison

In this part, we test theRBFupdate interpolator based the
empirical spectral library MILES in Section4.2.1, and we
provide a comparison between theRBFupdate andRBF18
interpolators in Section4.2.2.

4.2.1 Test of the RBFupdate interpolator

We test theRBFupdate interpolator based on the MILES
stellar spectral library. In the test, we delete one member
star from the MILES stellar spectral library and use the re-
maining spectra as a library to calculate the spectrum of
the deleted star. Every star in the MILES library has been
tested by the above process, and the comparison between
interpolated and original spectra is utilized to investigate
the interpolation performance of theRBFupdate interpola-
tor (the same test is also done for the spectral interpolator
RBF18).

The MSE between interpolated and original spec-
tra is employed to characterize the difference,MSE =√∑

λ(fint, λ − fori, λ)2/len(fori, λ), where fint, λ and
fori,λ are the normalized flux on theλ th wavelength in-
terval of the interpolated and original spectra, respectively,
andlen(fori, λ) is the array length of the spectrum. Every

star in the MILES library has a correspondingMSE value,
which we present in Figure7.

Figure 7 plots the overall result of theMSE dis-
tribution. The top-left panel displays the result in the
lgTeff , lg g, [Fe/H] space. For the sake of clarity, the top-
right panel features the projection ofMSE on thelgTeff

andlg g plane, the bottom-left panel depicts the projection
on thelg g and [Fe/H] plane and the bottom-right panel
showcases the projection on thelg Teff and[Fe/H] plane.
For each panel, theMSE value is characterized by the gray
level and point size. We can find that most stars have rel-
atively smallMSE values. An obvious difference exists in
parts of the lower-temperature region, especially for stars
at the edge of the low-metallicity red giant region.

For a more detailed analysis of theRBFupdate inter-
polator, eight representative stellar spectra are shown in
Figure8 (the positions of those eight test stars are marked
by red “+” symbols in Figure7). In each panel of Figure8,
black lines are the original spectrum of the test star, and the
green and red translucent lines are the interpolated spectra
of the test star byRBFupdate andRBF18 interpolators, re-
spectively. The interpolated spectra of theRBFupdate in-
terpolator and a copy of the original spectrum are moved
upwards for the reason of clarity. The stellar atmospheric
parameters and theMSE value also are expressed in each
panel. Here the combination of green and black spectra
provides the direct spectral performance of theRBFupdate

interpolator, and the combination of red and black spectra
gives the direct spectral performance of theRBF18 inter-
polator. Panels (a-d) list the representative spectra of mas-
sive main sequence, medium mass main sequence, low-
mass main sequence and red giant test stars. We can find
the interpolated spectra have a good match with the orig-
inal spectra. Most of the test stars have similar results in
our test, but there are still a few test stars that have bad
test results. Panels (e-h) display four typical spectra that
exhibit bad performance byRBFupdate andRBF18 inter-
polators. They are in the red giant (g-h) and low-mass main
sequence (e-f) regions. This bad performance will be dis-
cussed in Section4.3.

4.2.2 Comparison with RBF18 interpolator

In this section, we give a comparison between the
RBFupdate andRBF18 interpolators by the test in Section
4.2.1. For any test star in the MILES library, we use the
MSERBFupdate

− MSERBF18 to characterize the discrep-
ancy. The mean squared errorMSE is larger than zero, and
the smaller value ofMSE means a better match between
the interpolated and original spectra of a test star in the
MILES library. So, the negative value ofMSERBFupdate

−
MSERBF18 means that theRBFupdate interpolator has a
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Fig. 7 TheMSERBFupdate
based on MILES spectral library. The top-left panel displays the result in stellar atmospheric

parameter space. The points mark the positions of test stars, and the grey level and point size characterize the test result
MSE of theRBFupdate interpolator. Here,MSE is the mean squared error between the interpolated and the original
spectra of a test star. The top-right panel depicts the projection on thelg Teff andlg g plane, the bottom-left panel displays
the projection on thelg g and[Fe/H] plane and the bottom right panel gives the projection on thelg Teff and[Fe/H] plane.
The red “+” symbols and the corresponding letters express the positions of the stars for which their spectra are shown in
Figure8.

better performance, and the positive value means that the
RBF18 interpolator has a better performance.

In Figure9, MSERBFupdate
−MSERBF18 is shown in

the stellar atmospheric parameter space. The top-left panel
gives the result inTeff , lg g and [Fe/H] space. The other
three panels list the corresponding three projections that
are the same as those in Figure7. The point size character-
izes the absolute value ofMSERBFupdate

− MSERBF18,
the point color signifies the valueMSERBFupdate

−
MSERBF18. Here, blue and red points mean negative and
positive values ofMSERBFupdate

−MSERBF18, respective-
ly.

On the whole, the test results of theRBFupdate in-
terpolator are better than those of theRBF18 interpolator.
In the high temperature main sequence region, it does not
have an obvious difference for the two interpolators. Panels

(a) and (b) in Figure8 give two typical test results, and both
two interpolators have smallerMSE. In the dense part of
low-temperature main sequence and red giant regions, the
RBFupdate interpolator has better performance than the
RBF18 interpolator with a lowerMSE value. Two typi-
cal test spectra are shown in panels (c) and (d) in Figure8,
and the green interpolated spectra have a better match with
the original spectra than the red ones.

However for some test stars on the edge of the low-
temperature region, bothRBFupdate andRBF18 interpo-
lators have bad performance. The spectra of four typical
test stars in those regions are displayed in panels (e-h) of
Figure8, and a corresponding detailed analysis will be giv-
en in Section4.3.
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Fig. 8 The spectra of eight test stars in the MILES library are signified by the red “+” symbols in Figure7. The stellar
atmospheric parameters and the test resultMSE of RBFupdate andRBF18 interpolators also are listed. For every panel,
three spectra are included. The black line is the original spectrum of test stars in the MILES library. The green and red
translucent lines are the interpolated spectra of test stars byRBFupdate andRBF18 interpolators, respectively. For clarity,
the interpolated spectra by theRBFupdate interpolator are shifted upwards, and the corresponding original spectrum also
has a copy spectrum that is moved upwards by the same distance. Moreover, for avoiding overlap, the red and green lines
are translucent. The first four panels (a-d) list four representative test spectra in different areas of stellar atmospheric
space. Panels (e) and (f) express the representative bad interpolated spectra in the low-mass main sequence region. The
last two panels, (g) and (h) provide the representative bad interpolated spectra in the red giant branch region.

4.3 Analysis of result

Here, we will give an analysis of the test result in Section
4.2. On the whole, theRBFupdate interpolator has better
performance than theRBF18 interpolator in the spectral
interpolation calculation. However, it has bad performance
at the edge of the low-temperature region. A typical exam-
ple of bad performance is displayed in the last four panels
of Figure8. Panels (e) and (f) show the test result of two
test stars at the edge of the low-temperature main sequence
region, and panels (g) and (h) depict the test result of two
test stars at the edge of the red giant region. The positions
of these four test stars are shown in Figure7. We can find

the test stars in panels (e) and (f) are adjacent and those in
panels (g) and (h) are adjacent. From the Gaussian kernel
function (Eq. (3)), we know that the spectrum of the ad-
jacent star has a bigger effect than the distant one in the
interpolated calculation. Therefore, in the test, the calcu-
lation of the deleted spectrum depends largely on the ad-
jacent spectra in the stellar atmospheric parameter space.
For the test star in panel (e), star f has a big effect, which is
the reason the interpolated spectrum in panel (e) is similar
to the original spectrum in panel (f). For the interpolated
spectra in panels (f), (g) and (h), the situations are similar.

For the empirical stellar spectral library, we list three
possible reasons for the bad test results.
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Fig. 9 The discrepancy in theMSE between theRBFupdate andRBF18 interpolators based on the MILES library. The
points mark the positions of test stars. The color of points characterizes the valueMSERBFupdate

− MSERBF18, the
blue points mean negative value and the red points mean positive value. The point size signifies the absolute value of
MSERBFupdate

− MSERBF18. The top-left panel displays the result in 3D stellar atmospheric parameters, the top-right
panel gives the projection on thelg Teff andlg g plane, the bottom-left panel displays the projection on thelg g and[Fe/H]
plane, and the bottom-right panel shows the projection on the lgTeff and[Fe/H] plane.

1. The finite spectra face a complex change in some stel-
lar atmospheric parameter regions. It means that the
library is incomplete and does not include enough typ-
ical spectra.

2. Three stellar atmospheric parameters cannot solely de-
termine the spectra. It means that one set of stellar at-
mospheric parameters in 3D space corresponds to sev-
eral potential spectra with obvious difference3 (similar
to the description inArentsen et al. 2019.)

3. The stellar atmospheric parameters are not self-
consistent. The stellar spectra do not vary with the stel-
lar atmospheric parameters by a one-to-one relation4.

3 An example is that[Fe/H] cannot describe the ratio of the different
elements in the stellar atmosphere. This problem does not have an obvious
effect on the high-temperature region, but cannot be ignored in the low-
temperature region.

4 A simple example is that a smooth change of the spectra in the stel-
lar atmospheric parameter space can be broken and becomes messy by

For the first reason, more targeted observational da-
ta are needed. For the second reason, more potential pa-
rameters of spectra should be given for a more strict con-
straint on the spectra. For the third reason, the spectra in
the library need a more detailed derivation of atmospher-
ic parameters, and we give a test by utilizing those self-
consistent stellar atmospheric parameters. Here we con-
sider a relatively new result ofSharma et al.(2016) to
test this idea. InSharma et al.(2016), ∼ 300 cool stars
in the MILES library were refined. We replace the corre-
sponding parameter of the MILES library by the results of
Sharma et al.(2016), and use them to testRBFupdate in-
terpolator as did in Section4.2.1. In Figure10, we display
the test results. The top panel shows theMSE distribution
of test stars based on the MILES library with the original

adding a set of random biases in the stellar atmospheric parameters in the
library.
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Fig. 10 The MSE distribution of the test for the
RBFupdate interpolator on thelgTeff andlg g plane. The
top panel is the same as the top-right panel of Figure7
and gives the resultingMSE distribution of the test which
is based on the MILES library with its original stellar at-
mospheric parameters (Cenarro et al. 2007). In the bottom
panel, we show theMSE distribution of the test based on
the MILES library with the corrected cool stellar atmo-
spheric parameters (Sharma et al. 2016). For every panel,
the grey level and the size of points characterize theMSE
values.

stellar atmospheric parameters (Cenarro et al. 2007). It is
the same as the top-right panel in Figure7, and the bottom
panel features the MES distribution of the test based on
the MILES library with replaced stellar atmospheric pa-
rameters of the cool stars (Sharma et al. 2016). An obvi-
ous improvement appears in the bottom panel. This result
demonstrates the self-consistent parameters of the library
are important for the spectral interpolation calculation.

5 CONCLUSIONS

In stellar population synthesis models, the empirical stellar
spectral library is necessary for the integrated spectra ofthe
stellar populations. In this work, we improve the RBF net-
work by comparing with the other kernel methods (SPHs
and likelihood approximation) and give an upgraded spec-
tral RBF interpolator. We include a constraint related to the
kernel function (Eq. (7)) in the RBF network. This con-

straint expresses the relation between theσ of a Gaussian
kernel function and the sample spatial density in the pa-
rameter space.

Moreover, we also consider the anisotropic kernel
function by relating it to the inhomogeneous distribution of
stars in the stellar atmospheric parameter space. We use the
local axial direction dispersion to determine the anisotropic
kernel function (Eq. (11)). By including three control pa-
rametersc0, c1, c2, we can get an RBF network for spectral
interpolation calculation. Here we call it anRBFupdate in-
terpolator. The BAS search algorithm is applied to search
for the best control parametersc0, c1, c2 by matching with
the semi-empirical BaSeL-3.1 stellar spectral library.

We also use a test to analyze the performance of the
RBFupdate interpolator based on the MILES stellar spec-
tral library. In the test, we select any star in the MILES
library as the test object and compare the original with the
interpolated spectra which is calculated by theRBFupdate

interpolator based on the remaining stellar spectra in the
MILES library. We find that theRBFupdate interpolator
has a good performance in general except for some test s-
tars at the edge of the red giant and low-temperature main
sequence regions (Fig.7).

Three possible reasons can cause bad performance for
empirical stellar spectral library. The first is the incomplete
spectral coverage in the stellar atmospheric parameter s-
pace, the second is the existence of potential atmospheric
parameters and the third is inconsistent atmospheric pa-
rameters. For the first two reasons, more observations are
needed and additional atmospheric parameters should be
included in the stellar spectral library. For the last reason,
the modified stellar atmospheric parameters of the stellar
spectral library are needed. Moreover, we also provide a
comparison between theRBFupdate interpolator and our
early work in Cheng et al.(2018). The results show that
theRBFupdate interpolator has an obvious improvement,
except for the edge of the low-temperature region (Fig.9).
The same reasons make both interpolators not have a good
performance in these regions.

At last, the code ofRBFupdate interpolator is written
in Python and you can find it athttp://www1.ynao.
ac.cn/ ˜ zhangfh/ . The code can be implemented for
different libraries and a user can apply it with the modi-
fied stellar spectral library by adding additional spectra or
updating the stellar atmospheric parameters of the library.
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