RAA 2020 Vol. 20 No. 8, 125(13pp) doi: 10.1088/1674–4527/20/8/125 © 2020 National Astronomical Observatories, CAS and IOP Publishing Ltd. http://www.raa-journal.org http://iopscience.iop.org/raa

Research in Astronomy and Astrophysics

Detection of hydroxyacetone in protostar IRAS 16293-2422 B

Yan Zhou^{1,2}, Dong-Hui Quan^{2,3}, Xia Zhang² and Sheng-Li Qin¹

- ¹ Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091, China; *slqin@bao.ac.cn*
- ² Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China

³ Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA

Received 2020 February 15; accepted 2020 April 17

Abstract Hydroxyacetone (CH₃COCH₂OH) is one of the smallest molecules that contain both hydroxyl and carbonyl group on neighboring carbon atoms. This steric configuration is characteristic of saccharides and determines their biochemical activity. The attempt to search for hydroxyacetone toward the massive star formation region Sagittarius B2(N) was unsuccessful. Here we report the first detection of CH₃COCH₂OH in the solar-type protostar IRAS 16293–2422 B, using the Atacama Large Millimeter Array science verification data at Band 4. In a total of 11 unblended transitions of CH₃COCH₂OH with upper level energies ranging from 86 to 246 K are identified. From our local thermodynamic equilibrium analysis, we derived that the rotational temperature of CH₃COCH₂OH is 160 ± 21 K and the column density is $(1.2\pm1.0) \times 10^{16}$ cm⁻², which results in a fractional abundance of 7×10^{-10} with respect to molecular hydrogen. In this work, we present the identification of CH₃COCH₂OH in IRAS 16293-2422 B and propose a simple formation mechanism. The unambiguous identification of hydroxyacetone may provide the basis for future study of the origin and evolution of saccharides in the interstellar medium.

Key words: ISM: abundances — ISM: individual (IRAS 16293–2422 B) — ISM: molecules

1 INTRODUCTION

The carbohydrates have caused increasing interests of astrophysical studies in recent years because these molecules can serve as energy storage¹, can participate in the building of DNA and RNA, and are structural elements in cellular molecular organization (e.g., cell membranes) (Mohăcek-Groše 2005). They can also form sophisticated extracellular matrices throughout the organism (Iozzo 1998). Therefore, carbohydrates are vital to all known lifeforms (Cooper et al. 2001). All monosaccharides show common structural feature that carbonyl group occurs next to hydroxyl group in the chain conformation of sugar molecules (Mohăcek-Groše 2005). Examples of the smallest sugar molecules are glycolaldehyde HCOCH₂OH and hydroxyacetone CH₃COCH₂OH. Searching for the monosaccharides in interstellar medium (ISM) has caused considerable interest, as the existence and the process to form these molecules in ISM may help with answering the

question of the origin and evolution of life in the universe (Bossa et al. 2014).

Glycolaldehyde HCOCH₂OH has been studied intensively in various sources. The glycolaldehyde was firstly detected toward the Galactic Center (Hollis et al. 2000, 2001, 2004a; Halfen et al. 2006; Requena-Torres et al. 2008). Then it was detected in a number of other places in ISM, associated with the star formation regions of high (Beltrán et al. 2009; Calcutt et al. 2014), intermediate (Fuente et al. 2014) and low mass (Jørgensen et al. 2012; Coutens et al. 2015; Taquet et al. 2015; Jørgensen et al. 2016). It was also detected in comet C/2014 Q2 (Lovejoy) (Biver et al. 2015).

Hydroxyacetone CH_3COCH_2OH , compared with glycolaldehyde HCOCH₂OH, exhibits the next level of molecular complexity among the smallest sugar molecules (Apponi et al. 2006a). In laboratory, this molecule is an important starting material in the synthesis of aldehydes and ketones (see, e.g., Solomons 1984). Therefore, the assumption that such molecule could lead to the production of complex prebiotic species in ISM should be plausible (Apponi et al. 2006b). Two searches for hydroxyacetone toward Sagittarius B2(N) (hereafter Sgr B2(N)) were

¹ The energy discussed here is the energy sustaining the vital activities of body, such as blood circulation, digestion and absorption of the stomach and so on.

conducted with non-detection of the molecule. The first attempt was at 1.3 mm using the Caltech Submillimeter Observatory (CSO), with no detected transitions of hydroxyacetone (Braakman et al. 2010). The second attempt was at 3 mm using the Arizona Radio Observatory (ARO) 12 m telescope. Although there are several coincidental transitions matching CH₃COCH₂OH lines, the absence of several favorable transitions indicates that the result is not enough for claiming a detection (Apponi et al. 2006b). The aim of our study is to present a reliable identification of CH₃COCH₂OH with the highly sensitive Atacama Large Millimeter Array (ALMA) at Band 4, toward a typical young solar-type protostar IRAS 16293–2422B (hereafter 116293B).

The class 0 protostar IRAS 16293-2422 (hereafter I16293) contains at least two sources, A and B, with a separation of 5" (\sim 700 AU) (Calcutt et al. 2018). Many line surveys have been carried out towards I16293 by using single dish telescopes and interferometers (Cazaux et al. 2003; Bisschop et al. 2008; Caux et al. 2011; Jørgensen et al. 2016; Lykke et al. 2017; Martín-Doménech et al. 2017). The results show that I16293 exhibits a rich chemistry and chemical complexity of complex organic molecules (COMs). There are many oxygen-bearing COMs that have been detected in I16293. Examples are glycolaldehyde, ethanol, ethylene glycol, acetic acid, propanal and others, which are reported by the Protostellar Interferometric Line Survey (PILS) studies (e.g., Jørgensen et al. 2012, 2016; Lykke et al. 2017; Jørgensen et al. 2018). Since the hydroxyacetone closely resembles glycolaldehyde, I16293 is very likely to be a source to search for hydroxyacetone.

In this work, we report the identification of hydroxyacetone at the 2 mm waveband toward I16293B. We describe the observations in Section 2, and present the results and analyze the data in Sections 3 and 4, respectively. We draw a few conclusions in Section 5.

2 OBSERVATIONS

We took the uncalibrated data from the ALMA science verification (SV) program toward I16293 at Band 4². We downloaded and re-calibrated the data using the standard ALMA calibration scripts. These data were obtained by observations that were carried out with 23×12 m antennas on 2014 July 14. The primary beam size at Band 4 is about 30". The phase-tracking center is at R.A.(J2000) = $16^{h}32^{m}22.73^{s}$ and decl.(J2000) = $-24^{\circ}28'32.50"$. There are four spectral windows with 3840 channels each. These four spectral windows cover frequency ranging from 145.1 to 159.2 GHz, with spectral resolutions from 0.06 to

0.49 MHz. We did the follow-up calibration and imaging employing the CASA software³. We have flagged the first and last 20 channels to avoid the edge problem. We processed the continuum-subtraction with STATCONT software (Sánchez-Monge et al. 2018).

The continuum image is constructed from line-free channel as shown in color scale in Figure 2. The peak intensity of I16293B is 0.35 ± 0.006 Jy beam⁻¹, and the synthesized beam size is $1.04'' \times 0.59''$. Therefore, the beam averaged H₂ column density is derived to be 1.7×10^{25} cm⁻² for I16293B (Lis et al. 1991). The result is similar to the H₂ column density calculated by Martín-Doménech et al. (2017) and Jørgensen et al. (2016) toward I16293B.

3 RESULTS

In IRAS 16293-2422 A, the lines are quite broad, leading to significant line confusion that prevents the search for complex species (e.g., Jørgensen et al. 2012). This report is therefore focusing on source B only. Full band spectra⁴ are extracted at the continuum peak position of source B. The eXtended CASA Line Analysis Software Suite (XCLASS) (Möller et al. 2017) package⁵ is employed for identifying line transitions under the assumption of local thermodynamical equilibrium (LTE)⁶, and is used to access database Cologne Database for Molecular Spectroscopy (CDMS) (Müller et al. 2001, 2005; http://cdms.de) as well as the Jet Propulsion Laboratory (JPL) database (Pickett et al. 1998; http://spec.jpl.nasa.gov). For hydroxyacetone, the JPL database is used to access the XCLASS package. The spectroscopic data of CH₃COCH₂OH, with the A and E torsional states, has been studied by Kattija-Ari & Harmony (1980) (from 4 to 180 GHz), and more recently by Apponi et al. (2006b) (from 4 to 180 GHz) and Braakman et al. (2010) (near 300 GHz). Since the spectra of I16293B are really rich, a careful check should be done to avoid blended or overlapped line problems. To achieve this, we have made a full source model (coded in solid green color in Fig. B.1 of Appendix) including as many species to model the observed spectra toward I16293B. The species which were observed in I16293B up to now (from table 1 by Drozdovskaya et al. 2019) are all included in the full source model.

² Obtaining ALMA data and calibration scripts: https://almascience.nrao.edu/almadata/sciver/ IRAS16293Band4/

³ CASA homepage: http://casa.nrao.edu

⁴ Fig. 1 shows the unblended or partially blended emission lines of hydroxyacetone toward I16293B. Full band spectra are presented in Fig. B.1, which are populated by many molecular lines.

⁵ The spectroscopic database contained in XCLASS is interfacing with Virtual Atomic and Molecular Data Centre (VAMDC): <u>http://</u> www.vamdc.org/activities/research/

⁶ LTE is a good assumption in this case, because the densities are high at the chosen position and thus the molecules are expected to be thermalized.

Fig. 1 The unblended and partially blended (denoted with "PB") lines of hydroxyacetone detected in these four spectral windows at Band 4 toward I16293B overlaid with an LTE spectral model of the emission.

 Table 1
 Observed Spectral Line Parameters of Detected Species CH₃COCH₂OH toward I16293B

(MHz) (MHz) (10^{-5} s^{-1}) (K) (km s^{-1}) (km s ⁻¹) (K) (K)	Loval	
	Level	•
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)	(11) (12	2)
145141.73 0.05 7.49 90 94 22(3,20)-23(2,21)A	B	5
145209.41 0.05 5.58 90 94 22(5,20)-25(5,21)A	PB PB	B
145217.98 0.68 3.69 84 66 16(10.7) - 16(11.6)A	ID)
145237.27 0.40 4.24 228 150 36(4,32)-36(5,31)A	B	3
$145260.69 \qquad 0.05 \qquad 5.58 \qquad 90 94 22(2,20) - 23(2,21) A 2.500 \pm 0.022 2.895 \pm 0.020 0.591 0.076 \pm 0.022 0.0591 0.076 \pm 0.022 0.076 \pm 0.076 0$	8σ D)
145304.16 0.05 9.27 94 49 23(2,22)-24(1,23)E	B	8
145306.59 0.05 9.27 94 49 23(1,22)-24(2,23)E	B	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B	5
145324.05 0.41 4.25 228 150 36(5.32)-36(6.31)A	B	;
145462.03 0.69 2.94 74 58 14(10,5)-14(11,4)A	B	3
145462.03 0.69 2.94 74 58 14(10,4)-14(11,3)A	b)
145527.36 0.05 9.11 91 98 23(2,22)-24(1,23)A	PB	В
145528.71 0.05 5.70 91 98 23(2,22)-24(2,23)A	B	3
145529.92 0.05 5.70 91 98 23(1,22) - 24(1,23) A	b)
145551.22 0.05 9.11 91 98 25 $(1,22)$ - 24 $(2,23)$ A 2.443 ± 0.041 2.747 ± 0.040 1.126 0.061 145553 78 0.60 2.44 70 54 13 (10.4) 13 (11.3) A	ο 1/σ D Β) ?
14555378 0.69 2.44 70 54 $13(10.3) - 13(11.2)A$	D h	,
145597.03 0.35 0.25 172 130 32(3.30)- 32(3.29)A	B	3
145597.33 0.35 2.82 172 130 32(2,30)-32(3,29)A	b)
145604.76 0.35 2.82 172 130 32(3,30)-32(4,29)A	B	3
145605.07 0.35 0.25 172 130 32(2,30)- 32(4,29)A	b)
145628.77 0.69 1.81 66 50 12(10,3) - 12(11,2)A	B	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D B) 2
14573.0.23 0.05 5.56 87 90 21(3.18)-22(3.19)A	B	;
145805.54 0.37 3.60 199 140 34(3,31)- 34(4,30)A	B	3
145815.58 0.93 6.46 277 150 37(11,26)-37(12,25)A	B	3
145845.63 0.05 5.15 95 51 24(1,24)-25(1,25)E	B	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D)
145942.05 0.05 11.22 25 51 $24(0,24) - 25(1,25)E$	U PR	, R
145902.36 0.05 5.75 93 100 24(1,24)–25(1,25)A	b)
145902.36 0.05 5.75 93 100 24(0,24)-25(0,25)A	b)
145902.36 0.05 10.64 93 100 24(0,24)-25(1,25)A	b)
146048.18 0.05 5.88 89 45 21(3,18) - 22(4,19)E	B	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B	5
146509,91 0.55 5.91 556 170 $45(6,50) - 45(6,53)A$ 146517 87 0.02 5.03 89 43 20(6.15) 21(6.16)F	D B	2
14668658 = 0.05 = 4.03 = 98 = 94 = 22(5,18) = 23(4,19)	B	\$
146726.58 0.12 4.00 38 54 12(4,8)-13(5,9)A	B	3
146828.51 0.44 5.45 303 170 41(6,35)-41(7,34)A	B	3
147022.66 0.05 5.48 88 86 20(6,14)-21(6,15)A	PB	В
147081.70 0.19 6.01 188 59 29(11,19)–29(12,18)E	B	3
$150885./4$ 0.08 5.99 116 $4/$ $23(9,15)-22(9,14)E$ 2.931 ± 0.051 2.799 ± 0.094 0.349 0.11	5σ D) \
15665.70 0.79 0.47 153 100 25(1,1,19) 25(1,2) 42.505 \pm 0.055 2.215 \pm 0.006 1.178 0.121 15685 98 0.79 6.47 153 100 25(1,15) - 25(1,2) 42.405 \pm 0.055 2.215 \pm 0.006 1.178 0.121 15685 98 0.79 6.47 153 100 25(1,15) - 25(1,15) 42.405 \pm 0.055 2.215 \pm 0.006 1.178 0.121 15685 98 0.79 6.47 153 100 25(1,15) - 25(1,15) 42.405 \pm 0.055 2.215 \pm 0.006 1.178 0.121 15685 98 0.79 6.47 153 100 25(1,15) - 25(1,15) 42.405 \pm 0.055 2.215 \pm 0.006 1.178 0.121 15685 98 0.79 6.47 153 100 25(1,15) - 25(1,15) 42.405 \pm 0.055 2.215 \pm 0.006 1.178 0.121 15685 98 0.79 6.47 153 100 25(1,15) - 25(1,15) 42.405 \pm 0.055 2.215 \pm 0.006 1.178 0.121 1568 1.178 0.178 0	b 90 D	,
155901.46 0.05 6.44 37 50 11(5.6)-12(6.7)A	B	3
156916.51 1.16 1.77 246 150 36(9,27)-35(10,26)A 2.997 ± 0.080 2.321 ± 0.090 0.161 0.134	1 <i>σ</i> D)
156971.26 0.24 11.41 36 19 8(7,2)-9(8,2)E	B	8
$156978.20 0.05 11.61 106 110 25(2,24) - 26(1,25)A 2.478 \pm 0.048 2.214 \pm 0.056 2.107 0.12$	17σ D)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b)
150770.71 0.05 7.22 100 110 $25(1,24) - 20(1,25)A$	D	,)
157034.01 0.05 6.45 37 50 11(5.7)-12(6.6)A	B	3
157253.22 0.05 6.42 111 94 22(8,15)–23(8,16)A	PB	В
157266.79 0.79 6.34 144 98 24(11,13)-24(12,12)A	B	3
157266.90 0.79 6.34 144 98 24(11,14)-24(12,13)A	b)
157301.08 0.05 16.42 110 55 26(0,26) - 27(1,27)E	PB	В
157301.08 0.05 4.20 110 55 $26(1,20) - 27(0,27)E$	b	,
157301.08 0.05 4.20 110 55 26(1,26) - 27(1,27)E	b	,)

Rest Frequency (MHz)	Uncertainty (MHz)	Einstein A (10^{-5} s^{-1})	E_u (K)	$g_{\rm up}$	Quantum numbers	$V_{\rm LSR}$ (km s ⁻¹)	ΔV (km s ⁻¹)	<i>I_P</i> (K)	σ (K)	Detection Level	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
157356.30	0.05	13.42	107	110	26(1,26)-27(0,27)A	2.400 ± 0.014	2.540 ± 0.054	2.088	0.063	33σ	D
157356.30	0.05	7.24	107	110	26(1,26)-27(1,27)A						b
157356.31	0.05	7.24	107	110	26(0,26)-27(0,27)A						b
157356.31	0.05	13.42	107	110	26(0,26)-27(1,27)A						b
157378.30	0.05	7.85	101	98	23(3,20)-24(4,21)A						В
157406.65	0.26	0.28	204	71	35(3,33)- 35(3,32)E	2.540 ± 0.065	2.265 ± 0.026	0.493	0.063	8σ	D
157406.66	0.26	3.26	204	71	35(2,33)- 35(3,32)E						b
157407.33	0.05	6.44	111	94	22(8,14)-23(8,15)A						b
157407.45	0.26	3.26	204	71	35(3,33)- 35(4,32)E						b
157407.46	0.26	0.28	204	71	35(2,33)- 35(4,32)E						b
157504.29	0.05	6.70	100	47	22(4,18)-23(4,19)E						В
157560.49	0.05	7.01	92	90	21(5,16)-22(5,17)A						В
157603.43	0.79	6.19	137	94	23(11,12)-23(12,11)A						В
157603.47	0.79	6.19	137	94	23(11,13)-23(12,12)A						b
157689.00	0.22	8.95	34	42	9(6,3)-10(7,4)A						В
157689.35	0.22	8.95	34	42	9(6,4)-10(7,3)A						b
157709.47	0.05	6.86	102	94	22(6,17)-23(6,18)A	2.770 ± 0.033	2.770 ± 0.087	0.745	0.062	12σ	D
157845.78	0.05	4.10	52	66	15(4,11)-16(5,12)A						В
157899.80	0.79	6.02	129	90	22(11,11)-22(12,10)A						В
157899.82	0.79	6.02	129	90	22(11,12)-22(12,11)A						b
157965.41	0.05	6.72	106	94	22(7,16)-23(7,17)A						В
157981.52	0.53	0.23	123	51	25(4,21)-25(7,19)E						В
157982.08	0.03	6.67	109	47	22(7,15)-23(7,16)E						b
158144.94	0.05	12.81	32	34	7(7,1)– 8(8,0)A						В
158144.94	0.05	12.81	32	34	7(7,0)– 8(8,1)A						b
158159.72	0.80	5.81	122	86	21(11,10)-21(12,9)A						PB
158159.73	0.80	5.81	122	86	21(11,11)-21(12,10)A						b
158386.69	0.80	5.58	115	82	20(11,9)-20(12,8)A						В
158386.69	0.80	5.58	115	82	20(11,10)-20(12,9)A						b
158477.02	0.12	4.41	42	58	13(4,10)– 14(5,9)A						В
158583.67	0.06	2.18	39	58	13(3,11) - 14(4,10)A						PB
158583.92	0.80	5.30	109	78	19(11,8)– 19(12,7)A						b
158583.92	0.80	5.30	109	78	19(11,9) - 19(12,8)A						b
158709.92	0.05	/.16	97	94	22(4,18) - 23(4,19)A						В
158/10.03	0.40	/.80	247	69 74	34(12,23) - 34(13,22) E						DD
158754.38	0.81	4.98	103	74	18(11,7) - 18(12,0)A						PB 1
158/54.58	0.81	4.98	103	14	18(11,8) - 18(12,7)A 40(12,28) + 40(12,27)A						D
158805.09	0.90	8.52	322	100	40(12,28) - 40(15,27)A						B
130700.83	0.81	4.01	97	70	1/(11,0) - 1/(12,3)A 17(11,7) - 17(12,5)A						Б Ь
150025 81	0.81	4.01	9/	10	1/(11, 7) - 1/(12, 0)A						D
159025.81	0.82	4.10	91	00 66	10(11,0) - 10(12,3)A 16(11,5) - 16(12,4)A	2.370 ± 0.032	2.478 ± 0.054	0.428	0.078	5 σ	D L
159025.61	0.82	4.10	91	62	10(11,3) - 10(12,4)A 15(11,5) - 15(12,4)A		2276 ± 0.052			 7 æ	D
159151.70	0.82	2.03	00 86	62	15(11,3) - 15(12,4)A 15(11,4) - 15(12,2)A	2.380 ± 0.049	2.370 ± 0.053	0.314	0.077	10	D h
159151.70	0.82	3.03	80	02	13(11,4)-13(12,3)A						D

 Table 1 Continued.

^bBlend with each other. Transitions with higher Einstein coefficient A and lower energy level have the more contribution to the intensity of spectrum. ^DThe detected unblended transitions of CH₃COCH₂OH. ^{PB}Partially blended with nearby transitions.

3.1 Detection of the Hydroxyacetone

We identified a total of 11 unblended emission lines of CH_3COCH_2OH with upper-level energies ranging from 86 to 246 K, among which 10 transitions have line-strength higher than 5σ . The σ is the rms noise level of the specific lines. We determined the rms noise level from emission free regions of the channel maps. The unblended or partially blended synthetic spectra for CH_3COCH_2OH toward I16293B are generated and shown in Figure 1, and the corresponding parameters for these individual detected lines are listed in Table 1. The full spectra of CH_3COCH_2OH at Band 4 are presented in Figure B.1 in the Appendix. The transitions which are higher than 3σ and totally blended with other molecules are denoted with

"B" in Figure B.1. The frequencies of CH₃COCH₂OH totally blended transitions with peak intensities lower than 3σ are listed in Table A.1 and presented in Figure B.1 denoted with "w" in the Appendix. We made the Gaussian fitting to unblended transitions and obtained the parameters V_{LSR} and ΔV for each individual unblended transitions as shown in Columns (7)–(8) in Table 1. The averaged V_{LSR} value is 2.65 ± 0.045 km s⁻¹. The averaged line width obtained from the eleven unblended transitions is 2.51 ± 0.058 km s⁻¹. Our results of V_{LSR} and ΔV are consistent with previous results of other molecules in I16293B (Caux et al. 2011; Jørgensen et al. 2011). The spatial distribution of CH₃COCH₂OH is shown in Figure 2 and it is well coincident with the continuum emission of source B.

Fig. 2 Integrated intensity maps of representative CH_3COCH_2OH unblended lines observed towards 116293B. The color scale is the continuum of 116293B. The white contours indicate 5, 30, 60 and 90 percent of the total integrated intensity at a rest frequency of 157356.303 MHz. The E_u of the transitions is 107 K, and integrated velocity range is 1 to 5 km s⁻¹. Beam size is shown in the bottom left-hand corner.

The source size is derived by performing two-dimensional Gaussian fitting to the line images. The source size of CH_3COCH_2OH is unresolved. The compact source size of CH_3COCH_2OH is consistent with the other COMs detected in previous studies (e.g., Martín-Doménech et al. 2017) or PILS papers (e.g., Jørgensen et al. 2016; Calcutt et al. 2018; Coutens et al. 2019) toward I16293B.

The detected transitions of CH₃COCH₂OH are well reproduced by a rotational temperature of T_{rot} = 160 ± 21 K. The derived T_{rot} agrees with the reported rotational temperature of other COMs detected in PILS studies, such as methyl isocyanide in I16293B (Calcutt et al. 2018). We derived that the column density is $(1.2\pm1.0)\times10^{16}$ cm⁻² for CH₃COCH₂OH. The fractional abundance of CH₃COCH₂OH relative to H₂ is 7×10^{-10} . The column density $(1.2 \times 10^{16} \text{ cm}^{-2})$ of CH₃COCH₂OH is lower than that of glycolaldehyde $(3.2 \times 10^{16} \text{ cm}^{-2})$ detected in I16293B by PILS data Jørgensen et al. (2012). Our result is consistent with the previous report discussed by Apponi et al. (2006b) - column densities roughly follow a monotonic decrease from glycolaldehyde to hydroxyacetone.

To verify the calculated results from the XCLASS, we have made rotational temperature diagram (RTD) based on the 11 unblended transitions. Under the LTE assumption, the population of a certain energy level will follow the Boltzmann distribution. Assuming that the line emissions in question are optically thin, we fitted the 11 unblended transitions by using the least-squares method as done by Qin et al. (2010). The RTD for these unblended

Fig. 3 Rotation temperature diagram for CH₃COCH₂OH. The *filled circles* are for the observed transitions. The *vertical bars* indicate the 3σ errors. A linear least-squares fit is shown as the *red solid line*.

 CH_3COCH_2OH lines from I16293B is shown in Figure 3. The RTD yields a rotational temperature of 179±33 K. Considering the errors, the result agrees reasonably well with the value of 160±21 K derived by the XCLASS package.

4 DISCUSSION

There are a number of compact organic molecules considered to be the potential precursors of biological molecules. The most well studied among these molecules are $[C_2, H_4,$ O₂] family, for example, acetic acid (CH₃COOH). Acetic acid shares the C-C=O(OH) backbone with the simplest amino acid glycine (NH₂CH₂COOH), from which acetic acid differs only by an amino group $(-NH_2)$ (Bergantini et al. 2018). Another example is glycolaldehyde (HCOCH₂OH), a diose and the simplest sugarrelated specie (Hollis et al. 2000). The more complex molecules in the [C₃, H₆, O₃] family have not been detected in ISM, which include the simplest three-carbon aldehyde sugar glyceraldehyde (CH(O)CH(OH)CH₂OH; Hollis et al. 2004b) and ketose sugar dihydroxyacetone (CH₂OHCOCH₂OH; hereafter DHA; Apponi et al. 2006a). Therefore, searches for species in the $[C_3, H_6, O_2]$ family with complexity in between $[C_2, H_4, O_2]$ and $[C_3,$ H₆, O₃] families might prove significant in understanding the lack of detection of the latter in the ISM. The detection and analysis of $[C_3, H_6, O_2]$ family species may serve as a probe for the next step to understand the formation mechanism of biological molecules in ISM.

Glycolaldehyde (HCOCH₂OH), which belongs to the $[C_2, H_4, O_2]$ family, can be produced by the recombination of two free radicals HCO and CH₂OH on the grain surface in ISM (Öberg et al. 2009; Butscher et al. 2015; Fedoseev et al. 2015; Chuang et al. 2016; Fedoseev et al.

2017). The reactive intermediates CH_2OH and HCO are formed through irradiation of CH₃OH-rich ices by various energetic particles (including protons, electrons, Xrays, UV photons, etc.) on the grain surface (Oberg et al. 2009). In addition, the intermediate radical CH₂OH was proposed to be formed by the H₂CO to CH₃OH hydrogenation processes (H₂CO + H \rightarrow CH₂OH, CH₂OH + H \rightarrow CH₃OH) (Butscher et al. 2015; Chuang et al. 2016), possibly at 15 K. Among the six of the lowest-energy members in the $[C_3, H_6, O_2]$ family (species including propionic acid, methyl acetate, ethyl formate, hydroxyacetone, lactaldehyde, and methoxyacetaldehyde; reported in Kolesniková et al. (2018) and Alonso et al. (2019)), the hydroxyacetone (CH₃COCH₂OH) is a structural intermediate between glycolaldehyde (HCOCH₂OH) and the DHA (CH₂OHCOCH₂OH) (Braakman et al. 2010). And the hydroxyacetone (CH₃[COCH₂OH]) shares the $O=C-C(H_2OH)$ backbone with the simplest sugar-related species glycolaldehyde (H[COCH₂OH]), from which hydroxyacetone differs only by a methyl group -CH₃. Since the structure of hydroxyacetone and glycolaldehyde is closely related, they may be formed in a similar manner. Therefore, we propose a reaction route of hydroxyacetone $(CH_2OHCOCH_2)$ similar to that of glycolaldehyde (HCOCH₂OH), where hydroxyacetone ($CH_2OHCOCH_2$) might be formed upon recombination of two free radicals on the grain surface at low temperature as the following:

$$CH_3CO + CH_2OH \longrightarrow CH_3COCH_2OH.$$
 (1)

The intermediate radical CH₂OH maybe induced through UV-irradiation of CH₃OH-rich ices (CH₃OH + UV \rightarrow CH₂OH + H), or hydrogenation process of H₂CO to CH₃OH (H₂CO + H \rightarrow CH₂OH) as mentioned before. The other intermediate radical CH₃CO are formed through the hydrogenation process of ketene (H₂CCO + H \rightarrow CH₃CO) on the grain surface as reported by Michael et al. (1979) and Ruaud et al. (2015). This reaction suggests an effective chemical formation pathway of the hydroxyacetone. Thus, we propose that the hydroxyacetone can be formed upon the recombination of CH₂OH and CH₃CO on the grain surface for the first time.

At low temperature, the COMs are considered to be formed through free radicals' recombination on the grain surface as discussed above (Fedoseev et al. 2015; Chuang et al. 2016; Fedoseev et al. 2017). As the temperature increases when the source evolves, the species with lower binding energies formed on the dust grains can be evaporated into the gas phase thus complex molecules with relatively low binding energies are observable. In the gas phase, the complex molecules can also be produced by the reactions between cations and the complex molecules' precursors that are evaporated from dust grains, followed by recombination with electrons, as proposed in Remijan et al. (2002), Garrod (2013) and Redondo et al. (2017). Thus, we propose a novel gas phase production route of CH_3COCH_2OH as the other COMs:

$$\begin{array}{l} \mathrm{CH}_{3}\mathrm{COOH}_{2}^{+}+\mathrm{CH}_{3}\mathrm{OH} \longrightarrow \mathrm{CH}_{3}\mathrm{COCH}_{2}\mathrm{OH}_{2}^{+}+\mathrm{H}_{2}\mathrm{O}, \\ & (2) \\ \mathrm{CH}_{3}\mathrm{COCH}_{2}\mathrm{OH}_{2}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{CH}_{3}\mathrm{COCH}_{2}\mathrm{OH}+\mathrm{H}, \\ (3) \\ \text{where the intermediate ion } \mathrm{CH}_{3}\mathrm{COOH}_{2}^{+} \\ \mathrm{can be formed} \\ \mathrm{through two ion-molecule reactions } \mathrm{CH}_{3}\mathrm{CO}^{+} \\ +\mathrm{H}_{2}\mathrm{O} \\ \longrightarrow \\ \mathrm{CH}_{3}\mathrm{COOH}_{2}^{+}, \\ \mathrm{and } \\ \mathrm{CH}_{3}\mathrm{OH}_{2}^{+} \\ +\mathrm{HCOOH} \\ \longrightarrow \\ \mathrm{CH}_{3}\mathrm{COOH}_{2}^{+} \\ +\mathrm{H}_{2}\mathrm{O}, \\ \mathrm{as proposed in Remijan et al.} \\ (2002). \end{array}$$

5 CONCLUSIONS

We present ALMA Band 4 observations of hydroxyacetone (CH₃COCH₂OH) toward IRAS 16293–2422 B. We have identified the molecular transitions and calculated physical parameters under LTE assumption. Main findings in this work are summarized below:

- 1. Totally 11 unblended transitions of CH_3COCH_2OH with upper level energies ranging from 86 to 246 K are identified in I16293B. It can be claimed as the first unambiguous detection of this molecule in interstellar space.
- 2. A rotational temperature of 160 ± 21 K and a column density of $(1.2\pm1.0)\times10^{16}$ cm⁻² have been obtained for CH₃COCH₂OH by using the LTE model. The compact gas distribution of CH₃COCH₂OH is coincident with the continuum emission of source B, which shows that this molecule is probably originated from the inner region near the hot corino of I16293B.
- 3. As a structural analogy of glycolaldehyde (HCOCH₂OH), we propose a similar reaction route to produce hydroxyacetone that it might be formed upon recombination of two free radicals CH₂OH and CH₃CO on the grain surface at low temperature. In the gas phase, the CH₃COOH₂⁺ and CH₃OH reaction, followed by an electron recombination, to produce hydroxyacetone are proposed in our work.

Appendix A: LINES OF HYDROXYACETONE

For a proper identification, all transitions presented in the JPL catalog of molecule CH_3COCH_2OH at Band 4 were contained in our LTE synthetic spectrum. The frequencies of transitions with lower peak intensities than 3σ are presented in Table A.1.

Appendix B: FULL BAND SPECTRA

To make sure that the spectral models are reliable, we added full source model fitting. All published species in

| Rest Frequency
(MHz) |
|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 145223.0 | 145282.9 | 145286.9 | 145293.4 | 145381.9 |
| 145438.3 | 145500.5 | 145518.0 | 145642.1 | 145666.7 |
| 145689.3 | 145744.1 | 145780.8 | 145796.6 | 145800.3 |
| 145803.2 | 145858.6 | 145913.8 | 145986.6 | 146237.4 |
| 146346.3 | 146364.4 | 146375.2 | 146411.6 | 146460.5 |
| 146472.6 | 146486.4 | 146556.8 | 146649.2 | 146710.2 |
| 146777.9 | 146814.4 | 146868.2 | 146886.0 | 146932.5 |
| 146935.2 | 146963.6 | 147040.7 | 147049.0 | 147068.9 |
| 147095.1 | 147158.4 | 147169.3 | 147172.4 | 147185.9 |
| 156950.2 | 156954.2 | 156958.1 | 157012.8 | 157185.7 |
| 157264.2 | 157330.9 | 157442.4 | 157461.9 | 157582.4 |
| 157635.9 | 157642.1 | 157773.0 | 157793.2 | 157803.8 |
| 157811.9 | 157852.7 | 157875.6 | 157889.2 | 157930.7 |
| 157986.4 | 158002.9 | 158024.5 | 158049.7 | 158080.1 |
| 158132.3 | 158170.4 | 158178.5 | 158183.5 | 158257.0 |
| 158424.9 | 158449.5 | 158451.1 | 158487.2 | 158518.1 |
| 158524.9 | 158613.0 | 158640.8 | 158644.8 | 158719.9 |
| 158841.3 | 158848.2 | 158954.0 | 158997.1 | 159013.8 |
| 1591/6.0 | | | | |

Table A.1 Transitions of Hydroxyacetone with Weak Intensities ($<3\sigma$) at Band 4 toward I16293B

Fig. B.1 Full band spectra and line identification. The *black curve* is the observed data. XCLASS synthesized spectra of CH_3COCH_2OH is coded in *red color*. The detected unblended transitions are denoted with "D". The transitions partially blended with near molecules are denoted with "PB". The transitions totally blended with other molecules are denoted with "B". The transitions with weak intensities ($<3\sigma$) are denoted with "w". The *solid green curve* presents full source model spectra.

Fig. B.1 Continued.

Fig. B.1 Continued.

Fig. B.1 Continued.

Fig. B.1 Continued.

source B, which are explicitly listed in recently work by Drozdovskaya et al. (2019) have been included. The full source model is shown with a solid green line in Figure B.1.

Acknowledgements S.-L. Qin is supported by the National Key R&D Program of China (No. 2017YFA0402701), by the Joint Research Fund in Astronomy (U1631237) under a cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS), and by the Top Talents Program of Yunnan Province (2015HA030). This work is also supported by the NSFC (Grant No. 11973075).

References

- Alonso, E. R., McGuire, B. A., Kolesniková, L., et al. 2019, ApJ, 883, 18
- Apponi, A. J., Halfen, D. T., Ziurys, L. M., et al. 2006a, ApJ, 643, L29
- Apponi, A., Hoy, S., Halfen, D., Ziurys, L., & Brewster, M. 2006b, ApJ, 652, 1787
- Beltrán, M. T., Codella, C., Viti, S., Neri, R., & Cesaroni, R. 2009, ApJ, 690, L93
- Bergantini, A., Zhu, C., & Kaiser, R. I. 2018, ApJ, 862, 140
- Bisschop, S. E., Jørgensen, J. K., Bourke, T. L., Bottinelli, S., & van Dishoeck, E. F. 2008, A&A, 488, 959
- Biver, N., Bockelée-Morvan, D., Moreno, R., et al. 2015, Science Advences, 1, e1500863
- Bossa, J. B., Ordu, M. H., Müller, H. S. P., Lewen, F., & Schlemmer, S. 2014, A&A, 570, A12
- Braakman, R., Drouin, B., Widicus Weaver, S., & Blake, G., 2010, Journal of Molecular Spectroscopy, 264, 43
- Butscher, T., Duvernay, F., Theule, P., et al. 2015, MNRAS, 453, 1587
- Calcutt, H., Viti, S., Codella, C., et al. 2014, MNRAS, 443, 3157
- Calcutt, H., Fiechter, M. R., et al. 2018, A&A, 617, A95
- Caux, E., Kahane, C., Castets, A., et al. 2011, A&A, 532, A23
- Cazaux, S., Tielens, A. G. G. M., Ceccarelli, C., et al. 2003, ApJ, 593, L51

- Chuang, K. J., Fedoseev, G., Ioppolo, S., van Dishoeck, E. F., & Linnartz, H. 2016, MNRAS, 455, 1702
- Cooper, G., Kimmich, N., Belisle, W., et al. 2001, Nature, 414, 879
- Coutens, A., Ligterink, N. F. W., Loison, J.-C., et al. 2019, A&A, 623, L13
- Coutens, A., Persson, M. V., Jørgensen, J. K., Wampfler, S. F., & Lykke, J. M. 2015, A&A, 576, A5
- Drozdovskaya, M. N., van Dishoeck, E. F., Rubin, M., Jørgensen, J. K., & Altwegg, K. 2019, MNRAS, 490, 50
- Fedoseev, G., Chuang, K. J., Ioppolo, S., et al. 2017, ApJ, 842, 52
- Fedoseev, G., Cuppen, H. M., Ioppolo, S., Lamberts, T., & Linnartz, H. 2015, MNRAS, 448, 1288
- Fuente, A., Cernicharo, J., Caselli, P., et al. 2014, A&A, 568, A65
- Garrod, R. T. 2013, ApJ, 765, 60
- Halfen, D. T., Apponi, A. J., Woolf, N., Polt, R., & Ziurys, L. M. 2006, ApJ, 639, 237
- Hollis, J. M., Jewell, P. R., Lovas, F. J., & Remijan, A. 2004a, ApJ, 613, L45
- Hollis, J. M., Jewell, P. R., Lovas, F. J., Remijan, A., & Møllendal, H. 2004b, ApJL, 610, L21
- Hollis, J. M., Lovas, F. J., & Jewell, P. R. 2000, ApJ, 540, L107
- Hollis, J. M., Vogel, S. N., Snyder, L. E., Jewell, P. R., & Lovas, F. J. 2001, ApJ, 554, L81
- Iozzo, R. V. 1998, Annu. Rev. Biochem., 67, 609
- Jørgensen, J. K., Bourke, T. L., Nguyen Luong, Q., & Takakuwa, S. 2011, A&A, 534, A100
- Jørgensen, J. K., Favre, C., Bisschop, S. E., et al. 2012, ApJ, 757, L4
- Jørgensen, J. K., van der Wiel, M. H. D., & Coutens, A. 2016, A&A, 595, A117
- Jørgensen, J. K., et al. 2018, A&A, 620, A170
- Kattija-Ari, M., & Harmony, M. 1980, Internaltion Journal of Quantum Chemistry: Quantum Chemistry Symposium 14, 18, 443
- Kolesniková, L., Peña, I., Alonso, E. R., et al. 2018, A&A, 619, A67
- Lis, D. C., Carlstrom, J. E., & Keene, J. 1991, ApJ, 380, 429

- Lykke, J. M., Coutens, A., Jørgensen, J. K., et al. 2017, A&A, 597, A53
- Martín-Doménech, R., Rivilla, V. M., Jiménez-Serra, I., et al. 2017, MNRAS, 469, 2230
- Michael, J. V., Nava, D. F., Payne, W. A., & Stief, L. J. 1979, Chem. Phys., 70, 5222
- Mohăcek-Groše, V. 2005, Spectrochimica Acta Part A, 61, 477
- Möller, T., Endres, C., & Schilke, P. 2017, A&A, 598, A7
- Müller, H. S. P., Schlöder, E., Stutzki, J., & Winnewisser, G. 2005, Journal of Molecular Structure, 742, 215
- Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49
- Öberg, K. I., Garrod, R. T., van Dishoeck, E. F., & Linnart, H. 2009, A&A, 504, 891
- Pickett, H. M., Poynter, R. L., & Cohen, E. A. 1998, Cohen, J.

Quant. Spectr. Rad. Transf., 60, 883

- Qin, S.-L., Wu, Y., Huang, M., et al. 2010, ApJ, 711, 399
- Redondo, P., Martínez, H., Largo, A., & Barrientos, C. 2017, A&A, 603, A139
- Remijan, A., Snyder, L. E., Liu, S.-Y., et al. 2002, ApJ, 576, 264
 Requena-Torres, M. A., Martín-Pintado, J., Martín, S., et al. 2008, ApJ, 672, 352
- Ruaud, M., Loison, J. C., Hickson, K. M., et al. 2015, MNRAS, 447, 4004
- Sánchez-Monge, Á., Schilke, P., Ginsburg, A., et al. 2018, A&A, 609, A101
- Solomons, T. W. G. 1984, Organic Chemistry (3rd ed.; New York: Wiley)
- Taquet, V., López-Sepulcre, A., Ceccarelli, C., et al. 2015, ApJ, 804, 81