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Abstract We introduce a new halo/subhalo finder, HIKER (a Halo fInder based on KERnel-shift algo-
rithm), which takes advantage of a machine learning method –the mean-shift algorithm combined with
the Plummer kernel function, to effectively locate densitypeaks corresponding to halos/subhalos in density
field. Based on these density peaks, dark matter halos are identified as spherical overdensity structures, and
subhalos are bound substructures with boundaries at their tidal radius. By testing HIKER code with mock
halos, we show that HIKER performs excellently in recovering input halo properties. In particular, HIKER
has higher accuracy in locating halo/subhalo centres than most halo finders. With cosmological simulations,
we further show that HIKER reproduces the abundance of dark matter halos and subhalos quite accurately,
and the HIKER halo/subhalo mass functions andVmax functions are in good agreement with two widely
used halo finders, SUBFIND and AHF.
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1 INTRODUCTION

CosmologicalN-body simulations are one of the most cru-
cial methods to study the structure formation and evo-
lution of the universe (see e.g., Frenk & White 2012;
Kuhlen et al. 2012, for reviews). To compare simulation-
s with observations so that cosmological models can be
constrained,it is essential to identify gravitationally bound
structures (e.g., dark matter halos and subhalos) from sim-
ulation data. In particular, modern cosmological simula-
tions with large simulated volume and high numerical res-
olution resolve plenty of structures and substructures span-
ning a wide range of masses/sizes. How to identify dark
matter halos/subhalos efficiently and robustly from these
large simulations is of great importance. In the past few
decades, many codes/methods have been developed to i-
dentify halos/subhalos from simulation snapshots (i.e., ha-
lo finders); see Knebe et al. (2011) and Onions et al. (2012)
for reviews.

Usually, the algorithms to identify halos can be classi-
fied into two categories, spherical overdensity (SO, Press
& Schechter 1974; Lacey & Cole 1994) and friends-of-
friends (FOF, Davis et al. 1985) method. The SO halo find-

er first locates peaks in the density field, then a sphere
centred on each peak is grown out until the mean mat-
ter density within this sphere reaches a given threshold.
Usually this threshold is expressed as an overdensity pa-
rameter,∆, measured with respect to the mean matter den-
sity or the cosmic critical density. The final sphere de-
fines the boundary of a halo. The FOF halo finder groups
simulation particles whose pairwise distances are smaller
than a given threshold, which is usually expressed as the
linking length parameter,b, measured with respect to the
mean interparticle distance (More et al. 2011). The cen-
tre of an FOF halo is usually defined as the position of
the most bound particle. In contrast, the identification of
subhalos is more complicated than that of halos. In recen-
t years, many subhalo finders have been developed (see
Onions et al. 2012, for examples), and there is less agree-
ment on the definition of a subhalo among different meth-
ods. For instance, based on the FOF group finding results,
SUBFIND (Springel et al. 2001) defines locally over-dense
and self-bound substructures as subhalos, and uses saddle
point to determine the boundary of a subhalo; AHF (Amiga
Halo Finder, Knollmann & Knebe 2009) constructs adap-
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tive mesh refinement on the density field in the simulated
box size and finds subhalos based on the hierarchy of the
refined grids; HBT (Hierachical Bound-Tracing, Han et al.
2012, 2018) identifies subhalos by tracking the merging hi-
erarchy of halos starting from the earliest given snapshot.

Recently, machine learning algorithms have been
widely adopted in the astronomical community, and they
are becoming more and more useful as the astronomi-
cal data size grows more rapidly. For example, Hui et al.
(2018) use support vector machine (SVM) to classify
galaxies to study the relation with large-scale structures;
Aragon-Calvo (2019) uses deep convolutional neural net-
work (CNN) to perform large-scale structures classifica-
tion; He et al. (2019) uses deep neural networks to predict
the formation of non-linear large-scale structures. We re-
fer the reader to Baron (2019) for a recent review of vari-
ous applications of machine learning methods in astrono-
my. Unsupervised machine learning algorithms are widely
used in clustering analysis, outlier detection, dimension-
ality reduction, etc. In particular, the concept of clustering
analysis for data points, which tries to group objects so that
the objects in the same group (or cluster) are more similar
to each other than objects in other groups (or clusters), is
fairly similar to halo finding in cosmological simulations.
This motivates us to develop a new halo finder code based
on clustering analysis algorithms.

The mean-shift algorithm (Fukunaga & Hostetler
1975; Cheng 1995; Comaniciu & Meer 2002) is a non-
parametric cluster finding procedure, and it is popular in
computer vision and image processing applications. It s-
tarts from an initial position, and then iteratively shiftsto
the local maximum (i.e., mode) of a density field with a
shift vector computed from the average property of da-
ta points in the neighborhood. The mean-shift algorith-
m does not assume the shape of the distribution nor the
number of clusters, and it is quite efficient to locate the
local maxima of a density distribution. These advantages
make it an attractive candidate method to identify halos as
well as subhalos from cosmological simulations. In partic-
ular, as we show in this paper, the mean-shift algorithm
equipping with a physically motivated kernel function, the
Plummer kernel, has another advantage in accurately iden-
tifying substructures from simulations. To stress the fea-
ture of our algorithm (i.e., the mean-shift algorithm with
the Plummer kernel function), we use the name of “kernel-
shift” in this paper.

In this work, we introduce a new halo finder, HIKER (a
Halo-fInding method based on KERnel-shift algorithm) to
simultaneously identify dark matter halos and subhalos in
cosmological N-body simulations. The organization of our
paper is as follows. Section 2 introduces the kernel-shift
algorithm and other details of our halo finding procedures.

We then apply HIKER to mock halo data, as well as cos-
mological N-body simulations. We present our test results
on field halos and subhalos in Section 3. Section 4 presents
our conclusions and discussions.

2 HIKER ALGORITHM

The general procedures of the HIKER algorithm can be
described as follows: (i) Identifying density peaks with the
kernel-shift algorithm. (ii) For each density peak, a sphere
is grown around its centre until the enclosed mean density
is 200 times the critical density. Halos and subhalos are de-
termined according to their geometrical relations. (iii) For
each subhalo, we determine its tidal radius and apply for
an unbinding procedure to exclude unbound particles.

2.1 Mean-shift Algorithm

The mean-shift algorithm is one of the clustering algo-
rithms in the unsupervised machine learning category,
which is very efficient and robust to locate density peak-
s of a density field. The algorithm was first presented in
Fukunaga & Hostetler (1975) and later generalized by in-
troducing kernel functions in Cheng (1995).

To locate the local density maxima of a set of particles,
the mean-shift algorithm starts from an initial guessing po-
sition, moves iteratively according to mean-shift vectors
computed from the neighboring particles, until the conver-
gence is reached. The key concept of the algorithm is the
mean-shift vector. In the original mean-shift algorithm pro-
posed by Fukunaga & Hostetler (1975), for a positionx,
the mean-shift vector is computed as

M b(x) =
1

N

N
∑

i=1

(xi − x) , (1)

wherexi is the coordinate of thei-th particle whose dis-
tance to positionx is less than the bandwidth radius,b,
andN is the total number of such particles. Note that the
bandwidth radius here is the single input parameter in the
mean-shift algorithm. Physically, if a given set of particles
have equal masses, the mean-shift vector is defined as the
difference between positionx and the centre-of-mass po-
sition of the particles within the bandwidth radius.

Cheng (1995) later generalized the mean-shift vector
by introducing a Kernel function,K(y; b),

M
K
b (x) =

∑N
i=1

K(|xi − x| ; b) (xi − x)
∑N

i=1
K(|xi − x| ; b)

, (2)

where|xi − x| is the distance fromx to xi, andN here
denotes the total number of particles which have their
|xi − x| smaller than an input radiusrK . Under such gen-
eralizations, the original mean-shift vector,M b(x), can
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be regarded asMK
b (x) computed with a flat kernel, i.e.,

K(y; b) = 1 if y ≤ b, and0 otherwise. For each position,
it can be moved to a new position with higher density ac-
cording to the mean-shift vector; i.e.,xnew = x+M

K
b (x).

Iteratively repeating the procedure leads to convergence
once it reaches a local density maximum. For the detailed
mathematical proof of the convergence for the mean-shift
algorithm, see Cheng (1995).

In HIKER, we intend to adopt a non-flat kernel func-
tion, which gives more weight in the inner region rather
than using equal weight everywhere. Such a non-flat ker-
nel function assists in locating halo centres more robustly,
and this is particularly important in identifying subhalos.
Comparing to field halos in cosmological simulations, sub-
halos usually reside in more complicated density environ-
ments. It is more robust to locate subhalo centre when giv-
ing more weight to the central region. In contrast, using a
flat kernel fails to identify some subhalos; see Appendix A
for a quantitative comparison between using flat and non-
flat kernel functions to identify subhalos.

To construct a non-flat kernel function, we start from
the spherically symmetric Plummer density profile, which
was first introduced by Plummer (1911) to describe the
stellar distribution of globular clusters,

ρ(r) =
3M

4πr3s

1

(1 + r2/r2s)
5/2

, (3)

whereM is the total mass andrs is the scale radius. The
corresponding Plummer potential is

φ(r) = −
GM

(r2 + r2s)
1/2

, (4)

whereG is the gravitation constant, and the corresponding
force is

F (r) = −
GMr

(r2 + r2s)
3/2

. (5)

Our Plummer kernel function is constructed as the follow-
ing form,

Kp(r; rs) =
C

(r2 + r2s)
3/2

, (6)

whereC is a normalization constant, whiler andrs are re-
spectively corresponding to|xi − x| andb in Equation (2).
In this work, we setrs = 3ǫ with ǫ being the gravitational
softening length from simulations. If a particle is infinitely
close to a Plummer potential minimum, then the Plummer
style mean-shift vector

M
Kp

b ∝

N
∑

i=1

ri

(r2i + r2s)
3/2

(7)

is proportional to the sum of Plummer force. With this ker-
nel function, shifting from an initial seed in iterations ap-
proximately follows the force exerted by the corresponding

Plummer potential. In other words, the iterative procedure
mimics the process of a particle falling into a Plummer po-
tential well. Note, BDM halo finder (Klypin & Holtzman
1997; Riebe et al. 2013) adopts a scheme essentially iden-
tical to mean-shift algorithm with a flat kernel to locate
density peaks, while it was called “sphere jittering” mech-
anism in the paper.

2.2 Seeds Function

A seeds function is necessary to generate the initial po-
sitions (i.e., seeds) to start the kernel-shift algorithm.
The simplest scheme for seeds generation is to randomly
choose positions of a certain fraction of simulation parti-
cles. However, some small targets in low-density region-
s may be missed accidentally in such a scheme, and thus
additional seeds should be placed in these low-density re-
gions (Klypin & Holtzman 1997). Also note that the num-
ber of seeds has direct impact on the amount of compu-
tational expense; i.e. more seeds causes more subsequent
calculations (or computation time), whilst they do not af-
fect the final results on the number of peaks. For an op-
timal seeds function, we expect that every candidate ha-
lo/subhalo should contain at least one seed in order to avoid
being missed, but at the same time, the total number of
seeds should be as few as possible in order to reduce com-
putational cost.

In HIKER, we develop a novel approach to generate
seeds as detailed below. First, for each particle in the simu-
lation, we search its 20 nearest neighbor particles using k-d
trees (Bentley 1975), and compute its distance to the20th
nearest particle,d20, which is an approximate proxy of its
local density. Second, we use a predefined distance thresh-
old, rc, which is similar to the linking length parameter in
an FOF algorithm but is slightly larger to be more conser-
vative, to exclude those particles whose local densities are
too low to be associated with any halo. We setrc as0.24
times the mean inter-particle separation in our code. Third,
we loop over the remaining particles and adopt the parti-
cles whosed20 are the smallest among thed20 of their 20
nearest neighbor particles (i.e., those particles which cor-
respond to the local density maxima) as candidate seeds. In
the final step, note that the candidate peaks which are close
to each other are still possible to be moved to the same
halo centre during the kernel-shift iteration. Therefore,to
further reduce and computational cost, we loop over the
candidate seeds, and for each candidate seed, we search it-
s neighbouring candidate seeds within a spherical region
with a radius defined as 3 times of the scale radius of the
Plummer kernel function (see Sect. 2.1 for details). A can-
didate seed peak will be determined as a true seed if its lo-
cal density is still the maximum among its neighbors. Note
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that in this procedure, the seeds we identified fairly rep-
resent the realistic density peaks. Starting from each seed,
we select all particles inside a radius ofrK = 10 × ǫ and
apply for mean-shift procedure to derive all density peaks.
Note that more than one seeds may converge to a single
peak with mean shift algorithm.

2.3 Halo/Subhalo Identification

Based on density peaks, we follow an approach of SO ha-
lo finder to identify field halo (Lacey & Cole 1994). The
density peaks are sorted in descending order according to
their local densities which are estimated from the distance
to the20th nearest neighbour. We first consider each peak
as the centre of a field halo, while many of them are indeed
centres of subhalos. Starting from the density peak with the
highest local density, then for each peak, a sphere is grown
around centre until the enclosed mean density is equal to
200 times the critical density. Then we further distinguish
halo and subhalo using simple geometrical relation, name-
ly if a halo is contained in the other larger halo, the smaller
halo is labeled as a subhalo. Once halos/subhalos are dis-
tinguished, we need to define subhalo boundary because
only subhalo halo centres are known at the stage. There
are various definitions of subhalo boundary in the liter-
ature. For example, SUBFIND uses saddle points, HBT
(Han et al. 2012, 2018) groups the bound particles of it-
s progenitor as a subhalo. In HIKER we use a physically
motivated value – tidal radius to define the boundary of a
subhalo. In practise, starting from each subhalo centre, a
sphere is grown until its tidal radius reaches. We follow
the definition of tidal radius in Tormen et al. (1998); i.e.,

rt = R

[

m

(2− ∂ lnM/∂ lnR)M(R)

]1/3

, (8)

wherem, R andM are subhalo mass, the distance from
subhalo centre to host halo centre, and the enclosed mass
within R for the host halo respectively. This definition is
under the assumption that the subhalo mass and the tidal
radius are far less than the values of its host halo.

A halo/subhalo is usually regarded as a gravitationally
bound structure, and thus it is often for some halo find-
ers to remove unbound particles from the candidate ha-
los/subhalos (i.e., unbinding procedure). In HIKER, we
carry out the unbinding procedure following that of the
AHF halo finder except of determining the bulk velocity
for a potential halo/subhalo. For that we use our Plummer
kernel to weight particle velocities according to their dis-
tances to the centre, instead of using a small fraction of
particles within the central region to get the mean velocity
as the bulk velocity. For other details of the unbinding pro-
cedure, we refer the reader to Knollmann & Knebe (2009).

3 TEST RESULTS

In this section, we test our halo finder in three aspects using
three different types of simulation data, i.e., we use (i) a set
of mock halos to test the accuracy of halo properties giv-
en by HIKER (Sect. 3.1), (ii) a suite of large-scale full-box
cosmological simulations to test the ability in identification
of field halos (Sect. 3.2), (iii) the data from the Aquarius
project (Springel et al. 2008) to test the ability to identify
subhalos (Sect. 3.3). Note that these data have been used
in the halo/subhalo finder comparison Knebe et al. (2011)
and Onions et al. (2012), and thus almost all our results can
be directly compared to those of two studies. For the tests
on mock halos, we will compare the HIKER results with
those from all halo finders discussed in Knebe et al. (2011),
while for the other two tests, to be concise, we mainly com-
pare the HIKER results with two widely used halo finders,
SUBFIND and AHF.

3.1 Mock Halos

Mock halos, whose properties are known by construction,
are introduced in Knebe et al. (2011) to examine the ac-
curacy of different halo finders in recovering halo/subhalo
properties. A set of mock halo data has been prepared with
a given NFW density profile. With such halo model, three
setups have been generated: (i) an isolated host halo only;
(ii) an isolated host halo+ a subhalo at0.5Rhost

100 ; (iii) an
isolated host halo+ a subhalo at0.5Rhost

100 + a subsubhalo
at (0.5Rhost

100 + 0.5Rsubhalo
100 ). Here,Rhost

100 (Rsubhalo
100 ) is the

radius of the host halo (subhalo) within which the mean
density is100 times the critical density. The properties of
mock halos are summarized in Table 1; see Knebe et al.
(2011) for further details of these mock data.

In the following, we will use these three setups of
mock halos to test the accuracy of HIKER in recovering
halo/subhalo properties.

Following Knebe et al. (2011), we first quantify the
accuracy of HIKER in recovering halo/subhalo centres by
computing the distance offset between the centre returned
by HIKER and the actual one. Results are shown with red
symbols in Figure 1, in which the results of other 17 ha-
lo finders1 from Knebe et al. (2011) have also been shown
with black symbols for easy comparison. We use squares,
diamonds, and triangles to plot the centre offsets of host
halos, subhalos, and subsubhalos respectively. The symbol

1 These halo finders are AHF (Knollmann & Knebe 2009), ASOHF
(Planelles & Quilis 2010), BDM (Klypin & Holtzman 1997), pSO(Sutter
& Ricker 2010), LANL (Habib et al. 2009), SUBFIND (Springel et al.
2001), FOF, pFOF (Courtin et al. 2011; Rasera et al. 2010), NTROPYFOF
(Gardner et al. 2007a,b), VOBOZ (Neyrinck et al. 2005), SKID(Stadel
2001), ADAPTAHOP (Aubert et al. 2004; Tweed et al. 2009), HOT3D,
HOT 6D (Ascasibar & Binney 2005; Ascasibar 2010), HSF (Maciejewski
et al. 2009), 6DFOF (Diemand et al. 2006) and ROCKSTAR (Behroozi
et al. 2013).
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Table 1 The (Sub)Halo Properties of the NFW Mock Data

Profile Type N200 M200[h−1M⊙] R200[h−1kpc] Rs[h−1kpc] Vmax[km s−1]

NFW host 760 892 7.61×1013 689.1 189.5 715
sub 8066 8.07×1011 151.4 17.0 182
subsub 84 8.42×109 33.1 2.6 43

N200 andM200 are the particle number and virial mass inside the virial radius,R200 .Rs is the scale radius
of the corresponding profile, andVmax is the maximum of the rotation curve.

Fig. 1 Centre offset between the actual centre and the value recovered by HIKER. The results of different halo finders from Knebeet al.
(2011) are plotted withblack color at differenty-coordinates, and the corresponding names are labeled on they-axis. The HIKER results
are highlighted withred colors. Host halos, subhalos, and subsubhalos are marked withsquares, diamonds, andtriangles, respectively.
The symbol size distinguishes the results of different setups, with larger symbols representing setups containing more substructures.
Specifically, taking the ROCKSTAR results as an example, thethreesquares from left to right show the results of host halos from
setup (i), (ii), and (iii) respectively, the twodiamonds from left to right show the subhalos from setup (ii) and (iii)respectively, and the
triangle shows the subsubhalo from setup (iii).

size distinguishes different mocks, with larger symbol cor-
responding to the mocks with more subhalos.

For NFW mocks, HIKER recovers the input halo prop-
erties fairly well. Especially for the isolated host halo of
setup (i), the halo centre recovered by HIKER only devi-
ates0.13 h−1kpc (i.e.,∼ 2 × 10−4R200) from the actual
centre. For host halos containing substructures, due to the
asymmetry in the density field caused by nesting substruc-
ture, the deviations become slightly larger (∼ 0.4 h−1kpc,
or∼ 6×10−4R200), but they are still smaller than the cen-
tre offsets of most halo finders. For subhalos and subsub-
halos, HIKER also recovers their centres more accurately
than many other halo finders.

We also investigate how accurately HIKER can recov-
er some other halo properties, including bulk velocities,
virial masses, and the maximum circular velocities for both
halos and subhalos (i.e.,x = Vbulk,M200, andVmax), and
the results are presented in Figures 2, 3 and 4 respectively.

Note that the accuracy is defined as the fractional differ-
ence,

∆x

xmodel

≡
xcode − xmodel

xmodel

, (9)

wherexcode andxmodel stand for the halo properties com-
puted by a halo finder and the input mock properties re-
spectively. The layout and symbols in these figures are sim-
ilar as those in Figure 1.

From Figures 2, 3 and 4, it is easy to find that HIKER
recovers the aforementioned properties quite successfully
both for field halos and subhalos (i.e., the fractional differ-
ences are less than 1% forVbulk andVmax, and less than
6% for M200), and the HIKER results are usually better
than (or comparable to) those of the other halo finders. For
subsubhalos, the HIKER recoveries ofM200 (i.e.,∼ 15%)
andVmax (i.e.,∼3%) are not so good as the cases for field
halos and subhalos, but it is still better than many other
halo finders.
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Fig. 2 Fractional differences between the input halo bulk velocity in mock data and the recovered bulk velocities from different halo
finders. Thegrey vertical lines in both panels indicate no difference from the model analytical value. The layout and the symbols are in
accordance with Fig. 1.

Fig. 3 Similar to Fig. 2, but for the virial mass.

Further more, as mentioned earlier, both of BDM and
HIKER are based on the mean-shift algorithm but with d-
ifferent kernel functions. Comparing the results between
BDM and HIKER in Figures 1-4, HIKER recovers the halo
properties better than BDM which uses a flat kernel func-
tion. This is a consequence of a non-flat kernel adopted in
HIKER.

Besides the tests of recovering the properties of mock
halos, we also reproduce the dynamic evolution of a sub-
halo falling into a host halo with the same data used in
Knebe et al. (2011). The infall process is designed in the
following way. An NFW model subhalo (see the second
type of Table 1 for detailed properties) is set up at a dis-
tance ofD = 3 × Rhost

100 with an initial velocity toward
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Fig. 4 Similar to Fig. 2, but for the maximum circular velocity.

Fig. 5 Evolution of the number of particles (left) and the maximum circular velocity (right) of a subhalo falling into its host. Thegreen
curve shows results reproduced by HIKER. As comparison, theblue andorange curves show results of AHF and SUBFIND Knebe
et al. (2011), respectively.

the host halo centre. The host halo is more massive than
this subhalo by two orders of magnitude. After approxi-
mately 1.8 Gyr it will reach the host halo centre and pass
through. In Figure 5 we present the evolution of the num-
ber of particles (left panel) and maximum circular velocity
(right panel) recovered by HIKER as well as the original
AHF and SUBFIND results from Knebe et al. (2011). Both
for particle number andVmax, the trends of HIKER are
quite similar with those of AHF. The total number of par-
ticles decline generally when passing through the central
region of host halo due to strong stripping. At the snap-
shots when the subhalo is very close to the its host centre,
there are a little rise in the particle number curve and a
sharp rise in theVmax curve. These sudden changes may

be due to our unbinding procedure, which could be largely
affected since the assumption which requires the (sub)halo
to be spherical break down in the situation. We refer the
reader to Knebe et al. (2011) for results from more halo
finders.

From the discussions in this subsection, we conclude
that HIKER is quite successful in recovering halo proper-
ties.

3.2 Field Halos

In this subsection, we use a suite of large-volume cos-
mological simulations to test the accuracy of HIKER in
identifying field halos. The simulation data comes from
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Table 2 Details of the Large-volume Cosmological Simulations

Names Np,dm mdm[h−1M⊙] ǫ[h−1kpc]

MAD-Halo-256 2563 5.40×1011 50
MAD-Halo-512 5123 6.59×1010 25
MAD-Halo-1024 10243 8.24×109 15

Np,dm gives the total number of dark matter particles in each simula-
tion, mdm is the original uncorrected mass for dark matter particles,
andǫ is the comoving softening length.

the ‘Haloes gone MAD’ halo-finder comparison project
(Knebe et al. 2011), and it consists of three simulations
with different mass resolutions; i.e., containing2563, 5123,
and10243 dark matter particles respectively. These simu-
lations have simulated the formation and evolution of the
large-scale structures with the GADGET2 code (Springel
2005) in a comoving periodic box with a size500 h−1Mpc

on a side. The adopted cosmological parameters areΩm =

0.3,Ωb = 0.045,ΩΛ = 0.7, andh = 0.7, respectively. The
simulation names, dark matter particle masses, and soften-
ing lengths are summarized in Table 2. For each simula-
tion, we only use the snapshot atz = 0 to perform our
tests.

Note that the original simulations contain both dark
matter and gas particles. However, following Knebe et al.
(2011), we only use dark matter particles to perform iden-
tify halos, and the mass of dark matter particles in each
simulation (i.e.,mdm shown in Table 2) has been scaled
by multiplying a factor ofΩm/(Ωm − Ωb) accordingly.

We identify field halos containing at least20 parti-
cles from all three simulations. Their cumulative mass
functions andVmax functions are presented in Figure 6.
Because these three simulations have the same phases in
the initial conditions and they only differ in resolutions,
we expect that the halo mass functions as well asVmax

functions should converge in the reliable mass range a-
mong different resolution simulations. This is indeed true
in Figure 6, indicating that HIKER works successfully in
simulations with different mass resolutions.

We then compare the halo mass function andVmax

function obtained from HIKER in the MAD-Halo-1024
simulation with those from SUBFIND and AHF in
Figure 7, here the SUBFIND and AHF results come from
Knebe et al. (2011), and we refer the reader to figures 17
and 18 of the paper for more results of other halo finder-
s. We also over-plot the analytical halo mass functions as
given by Warren et al. (2006) and Tinker et al. (2008) in
the figure for comparison.

We can see that the HIKER mass function agrees with
the SUBFIND and AHF very well in all mass range. In
the reliable mass range, all three mass functions from ha-
lo finders lie between the parameterized mass functions of
Warren et al. (2006) and Tinker et al. (2008). For theVmax

function, HIKER tends to be slightly higher than the oth-

er two, and it is more evident in the lowerVmax end. As
there is no such difference in the halo mass functions a-
mong these halo finders, this implies that some HIKER
halos (especially some with lower masses) tend to have
higherVmax, or equivalently deeper inner potentials, com-
paring to AHF or SUBFIND results. This possibly comes
from the fact that HIKER locate halo centres more accu-
rately, resulting in largerVmax in low mass halos.

3.3 Subhalos

We use the Aq-A halo from the Aquarius project (see
Springel et al. 2008, for details) to test HIKER in iden-
tifying subhalos. The Aq-A halo has been re-simulated
with five different resolutions, here we use three of them,
i.e., Aq-A-4, Aq-A-3, and Aq-A-2, to perform our tests.
Among these three simulations whose details are summa-
rized in Table 3, the Aq-A-2 has the highest mass resolu-
tion while the Aq-A-4 has the lowest mass resolution. For
all three simulations, we select a cubic region with edge
length of1 h−1Mpc centring the the position ofrfiducial =
(57060.4, 52618.6, 48704.8)h−1kpc which is the fiducial
centre defined in Onions et al. (2012) to run our halo find-
er. Note that within this selected region, the number of
low-resolution particles is extremely few (i.e. less than10),
and thus we simply leave out these low-resolution particles
when running HIKER. In the following, we mainly com-
pare the HIKER results with the AHF and SUBFIND ones,
and the reader can refer to Onions et al. (2012) for results
of other halo finders.

In Figure 8, We first compare the subhalos identi-
fied with HIKER from the Aq-A-4 data to those identi-
fied with AHF and SUBFIND by visualisation. To be in
accordance with Onions et al. (2012), we have show the
same quadrant region around the fiducial position here.
Each identified subhalo is represented with a green circle
whose radius scales with itsVmax/3, and the subhalo cen-
tre is marked with a red dot. Note that only subhalos with
Vmax > 10 km s−1 are plotted in this figure. Comparing
to AHF and SUBFIND, HIKER misses one subhalo in the
upper left corner, and it identifies a few more low-mass
subhalos at the lower left corner (i.e., the region near the
Aq-A halo centre). But in general, the HIKER subhalos
agree very well with the AHF and SUBFIND ones in posi-
tions andVmax.

As a quantitative comparison, in Figure 9 we plot the
cumulative mass functions andVmax functions for subha-
los in the Aq-A-4 simulation identified by HIKER, AHF,
and SUBFIND. The subhalos used to plot this figure are
within a sphere of250 h−1kpc from the fiducial position
and contain at least20 particles. Overall the HIKER results
are in line with those of AHF and SUBFIND.
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Fig. 6 Cumulative mass functions (left) andVmax functions (right) computed from HIKER field halo catalogues for three simulations
with different mass resolutions.

Fig. 7 Cumulative mass functions (left) andVmax functions (right) functions from the MAD-Halo-1024 simulation. The resultsfrom
AHF, SUBFIND, and HIKER are plotted withblue, orange, andgreen lines, respectively. In the left panel, for comparisons, we over-
plot the mass functions from Warren et al. (2006) and Tinker et al. (2008) withgrey solid andgrey dashed lines respectively. The lower
panels show residuals of mass andVmax function relative to HIKER results, respectively.

Table 3 Some Details of the Aq-A Halos Used in This Study

Name Nhres Nlres Nselect mp,hres[h
−1M⊙] ǫ[pc]

Aq-A-4 18 535 972 634 793 7 434 975 2.868× 105 342.5
Aq-A-3 148 285 000 20 035 279 59 347 132 3.585× 104 120.5
Aq-A-2 531 570 000 75 296 170 212 792 272 1.000× 104 65.8

Nhres (Nlres) is the number of high-resolution (low-resolution) particles in the simulation,
Nselect is the number of high-resolution particles within our selected region (i.e., a cubic region
with edge length of1h−1Mpc centringrfiducial = (57060.4, 52618.6, 48704.8) h−1kpc),
mp,hres is the mass of high-resolution particles, andǫ is the comoving softening length.

We have also used HIKER to identify subhalo on
the level 2 and level 3 Aq-A simulations, and the result-
s are presented in Figure 10. As expected, the HIKER
subhalo mass functions andVmax functions converge very
well in different resolution simulations. These results are
consistent with the resolution convergence tests shown in
Springel et al. (2008) with SUBFIND. From the discus-

sions above, we conclude that HIKER identifies subhalos
with an accuracy comparable to that of the widely used
AHF and SUBFIND.

The HIKER code is parallelized with OpenMP. Its per-
formance is quit efficient, for instance, it only takes∼1
minute to process MAD-Halo-256 data and∼3 minutes
to the Aq-A-4 data with 10 Xeon CPU cores (2.4 GHz).
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Fig. 8 Visualization of subhalo-finding results from HIKER (left), AHF (middle) and SUBFIND (right) on the Aq-A-4 data. The region
shown in each panel is the same quadrant as presented in Onions et al. (2012). The identified subhalos are indicated byred dots and
green circles whose radii are scale withVmax/3. Only subhalos withVmax > 10 km s−1 are shown here. The grey background shows
the dark matter density computed from simulation particles.

Fig. 9 Cumulative mass functions (left) andVmax functions (right) for subhalos identified from the spherical region with a radius of
250 h−1kpc around the fiducial position in the Aq-A-4 data. The results from AHF, SUBFIND, and HIKER are plotted withblue,
orange, andgreen lines, respectively. In the lower panels, both for mass function andVmax function, we plot the relative residual results
using HIKER result as basis.

Fig. 10 Cumulative mass functions (left) andVmax functions (right) for subhalos identified from different Aq-A simulations byHIKER.
Similar to Fig. 9, these subhalos are from the spherical region with a radius of250 h−1kpc centring the fiducial position. We use the
blue, orange, andgreen lines to plot the results from Aq-A-2, Aq-A-3, and Aq-A-4 simulations, respectively.
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For identifying both the field halo and subhalo, HIKER
exhibits a time complexity close to (slightly steeper than)
aO(N logN) relation.

4 CONCLUSIONS AND DISCUSSION

In this work, we develop a new spherical overdensity
halo/subhalo code–HIKER for cosmological simulations.
HIKER employs the mean-shift algorithm combining with
a Plummer kernel to efficiently and robustly locate den-
sity peaks. Based on density peaks, dark matter halos are
further identified as spherical overdensity structures, while
subhalos are substructures with boundaries equal to their
tidal radius. We use mock halos to test our halo-finding
code, and show that HIKER performs excellently in locat-
ing halo/subhalo centres and recovering halo properties.
In particular, the accuracy of HIKER in recovering ha-
lo/subhalo centres is higher than most halo finders. With
large-volume and zoom-in cosmological simulations, we
further showed that HIKER reproduces the abundance of
field halos and subhalos quite accurately, and the HIKER
results are in agreement with those of two widely used halo
finders, SUBFIND and AHF.

Although we only use HIKER to identify ha-
los/subhalos from dark matter-only simulations in this s-
tudy, it can be quite straightforward to extend the HIKER
algorithm to include particles with different masses (e.g.,
gas, stars, etc.) by further multiplying the kernel func-
tion with different weights for different particle types in
Equation (2).
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Appendix A: KERNEL EFFECTS

Kernel functions are a key concept in the HIKER algorith-
m. To study quantitatively the effects of kernel functions
on the identification of field halos, we run HIKER twice,
first equipped with a flat kernel and then with a Plummer
kernel (withb = 3ǫ), on the MAD-Halo-512 simulation.

Similar runs are performed on the Aq-A-4 simulation data
to study the effects on subhalo finding. Note that in the un-
binding procedures, to estimate halo bulk velocities more
reliably, in the runs with flat kernels we only use a certain
fraction of particles in the central region as most halo find-
ers do, while in the runs with Plummer kernels we utilize
the Plummer kernel to give more weight on the central ve-
locity.

Fig. A.1 Cumulative mass functions for field halos from MAD-
Halo-512 simulation (top) and for subhalos from Aq-A-4 simu-
lation (bottom). In both panels, the blue and orange lines plot the
results from HIKER equipped with a Plummer kernel and a flat
kernel, respectively.

The cumulative mass functions from these runs are
summarized in Fig. A.1. The field halo mass functions are
barely affected by kernel functions. However, the subhalo
mass functions are very sensitive to kernel functions, i.e.
the number of subhalos recovered in the run with a flat ker-
nel is much lower than that in the run with a Plummer ker-
nel. As we have shown in Section 3.3, the HIKER subhalo
results agree fairly well with those of AHF and SUBFIND.
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The results here point out that introducing a non-flat kernel
function can help locate the halo centres in a more robust
way, especially in finding subhalos. Usually, a potential
subhalo is surrounded by more complex density fields, and
this makes it easy for the candidate centre to shift away if
the central core is not emphasized. In contrast, field halos
are usually isolated, and the density environment around
them is much simpler, and a flat kernel will be good e-
nough to capture that.

Because the centre locating method in BDM is equiv-
alent to the mean-shift algorithm with a flat kernel, the re-
sults in this appendix also suggest that with a Plummer k-
ernel function, HIKER can significantly improve BDM in
identifying subhalos.

References

Aragon-Calvo, M. A. 2019, MNRAS, 484, 5771
Ascasibar, Y. 2010, Computer Physics Communications, 181,

1438
Ascasibar, Y., & Binney, J. 2005, MNRAS, 356, 872
Aubert, D., Pichon, C., & Colombi, S. 2004, MNRAS, 352, 376
Baron, D. 2019, arXiv:1904.07248
Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762,

109
Bentley, J. L. 1975, Commun. ACM, 18, 509
Cheng, Y. 1995, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 17, 790
Comaniciu, D., & Meer, P. 2002, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24, 603
Courtin, J., Rasera, Y., Alimi, J. M., et al. 2011, MNRAS, 410,

1911
Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985,

ApJ, 292, 371
Diemand, J., Kuhlen, M., & Madau, P. 2006, ApJ, 649, 1
Frenk, C. S., & White, S. D. M. 2012, Annalen der Physik, 524,

507
Fukunaga, K., & Hostetler, L. 1975, IEEE Transactions on

Information Theory, 21, 32
Gardner, J. P., Connolly, A., & McBride, C. 2007a, Astronomical

Society of the Pacific Conference Series, 376, A Framework

for Analyzing Massive Astrophysical Datasets on a

Distributed Grid, eds. R. A. Shaw, F. Hill, & D. J. Bell,

69
Gardner, J. P., Connolly, A., & McBride, C. 2007b, arX-

iv:0709.1967
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