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Abstract We study the phenomenon of neutrino spin-flavor oscillations due to solar magnetic fields. This
allows us to examine how significantly the electron neutrinos produced in the solar interior undergo a
resonant spin-flavor conversion. We construct analytical models for the solar magnetic field in all the three
regions of the Sun. Neutrino spin-flavor oscillations in this magnetic field are examined by studying the
level crossing phenomenon and comparing the two cases of zero and non-zero vacuum mixing respectively.
Results from the Borexino experiment are used to place an upper limit on the magnetic field in the solar
core. Related phenomena such as effects of matter on neutrino spin transitions and differences between
Dirac and Majorana transitions in the solar magnetic fields are also discussed.

Key words: neutrinos: neutrino spin-flavor oscillations — Sun: magnetic fields

1 INTRODUCTION

The study of solar neutrinos and their oscillation phe-
nomenology has revealed many facets of the physic-
s of neutrinos. The Ray Davis experiment, which s-
tarted in the1960s in Homestake mine, was the first
experiment to detect solar neutrinos reaching Earth.
After several years of operation, the experiment report-
ed that there is about a two-third deficit in the ob-
served solar neutrino flux compared to the standard so-
lar model calculation (Cleveland et al. 1998). The deficit
was further confirmed by other solar neutrino experi-
ments, notably SAGE, GALLEX and Super-Kamiokande
(SK) (Abdurashitov et al. 1994; Anselmann et al. 1995;
Hampel et al. 1996; Fukuda et al. 1996). This discrepan-
cy between the observed rate of neutrino flux and it-
s theoretical prediction is called the solar neutrino prob-
lem. One of the ways to resolve the problem was sug-
gested by Pontecorvo on the basis of mixing between
different neutrino flavors. He showed that if neutrinos
have a non-zero mass then the neutrino flavor mixing
will give rise to oscillations among different neutrino fla-
vors (Bilenky & Pontecorvo 1978). Thus electron neutri-
nos produced in the Sun may convert to some other fla-
vor of neutrinos on their way to Earth and become un-
detectable. The problem was finally resolved when the
Sudbury Neutrino Observatory (SNO) detected neutrinos
from all three flavors in the solar neutrino flux, which
proved that there must be transitions among the three ac-
tive neutrino flavors (Ahmad et al. 2002). However, if vac-

uum neutrino oscillation alone were responsible for these
flavor transitions, one would also be able to detect sea-
sonal variation in the neutrino flux rate due to eccen-
tricity of Earth’s orbit. The8B neutrino spectrum in the
SK experiment exhibited no such variation (Hosaka et al.
2006). The mechanism of flavor transitions that is most fa-
vored by data is the adiabatic resonant conversion due to
neutrino-matter interactions, also known as the Mikheev-
Smirnov-Wolfenstein (MSW) effect. Wolfenstein showed
that the coherent forward scattering of neutrinos with elec-
trons, protons and neutrons will induce an additional po-
tential which will modify the effective mass and mix-
ing of neutrinos in the medium (Wolfenstein 1978). In
a medium with variable density, such as the Sun, these
matter effects can lead to enhanced transitions between
νe and νµ/ντ , even for small vacuum mixing angles
(MSW-SMAs) (Mikheev & Smirnov 1986a,b). However,
most of the solar neutrino data, including data from
the KamLAND experiment and recent data from the
Borexino experiment, have established the large mixing
angle (MSW-LMA) solution to the solar neutrino problem
(Abe et al. 2008; Agostini et al. 2018; Haxton et al. 2013;
Maltoni & Smirnov 2016; Wurm 2017).

Another idea that was a popular candidate for the
solution of the solar neutrino problem was spin preces-
sion of neutrinos in the magnetic field of the Sun. It was
shown that if neutrinos have sufficiently large magnet-
ic moment then the solar magnetic field can give rise
to spin precessionνeL −→ νeR, which will cause a d-
eficit in the solarνe flux (Cisneros 1971; Okun et al.
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Fig. 1 The longitudinal neutrino spin polarizationS‖ as it
propagates in the magnetic field of the Sun. The solid curve
is the magnetic field obtained by solving solar MHD equa-
tions in Miranda et al.(2001). The dashed curve is given
by Eq. (1) and the dot-dashed curve by Eq. (2). The peak
magnetic field for both models is taken to be≈ 104 G.
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Fig. 2 Electron number density variation vs. radial dis-
tance in the Sun. Thesolid line represents the standard so-
lar model BBS(2005) and thedashed curves are analytical
approximations.

1986). This solution was partly supported by data from the
Homestake experiment which observed anticorrelation be-
tween the neutrino flux and sunspot activity (Davis 1994).
However, measurements from other experiments observed

Table 1 The Location of SFP Resonance in the Sun (in
unitsr/R⊙) for Different Neutrino Energies

E (MeV) νeL ↔ νµR
νeL ↔ ν̄µ

2.5 0.057 0.027
5.0 0.156 0.142
10.0 0.230 0.218
15.0 0.268 0.257
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Fig. 3 Transition probability of Dirac and Majorana neu-
trinos obtained from the solution of Eq. (13). Here the neu-
trinos are assumed to be produced at the center of the Sun
with energyE = 10MeV.
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Fig. 4 Eigenvalues of the Hamiltonian forE = 10MeV
neutrinos: (a) in the flavor basis, Eq. (17), for θ12 ≈ 0. The
two levelcrossing points correspond to SFP and MSW res-
onances. (b) in the mass eigenbasis, Eq. (19), for θ12 =
33.8◦. The dashed/dot-dashed lines correspond toν1/ν2
respectively and thesolid line represents̄νµ. Here we have
utilizedB0 = 106 G and the eigenvalues are in dimension-
less units.

no such correlation (Fukuda et al. 1996). Subsequently, the
KamLAND experiment ruled out the spin-precession so-
lution by placing a strong constraint on the flux of an-
tineutrinos coming from the Sun (Eguchi et al. 2004). A
related effect due to neutrinos having non-zero transition
magnetic moments is called resonant spin-flavor preces-
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sion (RSFP) which results in both spin-flip and flavor
change for neutrinos (Lim & Marciano 1988; Akhmedov
1988). This effect arises due to the combination of matter
and magnetic field on neutrino propagation and is similar
to the MSW resonance, and can take place in transverse
(Akhmedov 1988) as well as longitudinal magnetic field-
s (Akhmedov & Khlopov 1988). Also, the neutrino spin
and spin-flavor transitions can give rise to other interest-
ing quantum mechanical effects such as non-vanishing ge-
ometric phases (Joshi & Jain 2016, 2017), which demon-
strate the intimate connection between the geometry of
neutrino spin trajectory in the projective Hilbert space and
neutrino spin transition probabilities.

Having determined the basic oscillation parameter-
s for solar neutrinos, the present effort is to search
for sub-leading effects in the solar neutrino transition-
s which can give important clues for phenomena be-
yond the standard model. Various studies have been done
to look for effects of non-standard interactions (NSIs)
(Farzan & Tortola 2018), dark matter imprints on the neu-
trino spectrum (Lopes & Silk 2019), non-radiative neutri-
no decay (Aharmim et al. 2019) and the combined effect
of NSI and spin-flavor precession (SFP) (Yilmaz 2016). In
this paper, we study the possible sub-leading effects caused
by spin-flavor transitions due to neutrino propagation in the
solar magnetic field.

The neutrino electromagnetic coupling is given by
the HamiltonianHEM = 1

2
ν̄µσµννF

µν + h.c., where
µ is the neutrino magnetic moment matrix. For the case
of Dirac neutrinos, the hermicity of the Hamiltonian re-
quiresµ† = µ. On the other hand, for Majorana neu-
trinos CPT symmetry requires the magnetic moment ma-
trix to be anti-symmetric, which results in vanishing di-
agonal magnetic moments (Schechter & Valle 1981). This
difference in the magnetic moment matrix gives rise
to different spin-flavor transition probabilities for Dirac
and Majorana neutrinos. The diagonal magnetic momen-
t for a Dirac neutrino in the minimally extended stan-
dard model (MESM) including massive neutrinos isµν ≈
3.2× 10−19(mν/1 eV)µB , wheremν is the neutrino mass
(Marciano & Sanda 1977; Lee & Shrock 1977). The off-
diagonal magnetic moments for both Dirac and Majorana
neutrinos are further suppressed due to the Glashow-
Iliopoulos-Maiani (GIM) mechanism (Pal & Wolfenstein
1982). However, the current best experimental bounds on
the neutrino magnetic moment are in the rangeµν ≤ (2−
10) × 10−11µB (Giunti & Studenikin 2015; Giunti et al.
2016; Agostini et al. 2017). Thus, the sensitivity of the
present experiments is many orders away from the MESM
predictions. To bridge this gap, many theoretical mod-
els have been postulated (seeGiunti & Studenikin 2015
for detailed references) which avoid the GIM suppres-
sion and predict neutrino magnetic moment in the range
(10−10 − 10−14)µB. For example, in the left-right sym-

metric model, there is right-handed current that mixes
with the small mixing left-handed current. In this mod-
el, one obtainsµνe = 2 × 10−13µB sin 2φ, whereφ is
the mixing angle between the right and left-handed cur-
rents (Shrock 1982; Fukugita & Yanagida 1987). However,
the mixing angle is expected to be smallφ < 0.05,
thus limitingµνe < 10−14µB (Giunti & Studenikin 2015;
Fukugita & Yanagida 1987). To obtain larger magnetic
moments, charged scalar particles are added to the left-
right symmetric model (Fukugita & Yanagida 1987, 2003;
Babu & Mathur 1987). The charged scalar contribution-
s can give rise to magnetic moments in the rangeµν ∼
(10−11 − 10−10)µB.

In the present work, we examine the effects of mag-
netic moments∼ 10−11µB on the solar neutrino transition
probabilities for both the cases of Dirac and Majorana neu-
trinos. In particular, we first perform calculations for the
approximate case of vanishing vacuum mixing and show
that the spin-flavor evolution equations can be reduced to a
form which has an exact solution. We then study the actual
case of non-zero mixing angle and the effects of the level
crossing phenomenon on neutrino transition probabilities
and use the results to place bounds on the solar magnetic
fields. In the previous work along these lines by various
authors (Torrente-Lujan 2003; Akhmedov & Pulido 2003;
Miranda et al. 2004; Guzzo et al. 2005; Chauhan et al.
2005; Balantekin & Volpe 2005; Friedland 2005; Das et al.
2009), several bounds have been obtained for both Dirac
and Majorana spin-flavor transitions for different magnetic
field configurations.

The magnitude of the spin-flavor transition depends
mainly on the strength of the magnetic field at the loca-
tion of the SFP resonance. This in turn depends on the de-
tailed magnetic field profile of the Sun, which is not very
well known, especially in the interior regions of the Sun. In
Section2, we discuss current bounds on the solar magnetic
field in various regions of the Sun and its effect on neutrino
spin polarization. We also discuss the effective two-flavor
model for neutrino spin-flavor precession. In Section3, we
show that in the approximate case of vanishing mixing an-
gle the resulting set of equations posses analytically exac-
t solutions. We also derive bounds on the solar magnetic
fields using the existing experimental results. We then ex-
amine the effect of non-zero vacuum mixing on neutrino
transition probabilities. Finally we discuss the results in the
last section.

2 NEUTRINO SPIN PRECESSION IN SOLAR
MAGNETIC FIELDS

The magnetic field in different regions of the Sun man-
ifests different characteristic behaviors (Friedland 2005).
In the solar convective zone (CZ) the magnetic fields are
believed to be generated from a dynamo mechanism active
at its base. The current data from helioseismology points
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to a thin shear layer at the bottom of the CZ, known as a
tachocline, which generates a large scale toroidal magnet-
ic field. The strength of the magnetic field is predicted to
be in the range 10–100kG (Fan 2009). On the other hand,
the radiative zone (RZ) magnetic field may have its ori-
gin in the formation of the Sun. Once formed, this primor-
dial field might have been frozen in the RZ and the solar
core without protruding much into the CZ (Dicke 1982).
The bound on the large scale toroidal magnetic field in the
RZ ranges from 5–7 MG (Friedland & Gruzinov 2004) to
30 MG (Couvidat et al. 2003). For the solar core, magnetic
field bounds vary widely from 30 G (Boruta 1996) to 7 MG
(Antia 2002).

Based on the above bounds, we choose two profiles to
simulate the magnetic field in the Sun. In the first mod-
el, we implement the field profile given byMiranda et al.
(2001) and add an RZ magnetic field

B⊥RZ(r) = B0 sech[34.75(r/R⊙ − 0.25)] . (1)

The profile is chosen such thatBRZ in the CZ is negligible
compared to the CZ magnetic field and also becomes very
small near the solar core. For the second model, we select a
field profile which peaks in the solar core and is expressed
as

B⊥(r) = B0 sech 5r/R⊙ . (2)

First we consider the neutrino spin precession as it prop-
agates in the solar magnetic field, neglecting the effect of

matter and flavor mixing. The change in neutrino spin po-
larization in this case is described by the equation

dS

dr
= 2µνS ×B⊥(r) , (3)

where forB⊥ we apply the two magnetic field profiles in
Equation (1), Equation (2) andµν ≈ 10−11µB. As can be
seen in Figure1, the change in neutrino spin polarization
can be sufficient even with peak fields∼ 104. The change
in helicity of solar neutrinos can also affect theν − e scat-
tering (Barranco et al. 2017).

Now if we include the matter potential termV which
affects left and right helicity states differently, then the
neutrino propagation can be described by a Schrödinger-
like equation (Giunti & Studenikin 2015)

i
d

dr

(

νL
νR

)

=

(

V (x) µνB⊥
µνB⊥ 0

)(

νL
νR

)

. (4)

For the case of constantV andB⊥, the change in neu-
trino helicity is expressed as

PνL→νR (x) =
(2µνB⊥)2

V 2 + (2µνB⊥)2
sin2

(

1

2

√

V 2 + (2µνB⊥)2x

)

.

(5)

Thus, matter potential is expected to further suppress the
change in neutrino helicity in solar magnetic fields.

Now considering two neutrino flavors, we finally include the effects of neutrino masses and mixing angleθ12. In this
case, the effective Hamiltonian becomes a4 × 4 matrix. For the case of Dirac neutrinos, the effective Hamiltonian in the
(νeL, νµL, νeR, νµR)

T basis is given byGiunti & Studenikin(2015)

HD =











−∆m2

4E
cos 2θ12 + Ve

∆m2

4E
sin 2θ12 µeeB⊥ µeµB⊥

∆m2

4E
sin 2θ12

∆m2

4E
cos θ12 + Vµ µµeB⊥ µµµB⊥

µeeB⊥ µµeB⊥ −∆m2

4E
cos 2θ12

∆m2

4E
sin 2θ12

µeµB⊥ µµµB⊥
∆m2

4E
sin 2θ12

∆m2

4E
cos 2θ12











, (6)

whereVe =
√
2GF (ne−nn/2) andVµ = −GFnn/

√
2 are matter potentials for left handed electron and muon neutrinos

respectively,ne andnn denote the number densities of electrons and neutrons respectively and∆m2 = ∆m2
21 is the

neutrino mass-squared difference. For the Majorana case, the vanishing diagonal termsµee andµµµ result in the following
Hamiltonian in the(νeL, νµL, ν̄e, ν̄µ)T basis (Giunti & Studenikin 2015)

HM =











−∆m2

4E
cos 2θ12 + Ve

∆m2

4E
sin 2θ12 0 µeµB⊥

∆m2

4E
sin 2θ12

∆m2

4E
cos θ12 + Vµ −µµeB⊥ 0

0 −µµeB⊥ −∆m2

4E
cos 2θ12 − Ve

∆m2

4E
sin 2θ12

µeµB⊥ 0 ∆m2

4E
sin 2θ12

∆m2

4E
cos 2θ12 − Vµ











. (7)

Suppression due to the potential term in the two com-
ponent case in Equation (5) can now be lifted due to res-
onant transitions. The electron neutrinos produced in the
Sun can undergo multiple resonances in the presence of

a magnetic field. The usual MSW resonanceνeL ↔ νµL
takes place at the locationxMSW

ρ(x)Ye

mn

∣

∣

∣

∣

∣

x=xMSW

=
∆m2 cos 2θ12

2
√
2GFE

. (8)
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In addition, there is spin-flavor resonanceνeL ↔ νµR
which always occurs before the MSW resonance. The lo-
cation of the spin-flavor resonance is written as

ρ(x)Y eff
e

mn

∣

∣

∣

∣

∣

x=xSFP

=
∆m2 cos 2θ12

2
√
2GFE

, (9)

whereρ(x) is matter density inside the Sun,mn is the neu-
tron mass,Ye is the electron fraction and

Y eff

e =

{

(3Ye − 1)/2 for νeL ↔ νµR
,

(2Ye − 1) for νeL ↔ ν̄µ.
(10)

The locations of resonance for different neutrino en-
ergies are provided in Table1 implementing the elec-
tron density profile from the standard solar model of
Bahcall et al. (2005). We have used∆m2 = 7.4 ×
10−5 eV2 andθ12 = 33.8◦ throughout the paper. For neu-
trinos with energy below2MeV, the resonant density re-
quired is too high to occur in the Sun. Thus only the high
energy8B neutrinos are expected to be affected by these
effects.

The solutions of the neutrino evolution equation with
spin-flavor Hamiltonian (6) and (7) are difficult to solve
for arbitrary varying density and magnetic fields. However,
analytical (Aneziris & Schechter 1992) and semi-analytic
(Yilmaz 2018) solutions exist for different cases. In the
next section, we will study the case of zero vacuum mix-
ing which gives rise to equations admitting exact analytical
solutions.

3 AN ANALYTICAL MODEL FOR ZERO
VACUUM MIXING

For the case ofθ12 = 0, only the SFP resonance can con-
tribute to the neutrino transitions. In this case, the effec-
tive Hamiltonian becomes a2 × 2 matrix in the channel
νeL ↔ νµR/ν̄µ

H =

(

−∆m2

4E
+ δV

2
µeµB

µeµB
∆m2

4E
− δV

2

)

, (11)

where δV =
√
2GF ρY

eff
e /mN , with Y eff

e defined by
Equation (10). As can be seen from Equation (11), the
main input required to study spin-flavor transitions is
the profile of number density of electrons and neutron-
s, and the magnetic field along the neutrino trajectory.
The electron number density in the standard solar model
(Bahcall et al. 2005) is displayed in Figure2. However, for
obtaining numerical solutions, various approximations are
applied (Pal 1992). Here we use the approximation

ne(r) = 100[1− tanh(5r/R⊙)]NA cm−3, (12)

whereNA is Avogadro’s number, which gives a reasonably
good approximation apart from the region near the surface
of the Sun.

Now the equation for the neutrino flavorνeL with
Hamiltonian (11) becomes a second order ordinary differ-
ential equation given by

d2νeL
dt2

−
(

µḂ

µB
+ iξ

)

dνeL
dt

+

(

φ2 + i
dφ

dt
+ (µB)2 − iφ

µḂ

µB
+ φξ

)

νeL = 0,

(13)
where we have defined

φ =− ∆m2

4E
+

1√
2
GFne, (14)

ξ =

{

− 1√
2
GFnn for νeL → νµR

,

−
√
2GFnn for νeL → ν̄µ.

(15)

In general, it is possible to solve this equation nu-
merically to obtain the survival probability of electron
neutrinos. However for the case when magnetic field
is given by Equation (2) and density is expressed by
Equation (12), the set of equations reduces to the well
known Demkov-Kunike model, which has exact solution-
s (Suominen & Garraway 1992; Kenmoe et al. 2016). The
analytical solution is provided by Equation (A.15) and
can be utilized to calculate the neutrino transition prob-
ability P (νeL → ν̄µR;R⊙). The resulting solution plot-
ted in Figure3 depicts the difference for the two cases of
Dirac and Majorana neutrinos. For sufficiently low mag-
netic fields, the difference in the transition probability of
the two cases is not significant. However, for large mag-
netic field there can be a detectable difference in the Dirac
and Majorana neutrinos.

If we assume that inside the Sun the transitions are
driven dominantly by SFP resonance, and that outside the
Sun the transitions are mainly due to the large vacuum mix-
ing angle, then the probability for the electron neutrinos
produced inside the Sun to reach the Earth’s surface as
electron antineutrinos is written as (Akhmedov & Pulido
2003)

P (νe → ν̄e) =P (νeL → ν̄µR;R⊙)P (ν̄µR → ν̄eR;Res)

=P (νeL → ν̄µR;R⊙) sin2 2θ12 sin
2
(∆m2Res

4E

)

,

(16)

whereRes is the average distance between Earth and Sun.
For the above model, the result from the Borexino ex-

periment can be used to obtain bounds on the maximum
magnetic fieldB0 at the center of the Sun. The Borexino
experiment gives an upper limit on the neutrino transition
probability for8B neutrinosPνe→ν̄e < 1.3× 10−4 at 90%
C.L. forEν̄ > 1.8 MeV (Bellini et al. 2011).

Now the transition probabilityP (νeL → ν̄µR;R⊙) in
Equation (16) is obtained from Equation (A.15) by aver-
aging over the8B neutrino production region in the Sun
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(Bahcall et al. 2005). Using this, we calculate the the mean
probability in the energy region (2 < E < 15) MeV with
1 MeV bin−1. For Majorana neutrinos we obtain〈P 〉 =
1.18 × 10−4 for B0 = 3 × 104 G and〈P 〉 = 2.1 × 10−4

for B0 = 4× 104 G. Whereas for the case of Dirac neutri-
nos, we arrive at〈P 〉 = 1.0×10−4 for B0 = 3×104 G and
〈P 〉 = 1.8 × 10−4 for B0 = 4 × 104 G. Thus the consis-
tency with the Borexino result requiresB0 ≤ 3× 104 G in
both cases. Hence, this analysis presents us a useful bound
on the magnetic field in the solar core. This bound lies in
between the various other bounds discussed in the previous
section. However, this limiting case obtained by substitut-
ingθ12 = 0 inside the solar region overestimates the transi-

tion probability by pushing the SFP resonance deeper into
the solar interior where the strength of the magnetic field is
higher. Thus we expect the actual bound on the magnetic
field to be higher in the full treatment with all the flavors
taken into consideration.

For the case when magnetic field is expressed by
Equation (1) in the RZ of the Sun, such analytical solution-
s of Equation (13) are not possible. In this case, since the
magnetic field is significantly weaker at the SFP location,
we do not expect significant transitions. Hence, the bounds
on the RZ magnetic field will be comparatively weaker.

4 INCLUDING EFFECTS OF θ12

Adding the effects of the vacuum mixing leads to the full Hamiltonian (6) and (7) for Dirac and Majorana neutrinos
respectively. However, since there is no resonant production of νeR/ν̄e, we set its amplitude to zero which yields the
effective3× 3 Hamiltonian for the Majorana neutrinos

HM =







−∆m2

4E
cos 2θ12 + Ve

∆m2

4E
sin 2θ12 µB⊥

∆m2

4E
sin 2θ12

∆m2

4E
cos θ12 + Vµ 0

µB⊥ 0 ∆m2

4E
cos 2θ12 − Vµ






, (17)

and a similar one for the Dirac neutrinos. In this case, we have two resonances described by Equations (8) and (9).
However at the location of both resonances, the Hamiltonianis dominated by large off-diagonal term∆m2 sin 2θ12/4E.
Thus merely fulfilling the SFP resonant condition in Equation (9) is not sufficient to drive large transitions due to the
magnetic field. In this case, it is more appropriate to go to mass eigenbasis where such large vacuum mixing terms are
absent (Friedland 2005). The Hamiltonian in the mass eigenbasis can be obtained by performing a rotation on the flavor
eigenstates

HM → R†
12
HMR12 , (18)

and diagonalizing the resultant matrix, whereR12 is the rotation matrix in the(12) plane. We obtain

HD
M =





∆D 0 µB cos θD
0 −∆D µB sin θD

µB cos θD µB sin θD −κM



 , (19)

where

∆D =

√

(

− ∆m2

4E
cos 2θ12 +

1√
2
GFne

)2

+

(

∆m2

4E
sin 2θ12

)2

, (20)

θD =− 1

2
tan−1

(

∆m2

4E
sin 2θ12

−∆m2

4E
cos 2θ12 +

1√
2
GFne

)

, (21)

κM =− ∆m2

4E
cos 2θ12 +

1√
2
GF (ne − 2nn) . (22)

In Figure 4 we plot the eigenvalues of the Majorana
Hamiltonian Equation (17) and Equation (19) in flavor and
mass basis respectively. In the flavor basis, depicted in
Figure4(a), one can see the level crossing at two differ-
ent points. The lower one corresponds to SFP resonance
while the higher one is the MSW resonance. The electron
neutrinos are produced predominantly in the heavier mass

eigenstate (dashed curve in Fig.4(a)). At the SFP crossing
point, the transition between the neutrino statesνe ↔ ν̄µ
is driven by the strength of the magnetic field at the loca-
tion of the level crossing. Assuming the level crossing to
be adiabatic, theνe eigenstate is now represented by the
solid curve in Figure4(a) while the dashed curve corre-
sponds now tōνµ. The electron neutrino then goes through
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another resonance at the MSW crossing point. After this
second level crossing, theνe state now corresponds to the
dot-dashed curve which is the lower mass eigenstate while
νµ is the upper mass eigenstate (solid curve).

However, this notion of resonant flavor conversion is
valid only for small mixing angles (Friedland 2001). For
large values of mixing angle, the mass eigenbasis describes
the situation more accurately. Comparing Figure4(a)and
4(b), it is seen that the level crossing which was present for
the caseθ12 ≈ 0 is now absent. Again, if the electron neu-
trinos are produced in the heavier mass eigenstate (dashed
curve in Fig.4(b)), they now will not encounter any lev-
el crossing resonance such as those in Figure4(a). Thus
merely fulfilling the resonant conditions in Equations (8)
and (9) is not sufficient for resonant conversion and these
conditions are valid only for small mixing angle. A gen-
eral condition for resonant conversion can also be de-
rived which holds for both small and large mixing angles
(Friedland 2005).

An examination of the neutrino transitions as it
propagates in the Sun reveals further details about the
neutrino evolution in this general case. Working with
Hamiltonian (19) we can see at the point of neutrino pro-
duction near the solar core the diagonal terms are∆D ∼
4 × 10−12 eV for E = 10MeV, while the magnetic field
term µB ∼ 6 × 10−16 eV for B ∼ 104 G. Thus there
is a difference of about four orders of magnitude and the
transitions will be absent. As the neutrino propagates to
the lower density regions in the RZ, the eigenlevels come
closer. At r ≈ 0.2R⊙ we have∆D ∼ 2 × 10−12 eV
while the magnetic field now increases to about106 G,
thusµB ∼ 6 × 10−14 eV. There is still a difference of
about an order of magnitude, however now there can be
small νeL ↔ ν̄µ transitions driven by the magnetic field
as can be ascertained in Figure5. These conversions per-
sist as long as the ratio∆D/µB ∼ 0.1. However beyond
r = 0.4R⊙, the magnetic field gradually falls off to values
< 105 G (see Fig.1), and the corresponding transitions al-
so die out. Thus after the partial conversion of the neutrinos
νe → ν̄µ in the regionr ≈ (0.2 − 0.4)R⊙, the neutrino
reverts back to being predominantly in the eigenstateν1.
As the neutrinos propagate towards the CZ, they will a-
gain encounter an increasing magnetic field. However due
to the strong bounds on the magnetic field in this region
having peak fieldB0 < 105 G, the diagonal splitting terms
∆D >> µB and there will be no significant transition-
s due to magnetic fields. Thus assuming the neutrinos are
produced in the eigenstateν1 in the Sun, they will exit the
Sun in the same eigenstate and buried magnetic field in
the RZ having strength∼ 106 G, which is not sufficient to
cause any appreciable level crossing. Thus, the transitions
are suppressed to a great extent.

Fig. 5 The variation of probabilityP (νeL → ν̄µR) with
distance inside the Sun for maximum RZ magnetic field
B0 = 106 G. The neutrinos are assumed to be produced at
the center of the Sun andE = 10MeV.

We can write the neutrino transition probability

P (νeL → ν̄µR) =
∑

i

P (νeL → νi)P (νi → νµR) , (23)

whereP (νeL → νi) is the probability that the electron
neutrino is produced in mass eigenstateνi andP (νi →
νµR) is the probability of transitionνi → ν̄µR under
the effect of magnetic field. Since the Hamiltonian in
Equation (19) for the Majorana neutrinos can be effectively
decoupled into two2× 2 blocks, we can write

P (νeL → ν̄µR) = cos2 θD(ri)P (ν1 → ν̄µR)

+ sin2 θD(ri)P (ν2 → ν̄µR) ,
(24)

whereθD(ri) is the mixing angle at the neutrino produc-
tion pointri. The probabilitiesP (νi → νµR) can be eval-
uated numerically to give the total transition probabilityin
Equation (24).

5 COMPARISON WITH BOREXINO RESULTS

The most stringent constraints on the anti-neutrino flux
are given by the Borexino experiment (Bellini et al. 2011),
which reported an upper limit ofφν̄e < 760 cm−2 s−1 on
the8B flux. For an undistorted8B neutrino spectrum, the
solar anti-neutrino flux at the surface of Earth is expressed
as

φν̄e = φνe(
8B)P (νe → ν̄e), (25)

where the value of total8B neutrino flux isφνe(
8B) =

5.88 × 106 cm−2 s−1 (Bellini et al. 2011). Thus Borexino
placed an upper bound ofP (νe → ν̄e) < 1.3× 10−4.

The solar electron neutrino transition probability
P (νe → ν̄e) at the Earth’s surface can be calculated em-
ploying Equation (16), whereP (νeL → ν̄µR;R⊙) is nu-
merically evaluated applying Equation (24) and is aver-
aged over the8B neutrino production region in the Sun
(Bahcall et al. 2005). To put appropriate bounds on the
solar magnetic field, we plot in Figure6 the probability
P (νe → ν̄e) against the peak magnetic field for the case
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Fig. 6 The probability of solar electron neutrino (E =
10MeV) to anti-neutrino conversion at the Earth’s sur-
face (Eq. (16)) and comparison with Borexino results. The
dashed (red) curve and dot-dashed (brown) curve show
the probabilityP (νe → ν̄e) calculated using the two
field profiles marked with respective curves in Fig.1. The
dotted (blue) line signifies that the current upper bound
P (νe → ν̄e) < 1.3 × 10−4 from the Borexino experi-
ment corresponds to a bound of2.1 × 108 G on the RZ
magnetic field and to a bound of1.1 × 106 G on the core
magnetic field. Thesolid (black) lines mark the helioseis-
mological bounds of30MG and7MG on the RZ and solar
core magnetic fields respectively.

of Majorana Hamiltonian (17). The two curves in Figure6
correspond to the two magnetic field profiles displayed in
Figure 1, one peaking at the center of the Sun and oth-
er in the RZ, in accordance with the existing helioseis-
mological bounds. In Figure6, we also demonstrate that
the Borexino limit (Bellini et al. 2011) intersects the two
curves at points corresponding to the maximum allowed
peak magnetic field. For the first case when the magnet-
ic field peaks in the RZ, using the Borexino limit we ob-
tain the value of peak magnetic fieldB0 < 2.1 × 108 G.
Thus the Borexino data are unable to constrain the existing
bound ofB0 < 30MG in the solar RZ, which corresponds
to the probabilityP (νe → ν̄e) < 2.9 × 10−6 and hence
to an upper limitφν̄e < 17 cm−2 s−1 of the anti-neutrino
flux. This requires an improvement by almost two orders
of magnitude in the sensitivity of̄νe detection. However,
the same analysis with magnetic field peaking in the solar
core provides very useful bounds which constrain some of
the existing solar models. The Borexino limit in this case
yields an upper bound ofB0 < 1.1 × 106 G, which is al-
most a factor of one-seventh of the current largest bound on
the core magnetic field (Antia 2002). It is advantageous to
compare this result with that obtained in Section3, where
we obtained much a stronger bound ofB0 < 8 × 104 G.
This demonstrates that the two component approximation
used frequently (e.g.,Mosquera Cuesta & Lambiase 2008)
does not give the correct transition probability and it is
more appropriate to take into account all possible channels
in which the initially produced neutrino state may undergo
resonant conversion.

Since the Borexino experiment continues to take da-
ta, it is natural to assume that future results will be able to
place more stringent limits on the anti-neutrino flux. This
in turn will be useful for placing stricter upper bounds on
the solar magnetic field, especially in the solar core region
where current helioseismological bounds vary widely in
predictions.

6 CONCLUSIONS

In this paper, we have studied the phenomenon of neutri-
no spin-flavor oscillations in the Sun for neutrinos having
sufficiently large magnetic moments∼ 10−11µB. We have
constructed two models for solar magnetic field based on
the current bounds on the magnetic field in different re-
gions of the Sun. In the first model, one can have large
magnetic field in the solar core and it tapers off with dis-
tance from the center. In the second model, we have a large
magnetic field in the RZ which becomes negligible in the
core region and in addition there is a CZ magnetic field,
calculated inMiranda et al.(2001). It was shown that even
a magnetic field∼ 104 G is sufficient to change the neu-
trino helicity as it comes out of the Sun. We have also
obtained a novel parametrization for the electron density
profile in the Sun, which provides a better approximation
compared to the usual exponential parametrization.

For the case of zero vacuum mixing and large magnet-
ic field in the solar core, we obtain analytically exact solu-
tions. This allows us to put strong bounds on the magnetic
field in the solar core applying results from the Borexino
experiment. Also, the difference between the Dirac and
Majorana neutrinos is significant only for magnetic fields
∼ 105 G or more. We then examined the effects for the re-
alistic case of large vacuum mixing angle and found that it
has an effect in suppressing theνe → ν̄µ transitions. The
energy level diagrams distinctly demonstrate the difference
between the two cases. Whereas in the case of small mix-
ing angle, we get enhanced transitions due to adiabatic lev-
el crossings. For the latter case of large vacuum mixing, the
eigenstates of the Hamiltonian in the mass eigenbasis do
not exhibit such crossing phenomenon. Thus the dominan-
t terms are the diagonal terms and small transitions take
place only in the RZ where the ratio of the two terms is
∼ 0.1. Furthermore, the CZ fields do not affect the neu-
trino transitions. The Borexino results are then utilized to
place appropriate bounds on the two models of solar mag-
netic field. It is found that whereas the Borexino bounds
are too weak to place any upper limit on the RZ magnetic
field, for the solar core magnetic field we are able to place
an upper boundB0 < 1.1 × 106 G. This is a significant
improvement over the existing bounds coming from helio-
seismology results.

Based on the above results, it can be seen that, howev-
er, the sub-leading effects on solar neutrinos due to spin-
flavor transitions are likely to be very small forµν ∼
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10−11µB. With improved sensitivity, future experiments
will be able to place even stronger constraints on the neutri-
no magnetic moment as well as solar magnetic field. Thus
the phenomenon of spin-flavor oscillations gives important

information about the solar interior independent of helio-
seismological observations.
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Appendix A: NEUTRINO EVOLUTION EQUATIONS AND DEMKOV-KUNIK E MODEL

For the case when magnetic field and density of the Sun are expressed by Equations (2) and (12), the Hamiltonian (11)
can be written as

H =

(

−∆m2

4E
+ V0

2
(1− tanh(5r/R⊙)) µB0 sech(5r/R⊙)

µB0 sech(5r/R⊙)
∆m2

4E
− V0

2
(1− tanh(5r/R⊙))

)

, (A.1)

whereV0 =
√
2GFY

eff
e ρ0/mN , with ρ0 being the density at the solar center. We define

a =− ∆m2

4E
+

V0

2
, (A.2)

b =− V0

2
, (A.3)

c =µB0. (A.4)

For ultra-relativistic neutrinos propagating along the radial direction in the Sun, the flavor Equation (13) can now be
written as

d2νeL
dr2

+
5

R⊙
tanh(5r/R⊙)

dνeL
dr

+
(

c2 sech2(5r/R⊙) + (a+ b tanh(5r/R⊙))
2

+
5i

R⊙
(a tanh(5r/R⊙) + b)

)

νeL = 0. (A.5)

Now substitutingz = (1 + tanh(5r/R⊙))/2, Equation (A.5) becomes

z(1− z)
d2νeL
dz2

+
1

2
(1 − 2z)

dνeL
dz

+ c2
(R⊙

5

)2

q(z)νeL = 0, (A.6)

where

q(z) =1 +
1

4c2z(1− z)

(

(

a+ b(2z − 1)
)2

+
5i

R⊙
(a(2z − 1) + b)

)

. (A.7)

Finally, the substitutionνeL = zµ(1− z)νu(z), where

µ =− i(a− b)R⊙/10, (A.8)

ν =i(a+ b)R⊙/10, (A.9)

converts Equation (A.6) to a Gauss hypergeometric equation

z(1− z)
d2u

dz2
+ (γ − (α+ β + 1)z)

du

dz
− αβu(z) = 0, (A.10)

where

α =
R⊙
10

(

ib+
√

−b2 + 4c2
)

, (A.11)

β =
R⊙
10

(

ib−
√

−b2 + 4c2
)

, (A.12)

γ =
1

2
− i(a− b)

R⊙
5

. (A.13)

Equation (A.10) has two linearly independent solutions which can be taken as (Notzold 1987)

νeL± = z±µ(1− z)νu±(z), (A.14)
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whereu±(z) = u(z)|µ→±µ. If the neutrinos are produced at the locationr0 inside the Sun, then the evolution of the state
νeL is given by

νeL(r) = cos2 θmeiωr0zµ(1 − z)ν2F1(α, β, γ; z)

+ sin2 θme−iωr0z−µ(1− z)ν2F1(α, β, γ; z)|µ→−µ, (A.15)

where θm = tan−1(c/a)/2, ω =
√

(a)2 + (c)2 and 2F1(α, β, γ; z) is the Gauss hypergeometric function. Since
b2 >> 4c2, we can useα ≈ µ + ν, β ≈ 0 andγ = (1/2) + 2µ for evaluating the survival probability given by
Pee(r0, r) = |νeL(r)|2. The transition probability1− Pee(r0, r) is then averaged over the8B neutrino production region
to put appropriate bounds on the magnetic field.
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