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Abstract G349.7 + 00.2 is a young Galactic supernova remnant (SNR) awihushroom morphology in
radio and X-rays, and it has been detected across the elgaogagnetic spectrum from radio to high
energy~-rays. Moreover, the remnant is interacting with a molecalaud based on the observations in
the radio and infrared band. The reason for the formatiorhefgeriphery and the dynamical evolution
of the remnant is investigated using 3D hydrodynamical (ldiDjulations. Under the assumption that the
supernova ejecta is evolved in the medium with a densityigrathe shell is composed of two hemispheres
with different radii, and the smaller hemisphere is in rigly dense media. The resulting periphery of
remnantis consistent with detected ones, and it can bewdedthat the peculiar periphery of G349.7+00.2
can be reproduced as the remnants interacting with the mmedith a density gradient.
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1 INTRODUCTION trum was well fit by a single-temperature non-equilibrium
ionization mode. The Chandra observations also revealed

i a compact central object inside the SNR shell, called
Supernova remnants (SNRs) are the candidate of the P 0OUJ171801.0-372617. The X-ray brightness is en-

mary accelerators of the Galactic cosmic rays, and thﬁanced in the southeastern limb, and the overall morphol-

dynamical evolution and the morphology of them heaV"ogy is similar to that observed in the radicagendic et al.
ly depend on the properties of the ambient medium (e.g2003

Reynolds 2008Fang et al. 201%eng et al. 201p For ex-

ample, SNR G349.7+00.2, which has a distance of 22kpc The peculiar morphology of G349.7+00.2 shed light
and the age of 2800yr based on the observations;of Hon the ambient mediuniReynoso & Mangung2000 pro-
absorption Caswell etal. 1975 1720MHz OH maser- posed that the shock front of the remnant has been
s (Frail et al. 199% and CO Reynoso & Mangum 2000 extended to the density gradient, and the smaller half
has a peculiar morphology as indicated in radio and X-of the shell has been expanded to a higher density of
rays. The radio image is characterized by a distinct brightgas. Moreover, CO observations toward G349.7+0.2 al-
ness enhancement along the southeastern limb, where the revealed a molecular cloud associated with the SNR
remnant is interacting with a molecular cloud. The ra-(Reynoso & Mangum 20Q0 Reynoso & Mangum 20Q1
dio structure can be fitted by two overlapping rings, withLazendic et al. 2002b Five OH (1720 MH) maser spot-
one smaller and brighter than the other, this feature cas were found in the center of the SNHréil etal.

be considered that a smaller ring corresponds to a hight996, and the shock-excited near-infrared Eimission

er density of the inflated shelManchester 1988 1In X-  has been found toward the center of the remnant as well
rays, G349.7+0.2 was first detected in the Galactic planas OH absorption (1665 and 1667 MHz) in the remnan-
survey of ASCA Yamauchi et al. 1998 The analysis of t (Lazendic etal. 2003a The line emission from sev-
the ASCA data $lane et al. 2002showed that the spec- eral molecular transitions shows clear evidence of in-
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teraction between the SNR and the molecular cloudsgrofile (Fang et al. 2020i.e.,
(MCs) (Reynoso & Mangum 20QQ.azendic et al. 2002a
Dubner et al. 2004 e, if r<re,

Ergin et al. (2015 analyzed the GeVy-rays from pei(r) = Po(1/Rej) ™5, if re <7 < R,
G349.7+0.2 and found that the detected spectrum can
be represented by a broken power law distribution ofwherep, is the density at = R.;. n is the mass ratio
a = 189 and 5 = 2.42 and a spectral break at of the outer part of the ejecta to the inner one. The index
12 GeV. Zhang et al.(2016 constrained the parameters S = 9 is used in this paper for the core-collapse supernova
of the escaping-diffusion model using the Markov Chainexplosion. The density of the inner core Jaig & Norman
Monte Carlo method, and they found that the correctiorl996
factor of slow diffusion around this SNR; i.ex, = 0.01 3(1 — n)Me;

1)

for the power-law injection angt = 0.1 for the §-function Pe = 4mrd @
injection. The~-ray spectrum can be fit with a reason- M be obtained with
able molecular cloud mass. In additidinatyk & Petruk oreover,. can be obtained wit
(1999 performed 2D hydrodynamical modeling of the 3 _ SV M.
. - o _p._ ™ JMej 11 /(3—s) 3
evolution and X-ray emission of SNRs expanding in a e = Rej TR ] : 3)
ej

large-scale density gradient, and the results showed that

the remnant expanded into a density gradient. The velocity of the matter in the ejectaiais v = R%j“O
Three-dimensional (3D) hydrodynamic/ magnetohy-for » < R,;. The velocity of ejecta at the outer edggcan
drodynamic (HD/ MHD) simulations are widely used to be obtained by
study the morphologies of SNR$dledo-Roy et al. 2014
Fang et al. 201,72018 2020. In this paper, we inves- 2mperd  2mpRRE[1 — (Rej/re)® )
tigate the reason for the formation of the periphery of 0 = (Eei)?{ 5R2 5-9
G349.7+00.2 using 3D HD simulation under the assump- ! (4)
tion that the supernova ejecta is evolved in the medi-  Assuming that the ejection evolved in an environmen-
um with a density gradient. A detailed description of ourtal medium with a density gradient, the number density of
model and initial setup of simulations are described inenvironmental media satisfies the following formula,
Section2. The results are presented in Sectthand some

=

}—1/2-

discussion and conclusions are given in Section no+ké-r, ifE-r>0
n(r) = ’ ’ 5
™) ng, otherwise ®)
2 SIMULATION SETUP wherek is the magnitude of the density gradient= 1.4

) . . ] is the mean atomic mass for a gas of a 10 : 1 H:He ratio.
In order to investigate the dynamical evolution of the rem- Neglecting the radiative cooling and the particle accel-

nant G349.7+00.2 and reproduce the special morphologg,ration involved in the remnant, the dynamical properties

we ado‘_’t 3D HD numerical S|mulat|qns onit W'th the PI_UtO of the ejecta can be simulated based on the Euler equations,
code Mignone et al. 20072012, which provides a vari- .

ety of hydrodynamic modules and algorithms for solving ap
a complete set of MHD/HD equations with different ge- 5 TV (V) =0, (6)
ometry systems. In our simulations, Cartesian geometry
(z, v, ) and a computational cube ok®x6 pc—3 with opV _

—+v - (pVV)+yP =0, 7
512 x 512 x 512 grids are used. o TV VVIEV )

We assume that the ejecta of G349.7+00.2 has evolved OF

in the nonuniform medium with a density gradient, which 5 TV (E+P)V =0, (8)

directs alongt = sin 6 cos ¢é, + sin 6 sin Péy + cosbé,.

After the supernova explosion, the ejecta has a mass 81“d p 1

M = 8.0 Mg, a kinetic energy of,; = 10°! erg and E= — §pV2, 9)

a radius ofR.; = 0.5 pc, which is set at the center of the v

simulation. The initial matter distribution for the ejeatac where P and E' are the gas pressure and the total energy
cludes an inner core having a constant dengityvithin  density, respectivelyy = 5/3 is adopted for the nonrela-
ther. radius, and an outer layer with a power-law densitytivistic gas and/ is the gas velocity.
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Table1 Parameters for the modes with different polar angi@s0d different azimuth angleg) with E,; = 105! erg,
Rej = 0.5pc, Mej = 8.0 Mg, ng = 10cm™3, k = 50 cm ™2 pe~L.

Parameter| modeA modeB modeC modeD modeE modeF

0(°) 60 120 200 120 120 60
?(°) 250 250 250 60 180 300

Table2 Parameters for the different modes in the simulations. Binencon parameters are,; = 10%terg, Re; = 0.5pc,
Mej = 8.0 Mg, np = 10cm™3, § = 120° and¢p = 250°.

Parameter | modeH model modeJ modeK modelL
(kem=3 pc~!) | 8 15 25 30 40

mode A mode B mode C

z (pc)

mode D mode E mode F

z (pc)
Projected Prs (5.2 x 10%° dyn/cm)

_6—6—4—2 0 2 4 e6-4-20 2 4 &6 -4
y (pc) y (pc) y (pc)

Fig.1 The projected pressure along thedirection att = 2800yr for modes A - F with different polar angle#g)(
and azimuth anglespj. The other parameters afg,; = 105 erg, Re; = 0.5pc, Mej = 8.0 Mg, ng = 10cm™3,
k=50cm ™3 pcl.

Fig.2 The observed X-ray morphology of SNR G349.7+00.2 with Chanihis image is adopted from the website
http://hea- ww. har var d. edu/ Chandr aSNR/ gal | erygal . ht i .


http://hea-www.harvard.edu /ChandraSNR /gallerygal.html
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mode H mode 1 mode J

z (pc)

mode K mode L mode B

z (pc)
Projected Prs (5.2 x 101° dyn/cm)

_g6—4—202466—4—20 4 66 -4 -2 0 2 4 6

y (pc) y (pc) y (pc)

Fig.3 The projected pressure along théirection att = 2800 yr for modes H - L and mode B. The common parameters
areEq; = 10°! erg, Re; = 0.5pe, Mej = 8.0 Mg, ng =10 em™3, 6 = 120° and¢ = 250°.

z (pc)

t=1.9kyr

z (po)
Projected Prs (5.2 x 10%° dyn/cm)

z (po)

Fig.4 The evolution of the projected pressure along:thgirection at different times for mode B. The other paraneter
are the same as Fig.

3 RESULTS & = sin 0 cos pé, +sin 0 sin pé, +cos 0é .. Firstly, n is set

to 10 cm~3 based on the studies Fian & Leahy(2014.
G349.7 + 00.2 has a peculiar and interesting morphologyVith M; = 8.0 M, E¢; = 10°! erg can lead to a radius
in the radio and X-rays, and we intend to study the peconsistent with the observations, so we adopt these values
riphery of SNR G349.7 +00.2 through studying the effec-n the simulations. As listed in Tablg the six modes with
t of different density gradients. We assume that there iglifferent combinations are calculated to seek a reasonable
a density gradient in the ambient medium directed along
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Fig.5 The slices of the density in the plame= 0 att = 2800 yr for mode B. The other parameters are the same a8Fig.

polar angled and an azimuth angle to reproduce the de- ejecta. As the forward shock expands outwardly, the mate-
tected periphery of the remnant. rial in the inner part of the remnant becomes tenuous until
Figurel shows the morph0|ogies of the projected pres_the thermalized medium drives a reverse shock which con-

sure along the direction att = 2800 yr for these different  tinually compresses the matter in the ejecta. As illustrate
polar angleg and the azimuth angles With ¢ = 120°  inthe panelfort = 1.2kyr in Figure4, the reverse shock
(modes B, D, and E), the morphology is not found to bemarks the boundary of the low-density ejecta in the center
composed of two hemispheres with an azimuth angle mucff the remnant. Due to the Rayleigh-Taylor instabilities,
less thanl80° as illustrated in mode D. The influence of the fingertip structure is produced near the contact discon-
the polar angle on the resulting morphology of the projectlinuity. At a time of2.5kyr , the reverse shocks from the

ed pressure can be seen in the upper three pane's (mod@@ hemlspheres had encountered with each other near the
A - C) with ¢ = 250°, and that with9 ~ 120° can be center of the remnant. On the other hand, the pressure in

constrained by the image detected by Chandra @ig. the southeast (SE) area of the remnant becomes more sig-

Figure3 shows the morphologies of the projected pres_nlflcant than the other areas due to the higher density. For

sure along the direction for the modes with different den- thdde B, ata t(ljme o}f - 2803_yr' tge forwa;]d shoc!< .|n
sity gradient as listed with = 120° and¢ = 250°. The the denser medium has a radius-08.0 pc, whereas itis

details of the parameters for modes H - L and B and aré” 3.4 pc in the other hemisphere, which is consistent with

shown in Table?. All these modes can produce morpholo-the image obtained with Chandra for a distancezifpc.

i ith two hemisph . The radi f the hemisph
gies with two hemispheres. The radius of the hemisp ergr SUMMARY AND DI SCUSSION
in the denser medium becomes smaller for a larger densi-

ty gradient with a deeper hollow between the two hemi-5349.7+00.2 has a peculiar morphology in the X-rays. The
spheres. Compared with the detected image with Chandrgynamical evolution and the morphology of an SNR heavi-
the density gradient of0 — 50 cm ™ pc™" can reproduce |y depend on the anisotropy and inhomogeneity of both the
a consistent periphery. ejecta and the ambient medium. In this paper, we investi-
Figure4 shows the morphologies of the projected pres-gate the reason for the formation of the peculiar periphery
sure along ther direction at different times for mode B, as indicated in the observations for the SNR G349.7+00.2
and the slices of density at the plane= 0 are indicated based on 3D HD simulation. In the model, we assume
in Figure5. Initially, in the two hemispheres, the forward that the ejecta of G349.7+00.2 has evolved in the ambien-
shocks are produced due to the supersonic motion of themedium with a density gradient. The shell consists of t-
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