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Abstract We introduce a new halo/subhalo finder, HIKER (a Halo fIndesdd on KERnel-shift algo-
rithm), which takes advantage of a machine learning methtite-mean-shift algorithm combined with
the Plummer kernel function, to effectively locate dengiaks corresponding to halos/subhalos in density
field. Based on these density peaks, dark matter halos artfidée as spherical overdensity structures, and
subhalos are bound substructures with boundaries at itleiradius. By testing HIKER code with mock
halos, we show that HIKER performs excellently in recoveiimput halo properties. In particular, HIKER
has higher accuracy in locating halo/subhalo centres thast halo finders. With cosmological simulations,
we further show that HIKER reproduces the abundance of datkemhalos and subhalos quite accurately,
and the HIKER halo/subhalo mass functions afd, functions are in good agreement with two widely
used halo finders, SUBFIND and AHF.

Key words: methodsN-body simulations — galaxies: halos — galaxies: evolutioesmology: theory
— dark matter

1 INTRODUCTION er first locates peaks in the density field, then a sphere

centred on each peak is grown out until the mean mat-
CosmologicaN-body simulations are one of the most cru- ter density within this sphere reaches a given threshold.
cial methods to Study the structure formation and eVOUSua”y this threshold is expressed as an overdensity pa-
lution of the universe (see e.g., Frenk & White 2012;rameterA, measured with respect to the mean matter den-
Kuhlen et al. 2012, for reviews). To compare simulation-sjty or the cosmic critical density. The final sphere de-
s with observations so that cosmological models can bgnes the boundary of a halo. The FOF halo finder groups
constrained,it is essential to identify gravitationaltyimd  simulation particles whose pairwise distances are smaller
structures (e.g., dark matter halos and subhalos) from simhan a given threshold, which is usually expressed as the
ulation data. In particular, modern cosmological simula-"nking length parametef, measured with respect to the
tions with large simulated volume and high numerical reSmean interparticle distance (More et al. 2011). The cen-
olution resolve plenty of structures and substructuresspa tre of an FOE halo is usually defined as the position of
ning a wide range of masses/sizes. How to identify darkhe most bound particle. In contrast, the identification of
matter halos/subhalos efficiently and robustly from thesgyphalos is more complicated than that of halos. In recen-
large simulations is of great importance. In the past few years, many subhalo finders have been developed (see
decades, many codes/methods have been developed taOnijons et al. 2012, for examples), and there is less agree-
dentify halos/subhalos from simulation snapshots (i2-, h ment on the definition of a subhalo among different meth-
lo finders); see Knebe et al. (2011) and Onions et al. (20123ds. For instance, based on the FOF group finding resuilts,
for reviews. SUBFIND (Springel et al. 2001) defines locally over-dense

Usually, the algorithms to identify halos can be classi-and self-bound substructures as subhalos, and uses saddle

fied into two categories, spherical overdensity (SO, Prespgoint to determine the boundary of a subhalo; AHF (Amiga
& Schechter 1974; Lacey & Cole 1994) and friends-of-Halo Finder, Knollmann & Knebe 2009) constructs adap-
friends (FOF, Davis et al. 1985) method. The SO halo find-
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tive mesh refinement on the density field in the simulatedVe then apply HIKER to mock halo data, as well as cos-
box size and finds subhalos based on the hierarchy of thmological N-body simulations. We present our test results
refined grids; HBT (Hierachical Bound-Tracing, Han et al.on field halos and subhalos in Section 3. Section 4 presents
2012, 2018) identifies subhalos by tracking the merging hieur conclusions and discussions.

erarchy of halos starting from the earliest given snapshot.

Recently, machine learning algorithms have beer? HIKER ALGORITHM
widely adopted in the astronomical community, and they.

) The general procedures of the HIKER algorithm can be
are becoming more and more useful as the astronomi-

cal data size grows more rapidly. For example, Hui et aldescnbed as follows: (i) Identifying density peaks witk th

(2018) use support vector machine (SVM) to classify.kemel-Shlft algor_|thm. (i) For _each density peak, aspher
: : . is grown around its centre until the enclosed mean density
galaxies to study the relation with large-scale structures

Aragon-Calvo (2019) uses deep convolutional neural ne Is 200 times the critical density. Halos and subhalos are de-
g P ttermined according to their geometrical relations. (iidy F

work (CNN) to perform large-scale structures classifica- ach subhalo, we determine its tidal radius and apply for

tion; He et al. (2019) uses deep neural networks to predic% - .

. . an unbinding procedure to exclude unbound particles.
the formation of non-linear large-scale structures. We re-
fer the reader to Baron (2019) for a recent review of vari-

ous applications of machine learning methods in astrono%'1 Mean-shift Algorithm

my. Unsupervised machine learning algorithms are widelyrhe mean-shift algorithm is one of the clustering algo-
used in CIUStering analySiS, outlier detection, dimen'Sionrithms in the unsupervised machine |earning category,
ality reduction, etc. In particular, the concept of clustgr \yhich is very efficient and robust to locate density peak-
analysis for data points, which tries to group objects sb thas of a density field. The algorithm was first presented in
the objects in the same group (or cluster) are more similaykunaga & Hostetler (1975) and later generalized by in-
to each other than objects in other groups (or clusters), igoducing kernel functions in Cheng (1995).
fairly similar to halo finding in cosmological simulations. To locate the local density maxima of a set of particles,
This motivates us to develop a new halo finder code baseghe mean-shift algorithm starts from an initial guessing po
on clustering analysis algorithms. sition, moves iteratively according to mean-shift vectors
The mean-shift algorithm (Fukunaga & Hostetler computed from the neighboring particles, until the conver-
1975; Cheng 1995; Comaniciu & Meer 2002) is a non-gence is reached. The key concept of the algorithm is the
parametric cluster finding procedure, and it is popular inmean-shift vector. In the original mean-shift algorithropr
computer vision and image processing applications. It sposed by Fukunaga & Hostetler (1975), for a positian
tarts from an initial position, and then iteratively shifts  the mean-shift vector is computed as
the local maximum (i.e., mode) of a density field with a
shift yectqr comput.ed from the average prop_erty of _da- My(z) 1 Z (2 — ), 1)
ta points in the neighborhood. The mean-shift algorith-
m does not assume the shape of the distribution nor the

number of clusters, and it is quite efficient to locate theWheremi is the coordinate of thé-th particle whose dis-

local maxima of a density distribution. These advantageg"’lnce t.o positione is less than the bar\dW|dth radius,
make it an attractive candidate method to identify halos agndN is the total number of such particles. Note that the

well as subhalos from cosmological simulations. In partic-b"’mdv"idth radius here is the single input parameter in the

ular, as we show in this paper, the mean-shift algorithrﬁrm:’an'shift algorithm. Physically, hf agiven S_et of _paEE:l
equipping with a physically motivated kernel function, thehave equal masses, the mean-shift vector is defined as the

Plummer kernel, has another advantage in accurately ideffifference between position and the centre-of-mass po-

tifying substructures from simulations. To stress the feaSition of the particles within the bandwidth radius.
Cheng (1995) later generalized the mean-shift vector

ture of our algorithm (i.e., the mean-shift algorithm with ) i
the Plummer kernel function), we use the name of *kernelPY introducing a Kernel functiori (y; ),
Shlﬁlnl?htizljvcr:j(p(\j\;e introduce a new halo finder, HIKER (a le((m) = Zﬁil Pl = 2];0) (s - &)
Sl b YLy K (|2 — ;)
Halo-fInding method based on KERnel-shift algorithm) to
simultaneously identify dark matter halos and subhalos invhere|x; — x| is the distance fronx to x;, and N here
cosmological N-body simulations. The organization of ourdenotes the total number of particles which have their
paper is as follows. Section 2 introduces the kernel-shiftz; — | smaller than an input radiusc. Under such gen-
algorithm and other details of our halo finding procedureseralizations, the original mean-shift vectdv/,(x), can

i=1

)
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be regarded aMﬁ((:c) computed with a flat kernel, i.e., Plummer potential. In other words, the iterative procedure
K(y;b) = 1if y < b, and0 otherwise. For each position, mimics the process of a particle falling into a Plummer po-
it can be moved to a new position with higher density actential well. Note, BDM halo finder (Klypin & Holtzman
cording to the mean-shift vector; i.&ycw = m+M£<(m). 1997; Riebe et al. 2013) adopts a scheme essentially iden-
Iteratively repeating the procedure leads to convergendical to mean-shift algorithm with a flat kernel to locate
once it reaches a local density maximum. For the detailedensity peaks, while it was called “sphere jittering” mech-
mathematical proof of the convergence for the mean-shifanism in the paper.
algorithm, see Cheng (1995).

In HIKER, we intend to adopt a non-flat kernel func- 5 5 saeds Function
tion, which gives more weight in the inner region rather

than using equal weight everywhere. Such a non-flat kéfy seeds function is necessary to generate the initial po-
nel function assists in locating halo centres more robustlyg;iinng (ie., seeds) to start the kernel-shift algorithm.

and this is particularly important in identifying subhalos 11a simplest scheme for seeds generation is to randomly
Comparing to field halos in cosmological simulations, sub-

s e : ) >“~choose positions of a certain fraction of simulation parti-
halos usually reside in more complicated density environg|og However, some small targets in low-density region-

ments. It is more robust to locate subhalo centre when givg may be missed accidentally in such a scheme, and thus

ing more weight to the central region. In contrast, using a,ygitional seeds should be placed in these low-density re-

flat kernel fails to identify some subhalos; see Appendix Agigns (Kiypin & Holtzman 1997). Also note that the num-
for a quantitative comparison between using flat and nonge, of seeds has direct impact on the amount of compu-

flat kernel functions to identify subhalos. tational expense; i.e. more seeds causes more subsequent
To construct a non-flat kernel function, we start from c4icyjations (or computation time), whilst they do not af-
the spherically symmetric Plummer density profile, which¢act the final results on the number of peaks. For an op-
was first introduced by Plummer (1911) to describe thg;ma) seeds function, we expect that every candidate ha-
stellar distribution of globular clusters, lo/subhalo should contain at least one seed in order to avoid
3M 1 being missed, but at the same time, the total number of
p(r) = Amrd (1 + r2/r2)5/2 (3)  seeds should be as few as possible in order to reduce com-

. . . putational cost.
whereM is the total mass and, is the scale radius. The

corresponding Plummer potential is

In HIKER, we develop a novel approach to generate
seeds as detailed below. First, for each particle in the-simu
o(r) = — GM (4) lation, we search its 20 nearest neighbor particles usitg k-

(r2 +r2)t/27 trees (Bentley 1975), and compute its distance tthh
earest particlelsg, which is an approximate proxy of its
q:)cal density. Second, we use a predefined distance thresh-
GMr (5) old, r., which is similar to the linking length parameter in
(r2 +1r2)3/2° an FOF algorithm but is slightly larger to be more conser-

Our Plummer kernel function is constructed as the follow-vative, to exclude those particles whose local densities ar

whereG is the gravitation constant, and the correspondin
force is

F(r)=-

ing form too low to be associated with any halo. We setis0.24
i C times the mean inter-particle separation in our code. Third
p(ri7s) = (r2 +1r2)3/2° 6) we loop over the remaining particles and adopt the parti-

cles whosei,, are the smallest among thig, of their 20
nearest neighbor particles (i.e., those particles which co
respond to the local density maxima) as candidate seeds. In

In this work, we set-; = 3¢ with € being the gravitational the final st e that th didat ks which |
softening length from simulations. If a particle is infirijte efinalstep, note ,a € cgn Idate peaks which are close
o each other are still possible to be moved to the same

close to a Plummer potential minimum, then the PIummef1 i o )
alo centre during the kernel-shift iteration. Therefaee,

style mean-shift vector ,
further reduce and computational cost, we loop over the
X N r candidate seeds, and for each candidate seed, we search it-
MEr « Z v (7) . . . L . .
b (rZ +12)3/2 s neighbouring candidate seeds within a spherical region
=1t ° with a radius defined as 3 times of the scale radius of the
is proportional to the sum of Plummer force. With this ker- Plummer kernel function (see Sect. 2.1 for details). A can-
nel function, shifting from an initial seed in iterations-ap didate seed peak will be determined as a true seed if its lo-
proximately follows the force exerted by the correspondingcal density is still the maximum among its neighbors. Note

whereC' is a normalization constant, whiteandr, are re-
spectively corresponding tae; — x| andb in Equation (2).



46-4 S-P. Qun et al.: HIKER Halo Finder

that in this procedure, the seeds we identified fairly rep3 TEST RESULTS

resent the realistic density peaks. Starting from each,seed ] ] . ]
we select all particles inside a radiusiof — 10 x ¢ and In this section, we test our halo finder in three aspects using

apply for mean-shift procedure to derive all density peakst.hree different types of simulation data, i.e., we use (§ta s

Note that more than one seeds may converge to a singﬂg mock halos to test the accuracy of halo properties giv-
peak with mean shift algorithm. en by HIKER (Sect. 3.1), (ii) a suite of large-scale full-box

cosmological simulations to test the ability in identifioat

of field halos (Sect. 3.2), (iii) the data from the Aquarius
project (Springel et al. 2008) to test the ability to ideptif
Based on density peaks, we follow an approach of SO hasubhalos (Sect. 3.3). Note that these data have been used
lo finder to identify field halo (Lacey & Cole 1994). The in the halo/subhalo finder comparison Knebe et al. (2011)
density peaks are sorted in descending order according &1d Onions et al. (2012), and thus almost all our results can
their local densities which are estimated from the distancée directly compared to those of two studies. For the tests
to the20th nearest neighbour. We first consider each peakn mock halos, we will compare the HIKER results with

as the centre of a field halo, while many of them are indeethose from all halo finders discussed in Knebe et al. (2011),
centres of subhalos. Starting from the density peak with th#hile for the other two tests, to be concise, we mainly com-
highest local density, then for each peak, a sphere is growpare the HIKER results with two widely used halo finders,
around centre until the enclosed mean density is equal t8UBFIND and AHF.

200 times the critical density. Then we further distinguish

halo and subhalo using simple geometrical relation, name3.1 Mock Halos

ly if a halo is contained in the other larger halo, the smaller

halo is labeled as a subhalo. Once halos/subhalos are dll\s/l-OCk halos, whose properties are known by construction,

L . are introduced in Knebe et al. (2011) to examine the ac-
tinguished, we need to define subhalo boundary because ) . . .

curacy of different halo finders in recovering halo/subhalo
only subhalo halo centres are known at the stage. Theré

are various definitions of subhalo boundary in the ”ter_propertles. A setof mock halo data has been prepared with

ature. For example, SUBFIND uses saddle points, HB given NFW density profile. With such halo model, three

. . setups have been generated: (i) an isolated host halo only;
Han et al. 2012, 2018) groups the bound particles of it- . .
( ) group tnd part ! i) an isolated host halg- a subhalo a6.5R}sst; (i) an

s progenitor as a subhalo. In HIKER we use a physically
brog . . , ahd )fsolated host hale- a subhalo ab.5RYSst + a subsubhalo
motivated value — tidal radius to define the boundary of a host cubhal bost { psubhaloy :
. . at (0.5R75" 4+ 0.5R5"*°). Here,R155Y (Ri50™™°) is the
subhalo. In practise, starting from each subhalo centre, a . Do .
: . . radius of the host halo (subhalo) within which the mean
sphere is grown until its tidal radius reaches. We follow o : . . .
I . L . density is100 times the critical density. The properties of
the definition of tidal radius in Tormen et al. (1998); i.e., ) .
mock halos are summarized in Table 1; see Knebe et al.
(2011) for further details of these mock data.
(8) In the following, we will use these three setups of

mock halos to test the accuracy of HIKER in recovering

wherem, R and M are subhalo mass, the distance fromhalo/subhalo properties.

subhalo centre to host halo centre, and the enclosed mass Following Knebe et al. (2011), we first quantify the
within R for the host halo respectively. This definition is @ccuracy of HIKER in recovering halo/subhalo centres by
under the assumption that the subhalo mass and the tidg®mputing the distance offset between the centre returned
radius are far less than the values of its host halo. by HIKER and the actual one. Results are shown with red

A halo/subhalo is usually regarded as a gravitationally®ymbols in Figure 1, in which the results of other 17 ha-
bound structure, and thus it is often for some halo findl0 finders from Knebe et al. (2011) have also been shown

ers to remove unbound particles from the candidate haVith black symbols for easy comparison. We use squares,
los/subhalos (i.e., unbinding procedure). In HIKER, wediamonds, and triangles to plot the centre offsets of host

carry out the unbinding procedure following that of the halos, subhalos, and subsubhalos respectively. The symbol

AHF halo finder except of determining the bulk velocity 1 These halo finders are AHF (Knolimann & Knebe 2009), ASOHF
for a potential halo/subhalo. For that we use our Plumme(Planelles & Quilis 2010), BDM (Klypin & Holtzman 1997), pS@Sutter

; : " ; i i & Ricker 2010), LANL (Habib et al. 2009), SUBFIND (Springel al.
kernel to weight particle velocities according to their-dis 2001), FOF., pFOF (Courtin etal. 2011: Rasera et al. 20L0RORYFOF

tances to the centre, instead of using a small fraction ofcardner et al. 2007a,b), VOBOZ (Neyrinck et al. 2005), SKStadel

particles within the central region to get the mean velocity2001), ADAPTAHOP (Aubert et al. 2004; Tweed et al. 2009), HED,
the bulk velocity. F ther details of th bindi HOT_6D (Ascasibar & Binney 2005; Ascasibar 2010), HSF (Macisjew
as the bulk velocity. For other details or the unbinding Pro- 51 2009), 6DFOF (Diemand et al. 2006) and ROCKSTAR (Betiro

cedure, we refer the reader to Knollmann & Knebe (2009)et al. 2013).

2.3 Halo/Subhalo Identification

m

1/3
=R S T g i/ R)M(R)] :
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Table 1 The (Sub)Halo Properties of the NFW Mock Data

Profile  Type Nooo  Maoo[h™'Mg]  Raoo[h~'kpc]  Rs[h™'kpc]  Vinax[kms™!]

NFW host 760892 7.6%1013 689.1 189.5 715
sub 8066 8.0%& 1011 151.4 17.0 182
subsub 84 8.4%10° 33.1 2.6 43

Napo and Mz are the particle number and virial mass inside the virialugd?200 . Rs is the scale radius
of the corresponding profile, arid,,ax is the maximum of the rotation curve.

ROCKSTAR - o O
6DFOF { o <
HSF o
HOT _6D - oD o
HOT _3D A o oo a
ADAPTAHOP 1 < A o
SKID A < o A
VOBOZ - o A o <
NTROPYFOF o [u]
PFOF - o o
FOF - on o A O o
SUBFIND - o ¢ 0O A
LANL{ o [n]
pso 1
BDM - O o R -4
ASOHF A o A o o ke
AHF =3 o A
HIKER{ & ® 0O A

O ¢ < A
u]

¥

100 10!
centre offset [kpc/h]

Fig. 1 Centre offset between the actual centre and the value resmbisy HIKER. The results of different halo finders from Kneal.
(2011) are plotted withlack color at differenty-coordinates, and the corresponding names are labele@ gretkis. The HIKER results
are highlighted wittred colors. Host halos, subhalos, and subsubhalos are markedsguisihes, diamonds, andtriangles, respectively.
The symbol size distinguishes the results of differentsgtwith larger symbols representing setups containingersabstructures.
Specifically, taking the ROCKSTAR results as an example thinee squares from left to right show the results of host halos from
setup (i), (i), and (iii) respectively, the twdiamonds from left to right show the subhalos from setup (ii) and (i@spectively, and the
triangle shows the subsubhalo from setup (iii).

size distinguishes different mocks, with larger symbol cor Note that the accuracy is defined as the fractional differ-

responding to the mocks with more subhalos. ence,
For NFW mocks, HIKER recovers the input halo prop- Az — Teode 7 Imod‘ﬂ’ 9)
erties fairly well. Especially for the isolated host halo of Tmodel Tmodel

setup (i), the halo centre recovered by HIKER only devi-wherez,oq. andz,oqe1 Stand for the halo properties com-
ates0.13 ™ 'kpe (i.e.,~ 2 x 107 Ryqp) from the actual puted by a halo finder and the input mock properties re-
centre. For host halos containing substructures, due to thgyectively. The layout and symbols in these figures are sim-
asymmetry in the density field caused by nesting substrugtar as those in Figure 1.
ture, the deviations become slightly larger (.4 h~'kpc, From Figures 2, 3 and 4, it is easy to find that HIKER
or~ 610" Raqo), but they are still smaller than the cen- recovers the aforementioned properties quite succegsfull
tre offsets of most halo finders. For subhalos and subsulpsoih for field halos and subhalos (i.e., the fractional diffe
halos, HIKER also recovers their centres more accurately¥nces are less than 1% oL, and V.., and less than
than many other halo finders. 6% for Mago), and the HIKER results are usually better
We also investigate how accurately HIKER can recov-than (or comparable to) those of the other halo finders. For
er some other halo properties, including bulk velocitiessubsubhalos, the HIKER recoveriesbq (i.e., ~ 15%)
virial masses, and the maximum circular velocities for bothandV;,,.« (i.e.,~ 3%) are not so good as the cases for field
halos and subhalos (i.e:,= Viui, M20o, andViay), and  halos and subhalos, but it is still better than many other
the results are presented in Figures 2, 3 and 4 respectivelyalo finders.
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ROCKSTAR A
6DFOF

HSF
HOT_6D A
HOT_3D A
ADAPTAHOP A
SKID 4
VOBOZ A
NTROPYFOF
PFOF A

FOF A
SUBFIND -
LANL

pSO 1

BDM -
ASOHF A
AHF

HIKER A

-0.05 0.00 0.05 0.10 0.15 0.20 0.25

AVhuikd Vmodel

0.30 0.35

Fig. 2 Fractional differences between the input halo bulk vejoicitmock data and the recovered bulk velocities from diffitfealo
finders. Thegrey vertical linesin both panels indicate no difference from the model anedytvalue. The layout and the symbols are in

accordance with Fig. 1.

ROCKSTAR -
6DFOF 4

HSF A
HOT_6D -
HOT_3D A
ADAPTAHOP A
SKID 4
VOBOZ
NTROPYFOF A
PFOF -

FOF A
SUBFIND 4
LANL A

pSO A

BDM +
ASOHF 4
AHF

HIKER A

>

o

<
Bo0agglaA

¢
<o
> <
caa~ a

5o

Further more, as mentioned earlier, both of BDM and

-1.00 -0.75 -0.50 -0.25 0.00 0.25

AMZOO/MmodeI

0.50 0.75

Fig. 3 Similar to Fig. 2, but for the virial mass.

Besides the tests of recovering the properties of mock

HIKER are based on the mean-shift algorithm but with d-halos, we also reproduce the dynamic evolution of a sub-
ifferent kernel functions. Comparing the results betweerhalo falling into a host halo with the same data used in
BDM and HIKER in Figures 1-4, HIKER recovers the halo Knebe et al. (2011). The infall process is designed in the
properties better than BDM which uses a flat kernel funcfollowing way. An NFW model subhalo (see the second
tion. This is a consequence of a non-flat kernel adopted itype of Table 1 for detailed properties) is set up at a dis-
tance of D = 3 x RIgst with an initial velocity toward

HIKER.
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ROCKSTAR - A <a
6DFOF A A o
HSF A

HOT_6D -
HOT_3D - A
ADAPTAHOP - A L3
SKID ©
VOBOZ 3
NTROPYFOF -
PFOF 4
FOF -
SUBFIND - A o
LANL
pSO A
BDM - A
ASOHF - A <
AHF A <o
HIKER A

-0.2 -0.1 0.0 0.1 0.2
AVmax/Vmodel

Fig. 4 Similar to Fig. 2, but for the maximum circular velocity.

1.00 0.6
—o— AHF —5— AHF

0.75 —~o&— SUBFIND —~&— SUBFIND
—— HIKER —— HIKER

0.4+
0.50 1

0.25 A

o
N

0.00{ ¢

AN/INmoder
AV max/Vmax
o
o

-0.25 4

-0.50 4 =0.24

—0.75 4

—0.4

—1.00 4

0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0 0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0

Fig.5 Evolution of the number of particletft) and the maximum circular velocityight) of a subhalo falling into its host. TrgFeen
curve shows results reproduced by HIKER. As comparison,Hifve and orange curves show results of AHF and SUBFIND Knebe
et al. (2011), respectively.

the host halo centre. The host halo is more massive thape due to our unbinding procedure, which could be largely

this subhalo by two orders of magnitude. After approxi-affected since the assumption which requires the (sub)halo
mately 1.8 Gyr it will reach the host halo centre and passo be spherical break down in the situation. We refer the

through. In Figure 5 we present the evolution of the num+yeader to Knebe et al. (2011) for results from more halo

ber of particles (left panel) and maximum circular velocity finders.

(right panel) recovered by HIKER as well as the original  Erom the discussions in this subsection, we conclude
AHF and SUBFIND results from Knebe et al. (2011). Both ¢ HIKER is quite successful in recovering halo proper-

for particle number and/,.., the trends of HIKER are {jeg.

quite similar with those of AHF. The total number of par-

tlclgs decline generally when passmg through the centra:‘l'2 Field Halos

region of host halo due to strong stripping. At the snap-

shots when the subhalo is very close to the its host centr?h this subsection, we use a suite of large-volume cos-

there are a little rise in the particle number curve and a . . . .
P mological simulations to test the accuracy of HIKER in

sharp rise in thé/a. curve. These sudden changes m‘fjlyidentifying field halos. The simulation data comes from
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Table 2 Details of the Large-volume Cosmological Simulations er two, and it is more evident in the lowéf,.. end. As
there is no such difference in the halo mass functions a-

Names Np.am _ mam[h"*Mg]  e[h~'kpd] these halo finders, this implies that HIKER
VAD-Halo256  256° 540 %1011 =% mong these halo finders, this implies that some
MAD-Halo-512 51923 6.59 %1010 25 halos (especially some with lower masses) tend to have
MAD-Halo-1024 10243 8.24x10° 15 higherV,,.x, Or equivalently deeper inner potentials, com-

Np.am gives the total number of dark matter particles in each saimul paring to AHF or SUBFIND results. This possibly comes

tion, mgn, is the original uncorrected mass for dark matter particles, _

ande is the comoving softening length. from the facft thf_;\t HIKER Ioc_ate halo centres more accu
rately, resulting in largeV,,.x in low mass halos.

the ‘Haloes gone MAD’ halo-finder comparison project

(Knebe et al. 2011), and it consists of three simulation$-3 Subhalos

with different mass resolutions; i.e., containizig?, 5123,

and10243 dark matter particles respectively. These simu-WVe use the Ag-A halo from the Aquarius project (see
lations have simulated the formation and evolution of the>Pringel et al. 2008, for details) to test HIKER in iden-
large-scale structures with the GADGET2 code (Springelifying subhalos. The Ag-A halo has been re-simulated
2005) in a comoving periodic box with a size0 »,~'Mpc ~ With five different resolutions, here we use three of them,

on a side. The adopted cosmological parameter@are= -6 AQ-A-4, AG-A-3, and Ag-A-2, to perform our tests.
0.3,Q5 = 0.045,Q = 0.7, andh = 0.7, respectively. The Among these three simulations whose details are summa-

simulation names, dark matter particle masses, and softefjz€d in Table 3, the Aq-A-2 has the highest mass resolu-
ing lengths are summarized in Table 2. For each simulation while the Ag-A-4 has the lowest mass resolution. For
tion, we only use the snapshot at= 0 to perform our all three simulations, we select a cubic region with edge
tests. length of1 h~'Mpc centring the the position of;qucia =

1 . o

Note that the original simulations contain both dark (37060-4,52618.6,48704.8) A~ "kpc which is the fiducial

matter and gas particles. However, following Knebe et glcentre defined in Onions et al. (2012) to run our halo find-
(2011), we only use dark matter particles to perform iden&" Note that within this selected region, the number of

tify halos, and the mass of dark matter particles in eactPW-resolution particles is extremely few (i.e. less thaj
simulation (i.e.,mam shown in Table 2) has been scaled and thus we simply leave out these low-resolution particles
oy m

by multiplying a factor of2,, /(2 — Q) accordingly. when running HIKER. In_the following, we mainly com-
We identify field halos containing at leag6 parti- pare the HIKER results with the_AHF and SUBFIND ones,
cles from all three simulations. Their cumulative massand the reader can refer to Onions et al. (2012) for results

functions andV,,,., functions are presented in Figure 6. of other halo finders.
Because these three simulations have the same phases in In Figure 8, We first compare the subhalos identi-
the initial conditions and they only differ in resolutions, fied with HIKER from the Ag-A-4 data to those identi-
we expect that the halo mass functions as well/as, fied with AHF and SUBFIND by visualisation. To be in
functions should converge in the reliable mass range aaccordance with Onions et al. (2012), we have show the
mong different resolution simulations. This is indeed truesame quadrant region around the fiducial position here.
in Figure 6, indicating that HIKER works successfully in Each identified subhalo is represented with a green circle
simulations with different mass resolutions. whose radius scales with ii$,../3, and the subhalo cen-
We then compare the halo mass function dng,  tre is marked with a red dot. Note that only subhalos with
function obtained from HIKER in the MAD-Halo-1024 Vimax > 10 kms~" are plotted in this figure. Comparing
simulation with those from SUBFIND and AHF in to AHF and SUBFIND, HIKER misses one subhalo in the
Figure 7, here the SUBFIND and AHF results come fromupper left corner, and it identifies a few more low-mass
Knebe et al. (2011), and we refer the reader to figures 1gubhalos at the lower left corner (i.e., the region near the
and 18 of the paper for more results of other halo finderAd-A halo centre). But in general, the HIKER subhalos
s. We also over-plot the analytical halo mass functions aggree very well with the AHF and SUBFIND ones in posi-
given by Warren et al. (2006) and Tinker et al. (2008) intions andViax.
the figure for comparison. As a quantitative comparison, in Figure 9 we plot the
We can see that the HIKER mass function agrees witltumulative mass functions ang,., functions for subha-
the SUBFIND and AHF very well in all mass range. In los in the Ag-A-4 simulation identified by HIKER, AHF,
the reliable mass range, all three mass functions from hand SUBFIND. The subhalos used to plot this figure are
lo finders lie between the parameterized mass functions afithin a sphere o250 »~'kpc from the fiducial position
Warren et al. (2006) and Tinker et al. (2008). Forthge,  and contain at leag0 particles. Overall the HIKER results
function, HIKER tends to be slightly higher than the oth-are in line with those of AHF and SUBFIND.



S-P. Sun et al.: HIKER Halo Finder 46-9
—— MAD-Halo-1024 —— MAD-Halo-1024
02 —— MAD-Halo-512 1072 —— MAD-Halo-512
1 —— MAD-Halo-256 —— MAD-Halo-256
102 1073
;': "E 1074
Q -4 | Q
g0 £
T T
€ 10754 w0
= >
A A
T 10-6 T 10-6
1077 4 10-7
1078 4 10-8
101t 1012 1013 10 10%° 102 103
M200lMo/h] Vmaxlkmis]

Fig. 6 Cumulative mass functionseft) and Vi, functions ¢ight) computed from HIKER field halo catalogues for three simafe
with different mass resolutions.
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Fig. 7 Cumulative mass functionseft) and Vin.x functions ¢ight) functions from the MAD-Halo-1024 simulation. The resultsm
AHF, SUBFIND, and HIKER are plotted withlue, orange, andgreen lines, respectively. In the left panel, for comparisons, we over-
plot the mass functions from Warren et al. (2006) and Tinket.€2008) withgrey solid andgrey dashed linesrespectively. The lower
panels show residuals of mass anghx function relative to HIKER results, respectively.

Table 3 Some Details of the Ag-A Halos Used in This Study

Name Nhrcs Nlrcs Nsclcct Mp hres [hilM@} e[pc]

Ag-A-4 18535972 634793 7434975 2.868 x 10° 342.5
Ag-A-3 148285000 20035279 59347 132 3.585 x 104 120.5
Ag-A-2 531570000 75296170 212792272 1.000 x 10% 65.8

Nyres (Nires) is the number of high-resolution (low-resolution) pdeg in the simulation,
Ngelect 1S the number of high-resolution particles within our stdecregion (i.e., a cubic region
with edge length oft h~'Mpc centringrgquciai = (57060.4, 52618.6,48704.8) h~'kpc),
™My, hres 1S the mass of high-resolution particles, arid the comoving softening length.

We have also used HIKER to identify subhalo onsions above, we conclude that HIKER identifies subhalos
the level 2 and level 3 Ag-A simulations, and the result-with an accuracy comparable to that of the widely used
s are presented in Figure 10. As expected, the HIKERAHF and SUBFIND.

subhalo mass functions affh. functions converge very The HIKER code is parallelized with OpenMP. Its per-
well in different resolution simulations. These resulte ar formance is quit efficient, for instance, it only takesl

consistent with the resolution convergence tests shown iPninute to process MAD-Halo-256 data and3 minutes
Springel et al. (2008) with SUBFIND. From the discus- to the Ag-A-4 data with 10 Xeon CPU cores (2.4 GHz).
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Fig. 8 Visualization of subhalo-finding results from HIKERft), AHF (middle) and SUBFIND (ight) on the Ag-A-4 data. The region
shown in each panel is the same quadrant as presented ingetiah (2012). The identified subhalos are indicatededydots and
green circleswhose radii are scale with,. /3. Only subhalos with/,... > 10 km s~* are shown here. The grey background shows
the dark matter density computed from simulation particles
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Fig.9 Cumulative mass functionseft) and Vin.x functions ¢ight) for subhalos identified from the spherical region with aiwadf
250 h~tkpc around the fiducial position in the Ag-A-4 data. The resultsrf AHF, SUBFIND, and HIKER are plotted withlue,
orange, andgreen lines, respectively. In the lower panels, both for mass functiwhid,,.. function, we plot the relative residual results
using HIKER result as basis.
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Fig. 10 Cumulative mass functiongeft) andViax functions ¢ight) for subhalos identified from different Ag-A simulations BYKER.
Similar to Fig. 9, these subhalos are from the sphericabregiith a radius 0250 h~'kpc centring the fiducial position. We use the
blue, orange, andgreen lines to plot the results from Ag-A-2, Ag-A-3, and Ag-A-4 simulatis, respectively.
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For identifying both the field halo and subhalo, HIKER Similar runs are performed on the Ag-A-4 simulation data
exhibits a time complexity close to (slightly steeper than)to study the effects on subhalo finding. Note that in the un-

aO(N log N) relation. binding procedures, to estimate halo bulk velocities more
reliably, in the runs with flat kernels we only use a certain
4 CONCLUSIONS AND DISCUSSION fraction of particles in the central region as most halo find-

ers do, while in the runs with Plummer kernels we utilize
In this work, we develop a new spherical overdensitythe Plummer kernel to give more weight on the central ve-
halo/subhalo code—HIKER for cosmological simulations.|ocity.
HIKER employs the mean-shift algorithm combining with
a Plummer kernel to efficiently and robustly locate den- Field halo
sity peaks. Based on density peaks, dark matter halos ar —— Plummer kernel
further identified as spherical overdensity structuresievh —— flat kernel
subhalos are substructures with boundaries equal to the
tidal radius. We use mock halos to test our halo-finding
code, and show that HIKER performs excellently in locat-
ing halo/subhalo centres and recovering halo properties
In particular, the accuracy of HIKER in recovering ha-
lo/subhalo centres is higher than most halo finders. With % ;- |
large-volume and zoom-in cosmological simulations, we °
further showed that HIKER reproduces the abundance o, |
field halos and subhalos quite accurately, and the HIKER
results are in agreement with those of two widely used halc 14 |

10—3 4

104 4

1075 4

200)[M3/Mpc3]

finders, SUBFIND and AHF. o o o o
Although we only use HIKER to identify ha- MhaiolMo/h]

los/subhalos from dark matter-only simulations in this s- Subhalo

tudy, it can be quite straightforward to extend the HIKER — Plummer kernel

—— flat kernel

algorithm to include particles with different masses (e.g.
gas, stars, etc.) by further multiplying the kernel func-
tion with different weights for different particle types in
Equation (2).

103 4

-

o
©
L

AcknowledgementsWe thank the referee for a very help-
ful report. We acknowledge support from the National
Key Program for Science and Technology Research 107
and Development (2017YFB0203300). SS is particularly
grateful to Prof. Alexander Knebe for providing us data
to do our tests as well as a lot of helpful discussions. QG 10° 4
and LG acknowledge support from the National Natural o To To0 Tom

Science Foundation of China (NSFC) (No. 11425312), Mpaio[Mo/h]

and two Royal SC_JCI?W Newton Aqvanced Fe”OWSh'pS’ ELIg—'ig.A.l Cumulative mass functions for field halos from MAD-
well as the hospitality of the Institute for Computational j310-512 simulationtop) and for subhalos from Ag-A-4 simu-
Cosmology at Durham University. QG is also support-lation (bottom). In both panels, the blue and orange lines plot the
ed by NSFC (Grant Nos. 11573033 and 11622325), theesults from HIKER equipped with a Plummer kernel and a flat
“Recruitment Program of Global Youth Experts” of China, kernel, respectively.

and the NAOC grant (Y434011V01).

N( > M300)

The cumulative mass functions from these runs are

Appendix A: KERNEL EFFECTS summarized in Fig. A.1. The field halo mass functions are

barely affected by kernel functions. However, the subhalo

Kernel functions are a key concept in the HIKER algorith-mass functions are very sensitive to kernel functions, i.e.

m. To study quantitatively the effects of kernel functionsthe number of subhalos recovered in the run with a flat ker-
on the identification of field halos, we run HIKER twice, nel is much lower than that in the run with a Plummer ker-

first equipped with a flat kernel and then with a Plummemel. As we have shown in Section 3.3, the HIKER subhalo
kernel (withb = 3¢), on the MAD-Halo-512 simulation. results agree fairly well with those of AHF and SUBFIND.
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The results here point out that introducing a non-flat kerneHabib, S., Pope, A., Luki¢, Z., et al. 2009, in Journal of &by
function can help locate the halo centres in a more robust Conference Series, 180, 012019
way, especially in finding subhalos. Usually, a potentialHan, J., Cole, S., Frenk, C. S., et al. 2018, MNRAS, 474, 604
subhalo is surrounded by more complex density fields, andfian, J., Jing, Y. P., Wang, H., & Wang, W. 2012, MNRAS, 427,
this makes it easy for the candidate centre to shift away if 2437
the central core is not emphasized. In contrast, field halosle, S., Li, Y., Feng, Y., et al. 2019, Proceedings of the Netio
are usually isolated, and the density environment around Academy of Science, 116, 13825
them is much simpler, and a flat kernel will be good e-Hui, J., Aragon, M., Cui, X., & Flegal, J. M. 2018, MNRAS, 475,
nough to capture that. 4494
Because the centre locating method in BDM is equiv-Klypin, A., & Holtzman, J. 1997, astro-ph/9712217
alent to the mean-shift algorithm with a flat kernel, the re-Knebe, A., Knolimann, S. R., Muldrew, S. I., et al. 2011,
sults in this appendix also suggest that with a Plummer k- MNRAS, 415, 2293
ernel function, HIKER can significantly improve BDM in Knollmann, S. R., & Knebe, A. 2009, ApJS, 182, 608
identifying subhalos. Kuhlen, M., Vogelsberger, M., & Angulo, R. 2012, Physics of
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