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Abstract Studies on the periodic variation and the phase relationship between different solar activity in-

dicators are useful for understanding the long-term evolution of solar activity cycles. Here we report the

statistical analysis of grouped solar flare (GSF) and sunspot number (SN) during the time interval from

January 1965 to March 2009. We find that, (1) the significant periodicities of both GSF and SN are related

to the differential rotation periodicity, the quasi-biennial oscillation (QBO), and the eleven-year Schwabe

cycle (ESC), but the specific values are not absolutely identical; (2) the ESC signal of GSF lags behind that

of SN with an average of 7.8 months during the considered time interval, which implies that the system-

atic phase delays between GSF and SN originate from the inter-solar-cycle signal. Our results may provide

evidence about the storage of magnetic energy in the corona.
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1 INTRODUCTION

Understanding the dynamic processes of the solar inte-

rior and atmosphere, and how they produce the long-term

cyclic variation continues to challenge the solar communi-

ties (Cameron et al. 2017). The available solar databases

provide a broader chance, showing a wide variety of pe-

riodic behavior, phase asynchrony, hemispheric coupling,

chaotic behavior, fractal property as well as cycle ampli-

tude and length (Deng et al. 2016a,b). Furthermore, ad-

vances in data analysis techniques, such as time-frequency

analysis and machine deep learning, are now inspiring

studies that allow us to further explore the nonlinear dy-

namics of the Sun in far greater detail (Deng et al. 2012).

During the past few decades, the statistical relationship

between solar flare activity and sunspot number (or sunspot

area) has attracted interest. Wagner (1988) reported that

solar flare occurrence and background flux in the soft X-

ray (SXR) wavelength are delayed with respect to sunspot

activity, and the relative phase shifts are around two to

three years between the peak times during solar cycle 21.

Because the SXR flare occurrence and background flux

are considered to be dominated by the post-flares emission

⋆ Corresponding author

from the dominant active regions, so Aschwanden (1994)

interpreted that the phase delay is possibly due to the in-

creasing complexity of coronal magnetic structures in the

decay phase of the solar cycle. By studying the tempo-

ral variation of SXR background flux and its relation to

the flaring rate, energetic event rate, and the solar cycle,

Wilson (1993) did not find any evidence for the phase de-

lay between SXR flare occurrence and sunspot activity dur-

ing solar cycle 22 (from January 1986 to May 1992). If

the solar cycles 21 and 22 are considered together, then

the average phase delay derived from the correlation anal-

ysis is found to be 6 months, as studied by Wheatland &

Litvinenko (2001).

To describe how the magnetic free energy in the so-

lar corona varies in response to variations in the supply

of energy to the system and to changes in the flaring

rate, Wheatland & Litvinenko (2001) presented a detailed

model for dynamic energy balance in the corona over the

solar cycle. Their model predicted that both the flaring rate

and the free energy of the system lag behind the driving

of the system with a lag of around 11 months. To test

the results of their model, Temmer et al. (2003) analyzed

the temporal evolution of solar flare occurrence with re-

spect to sunspot activity during solar cycles 19–23. They
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found that, for solar cycles 19, 21 and 23 (namely, odd

solar cycles), a characteristic phase lag between flare ac-

tivity and sunspot activity is in the range from 10 to 15

months, which is consistent with the model predictions by

Wheatland & Litvinenko (2001). However, no characteris-

tic phase lag larger than zero is found for solar cycles 20

and 22 (namely, even solar cycles). Feng et al. (2013) stud-

ied the phase relationship between grouped solar flare and

sunspot number by several time-frequency analysis meth-

ods, they found that the phase relationship between the two

is not only time-dependent but also frequency-dependent,

which implies that their relationship is a complex nonlin-

ear relationship. The relationships between solar flare pa-

rameters (such as the total importance, the time duration,

the flare index, and the flux) and sunspot activity as well

as those between geomagnetic activity (aa index) and the

flare parameters was well studied by Du & Wang (2012),

they found that their relationship can be well described by

an integral response model with the response time scales

of about 8 and 13 months, respectively. In other words,

solar flare is considered to be related to the accumulation

of solar magnetic energy in the past through a time decay

factor, and it will help the researchers to understand the

mechanism of solar flares and to improve the prediction of

the solar flares. Du (2011) proposed an integral response

model to describe the relationship between geomagnetic

activity and solar activity (represented by sunspot number,

and the proposed model can naturally explain some phe-

nomena related to geomagnetic activity and solar activity,

such as the phase lag between flare activity and sunspot

number.

The periodic scales of solar activity indices have a

broad range, varying from several days to tens of years.

Except for the 27-day rotation period and the 11-year

Schwabe cycle, many other quasi-periodicities are found

in the past seven decades. For example, Kilcik et al. (2010)

studied the periodicities of solar flare index during solar

cycles 21–23, and found that a lesser number of periodici-

ties is found in the range of low frequencies (long periods)

while the higher frequencies display a great number of pe-

riodicities. They also found that the periodicities of solar

activity in different solar cycles are not identical. For the

temporal features between solar flare activity and sunspot

number or area, the clear relationships are not fully stud-

ied. For instance, we do not know whether the periodici-

ties of flare occurrence and sunspot activity are identical,

and whether the phase relationship between flare activity

and sunspot activity depends on the considered periodici-

ties. Therefore, it is necessary to study the quasi-periodic

variations and the phase relationship between solar flare

occurrence and sunspot activity.

In this paper, we report the periodic variation and

phase relationship between grouped solar flare and sunspot

numbers during the time interval from January 1965

to March 2009 (solar cycles 20–23). Two nonlinear

time-frequency analysis techniques are applied in this

work, namely the ensemble empirical mode decomposition

(EEMD) and the cross-recurrence plot (CRP). In Section 2,

the data sets and the analysis methods are introduced. The

statistical analysis results are shown in Section 3. Finally,

the main conclusions are summarized in Section 4.

2 DATA SETS AND ANALYSIS METHODS

2.1 Observational Time Series

The grouped solar flare (GSF) time series is publicly down-

loaded from the website of the National Geophysical Data

Center (NGDC)1. The time interval of GSF data set is from

January 1965 to March 2009, almost covering solar cycles

20–23. The term “grouped” means the observations of the

same flare event by different solar sites were lumped to-

gether and counted as one. This indicator is thus different

from the classical flare activity indices, such as Hα flare

index, soft X-ray flare, and hard X-ray flare (Gupta et al.

2007).

The sunspot number (SN) data set is freely ob-

tained from the World Data Center (WDC) — Sunspot

Index and Long-term Solar Observations (SILSO), Royal

Observatory of Belgium, Brussels2. The SN time series

(version 2.0) begins from January 1749 to April 2019 and

is updated every month (Clette et al. 2014). Here, the time

period from January 1965 to March 2009, the common

time interval to the GSF data, is extracted.

Figure 1 displays the monthly counts of GSF (upper

panel) and SN (lower panel) during the time period from

January 1965 to March 2009, covering the solar cycles 20–

23. As the figure shows, the temporal evolution of GSF ob-

viously differs from that of SN, indicating that they exhibit

different features.

2.2 Methods of Analysis

2.2.1 Ensemble empirical mode decomposition

Contrary to the traditional data decomposing techniques,

the empirical mode decomposition (EMD) is an empiri-

cal, intuitive, and adaptive method, without requiring any

predetermined basis functions. This time-frequency analy-

sis method was first proposed by Huang et al. (1998) and

has been applied in many research fields. For solar physics

1 ftp://ftp.ngdc.noaa.gov/STP/SGD/sgdpdf/

Number_of_Solar_Flares.pdf
2 http://www.sidc.be/silso/datafiles
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Fig. 1 Monthly counts of grouped solar flare (upper panel) and sunspot number (lower panel) during the time interval from January

1965 to March 2009.

studies, Li et al. (2012a) applied it to decompose the so-

lar constant into three components: the rotation signal, the

annual-variation, and the inter-solar-cycle signal; to study

the periodic components of polar faculae and coronal green

line intensity, Deng et al. (2014) and Deng et al. (2015)

used the EMD to reveal the long-term temporal variation

of solar time series; Xiang & Qu (2016) used it to extract

the intrinsic mode functions (IMFs) of the solar mean mag-

netic field observed at the Wilcox Solar Observatory, and

they then studied the relation of these IMFs with other so-

lar activity indicators.

The EMD is usually applied to decompose a signal

x(t) into a series of mono-component contributions des-

ignated as IMF and a secular trend (or a constant), namely:

x(t) =

n∑

i=1

si(t) + rn , (1)

where rn is the residue (either a trend or a constant) after

the n IMFs are extracted. Generally speaking, the first IMF

s1 contains the shortest periodic scale of the original sig-

nal. For an IMF, it should satisfy two conditions: (1) in the

whole data set, the number of extrema and the number of

zero crossings must either equal or differ at most by one;

and (2) at any point, the mean value of the upper envelope

and lower envelope is zero (Deng et al. 2013a; Qu et al.

2015; Gao 2017).

The major drawbacks of the EMD is the frequent ap-

pearance of mode mixing, which is defined as a single IMF

either consisting of signals of widely disparate scales or

a signal of a similar scale residing in different IMFs. To

deal with the mode mixing problem, a noise-assisted data

analysis method called the ensemble EMD (EEMD) is pro-

posed by Wu & Huang (2011). The EEMD, which defines

the true IMFs as the mean of an ensemble of trials, each

consisting of the signal plus a white noise of finite ampli-

tude. This technique is based on the insight gleaned from

statistical studies of the inherent properties of white noise,

which indicated that it is inspired by the noise-added anal-

ysis initiated by Wu & Huang (2004). In our analysis, this

powerful approach is applied to decompose the solar time

series.

2.2.2 Cross-recurrence plot

In the last three decades, the technique of recurrence plot

(RP) has been considered as a method to describe the com-

plex dynamics of the nonlinear and non-stationary systems

(Eckmann et al. 1987). An RP is a representation of re-

current states of a dynamical system in its m-dimensional

phase space (Marwan et al. 2007). From a mathematic

point of view, it is a pairwise test of all phase space vectors

xi (i = 1, . . . , N, x ∈ R
m) among each other, whether or

not they are close:

Ri,j = Θ (ε − d (xi, xj)) , (2)

where Θ(·) is the Heaviside function, E is a threshold for

proximity, and the closeness d (xi, xj) could be measured
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in different ways by using spatial distance or local rank

order (Marwan et al. 2009).

To determine the dependencies between two different

systems, the cross-recurrence plot (CRP) is introduced and

can be considered as a bivariate extension of the RP (Zbilut

et al. 1998). An important advantage of the CRP is that it

could be used to reveal the local differences of the dynam-

ical evolution of close trajectory segments, represented by

bowed lines (Marwan & Kurths 2002). A time dilatation

or time compression of trajectories leads to a distortion of

the diagonal lines, showing the inner relationship between

the slope of RP lines and local temporal transformations

(Marwan et al. 2007). When the two systems are different,

the main black diagonal will become somewhat disrupted

and is named as line of synchronisation (LOS). Therefore,

the LOS allows us to find the phase shift between two time

series (Deng et al. 2017).

3 STATISTICAL ANALYSIS RESULTS

3.1 Periodic Variation of GSF and SN

For the EEMD method, the number of ensemble and the

noise amplitude are the two parameters that are needed to

be prescribed. As pointed out by Wu & Huang (2011), an

ensemble number of a few hundred could bring out a good

result, and the remaining noise would lead to only less than

a fraction of 1% of error if the added noise has an ampli-

tude that is a fraction of the standard deviation of the orig-

inal time series. In our analysis, the number of ensemble

is 100, and the added noise amplitude is 0.2 times of the

standard deviation of the original data.

Because the EEMD method is a powerful algorithm

to isolate signals with specific timescales in a given time

series produced by different underlying physics (Li et al.

2012b; Gao et al. 2017), it is thus applied to extracted the

IMFs of GSF and SN data sets. The decomposed results of

GSF and SN, respectively, are shown in Figures 2 and 3.

From these two figures, one can easily see that both data

sets are decomposed into eight IMFs and a secular trend.

Obviously, the extracted IMFs of GSF and SN have

time-dependent amplitudes and differ from pure sinusoidal

functions. Actually, they are the intrinsic fluctuations de-

composed directly from the time series using the shift-

ing process and are pre-estimated functions. However,

the IMFs capture the oscillations of the time series even

though the data set is not-stationary and nonlinear. For ex-

ample, the 11-year Schwabe cycle is clearly shown as the

fifth extracted IMF in Figures 2 and 3.

Subsequently, to calculate the average periodicity and

the uncertainty of each IMF for GSF and SN, the statistical

significance test method proposed by Wu & Huang (2004)

is applied. In this work, we selected two confidence-limit

Table 1 The average periodicities (in years) and the uncertainties
of IMFs, which are extracted from GSF and SN, respectively.

grouped solar flare sunspot number

1 0.2405±0.0032 0.2405±0.0035

2 0.5145±0.0148 0.5206±0.0169

3 0.9219±0.0300 1.0536±0.0219

4 2.5731±0.1775 3.1350±0.5624

5 10.069±0.4102 11.698±0.4169

6 14.865±0.6325 17.221±1.8170

7 39.477±5.3529 46.484±4.7843

levels: 95% and 99%. Namely, the IMFs whose energy

level lies above the spread lines, for the white noise, are

statistically significant at 95 and 99 percent confidence lev-

els. The uncertainty in the average periodicity is calculated

from the standard errors (σ/n1/2, where σ is the standard

deviation and n is the number of data points).

Figure 4 displays that for both GSF and SN, IMF1,

IMF4, IMF5, and IMF6 are statistically significant at the

99% confidence level, and the other IMFs are below the

95% confidence level. Here, the periodicities those are be-

low the 95% confidence level are not discussed, we only

analyzed IMF1, IMF4, IMF5, and IMF6. The average pe-

riodicities and the uncertainties of each IMF for GSF and

SN are collected in Table 1. As shown in Figure 4 and

Table 1, the periodicity (0.2405 year, about 87.7 days) of

IMF1 for both data sets is inferred to be three multiple har-

monics of 29 days, which is approximately the periodicity

of the differential rotation periodicity of the Sun (Xiang

et al. 2014). The average periodicity of IMF4 for each

data set is related to the typical timescale between 1 and

4 years, one is 2.5731±0.1775 years, and the other one is

3.1350±0.5624 years, they could be considered as the so-

lar quasi-biennial oscillation (QBO). The physical origin

of solar QBO may be related to the dynamic processes in

the solar tachocline, although it is not yet fully understood

(Bazilevskaya et al. 2014). The IMF5 values of GSF and

SN should be the most prominent periodicities: the 11-year

solar activity cycle, the so-called eleven-year Schwabe cy-

cle (ESC). The periods of IMF6 are 14.865 years for GSF

and 17.221 years for SN, respectively, and they are about

1.5 times (1.5×11 years=16.5 years) as long as the 11-year

Schwabe cycle. Therefore, the significant periodicities of

GSF and SN, which are above the 99% confidence level,

are connected with the differential rotation periodicity, the

quasi-biennial oscillation, and the 11-year Schwabe cycle.

3.2 Phase Relationship between GSF and SN

Although the previous studies have shown that solar flare

activity lags behind the sunspot number (or area) with sev-

eral to tens of months, these studies did not consider the

different periodic scales that are responsible for the phase
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Fig. 2 The IMFs 1–8 and the trend of GSF generated by the EEMD method (with the ensemble size of 100).

difference. Here, two periodic scales are separately stud-

ied the phase relationship between GSF and SN, one is

the QBO, and the other one is the ESC. To better under-

stand their phase relationship, the cross-correlation anal-

ysis method is first used, and then the CRP technique is

applied.

The upper panels of Figure 5 show the temporal vari-

ations of QBO (upper-left) and ESC (upper-right) signals

of GSF and SN, respectively. From this figure one can see

that their variabilities are not completely in phase, imply-

ing that they should be asynchronous in the given periodic

scale. The lower panels of Figure 5 display the results of

the cross-correlation analysis of QBO (lower-left) and ESC

(lower-right) signals of GSF and SN with the phase shifts

from –120 to 120 months. The abscissa implies the phase

lag of GSF with respect to SN along the calendar-time axis,

with the negative values representing the backward shifts.

In our analysis, the phase lags are only considered between

–120 and 120 months, so all of the local peaks are above

the 95% confidence levels (shown by the dashed lines).

For the QBO signal, the correlation coefficient is 1

when there is no phase shift, implying that they are highly

positive correlation. When the phase shifts are –87, –41,

41, and 87 months, the values of the correlation coeffi-

cient arrive at local maxima. The average interval between

the two neighboring local maxima is 43.5±2.9 months

(3.63±0.24 years). When the phase lags are –115, –67,

−20, 20, 67, and 115 months, the values of the corre-

lation coefficient reach local minima. The average inter-

val between the two neighboring local minima is 46±3.4

months (3.83±0.28 years). For the ESC signal, the situa-

tion is very simple. Two signals are highly positive correla-

tion, because the correlation coefficient is 1 when there is

no phase shift. When the phase lags are –63 and 63 months,
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Fig. 3 The IMFs 1–8 and the trend of SN generated by the EEMD method (with the ensemble size of 100).
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Fig. 5 Upper-left panel: temporal variation of QBO signal of GSF (solid line) and SN (dashed line). Upper-right panel: temporal

variation of ESC signal of GSF (solid line) and SN (dashed line). Lower-left panel: the cross-correlation analysis results of the QBO

signal between GSF and SN, and the dashed lines are the 95% confidence levels. Lower-right panel: the cross-correlation analysis

results of the ESC signal between GSF and SN, and the dashed lines are the 95% confidence levels.

the values of the correlation coefficient arrive at local min-

ima, and the interval between these two neighboring local

minima is 126 months (10.5 years).

Based on the cross-correlation analysis, both of the

QBO and the ESC signal between GSF and SN are highly

positive correlation. However, this method is usually used

to measure the long-term variation between different so-

lar activity indicators, causing an averaging of the property

being measured, as pointed out by Deng et al. (2013c). To

compare the timescales of the two data series on a point-

by-point basis, another useful tool, the so-called CRP ap-

proach can be used. In our analysis, we also apply this

powerful technique to reveal their phase relationship for

the ESC signal.

The most important advantage of the CRP approach is

that the local dependency described by bowed lines of two

data sets can be determined and estimated. To construct the

CRP pattern between GSF and SN for the ESC signal, the

embedding dimension of three, which was calculated by

many authors, is used. Fox example, Letellier et al. (2006)

studied the dynamical behavior of sunspot activity by the

nonlinear theory, and found that an embedding dimension

equal to three is sufficient to reveal its dynamic struc-

ture. To investigate the nonlinear dynamical behavior of

the polar faculae and sunspot activity for the time interval

from 1951 August to 1998 December, Deng et al. (2016a)

used several nonlinear time series analysis approaches, and

found that both the high- and the low-latitude solar activ-

ity are governed by a three-dimensional chaotic attractor.

Another important parameter for constructing the CRP pat-

tern is the time delay, which was estimated to be varying

from 29 to 31 when different indicators used (Deng et al.

2016a). Here, this value of 30 is used in our analysis. The

left panel of Figure 6 displays the CRP pattern between

GSF and SN for the ESC signal, with the green dashed

line and the red solid line showing the main diagonal and
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Fig. 6 Left panel: the CRP pattern between GSF and SN for the ESC signal, the green dashed line and the red solid line are the main

diagonal and the LOS, respectively. Right panel: the LOS, which is used to reveal the local phase difference, extracted from the CRP

pattern.

the LOS, respectively. Here the LOS could be applied to

recognize which time series leads or lags in phase. From

this panel, one can easily see that the LOS lies close to

the main diagonal, but it still has some deflection from the

main diagonal at many data points. We extracted the LOS

from the CRP pattern, and showed it in the right panel of

Figure 6. If the LOS is greater (smaller) than zero, the GSF

will lead (lag) the SN in phase. We found that most of the

LOS values are smaller than zero, and the average of all

LOS values is –7.8 months. That is, the ESC signal of GSF

lags in phase with 7.8 months during the considered time

interval. Our analysis result is agreement and further en-

hances the results obtained by previous studies.

For the QBO signal, we also studied their phase rela-

tionship by the CRP technique, but no such regularity is

found. Therefore, we can arrive at a conclusion that the

systematic phase delays between GSF and SN originate

from the inter-solar-cycle signal (the so-called ESC sig-

nal).

4 DISCUSSION

With the data sets of GSF and SN for the time interval

from January 1965 to March 2009, their periodic varia-

tion and phase relationship were studied by two nonlinear

time-frequency analysis techniques. First, the time series

of GSF and SN were decomposed into eight IMFs and a

trend through EEMD technique. Second, the significant pe-

riodicities of the first seven IMFs were studied by the sig-

nificance test method. Finally, the CRP approach is applied

to reveal their phase relationship at different timescales.

Based on the EEMD analysis, the extracted IMFs of

both GSF and SN have time-dependent amplitudes and dif-

fer from pure sinusoidal functions. Furthermore, the sig-

nificant periodicities of both GSF and SN, those are above

the 99% confidence level, are connected with the differ-

ential rotation periodicity, the QBO signal, and the ESC

signal. However, the specific values of these periodicities

are not absolutely identical. From the CRP analysis, it is

found that the ESC signal of GSF lags behind (the LOS

values smaller than zero) that of SN with an average value

of 7.8 months during the considered time interval, but for

the QBO signal, no such systematic regularity was found.

That leads us to conclude that the systematic phase delays

between GSF and SN originate from the ESC signal.

There is no doubt that both GSF and SN have simi-

lar quasi-periodic features, because they have intrinsic link

with the solar magnetic field. However, they are related

in various ways to different aspects of magnetic processes

taking place on the Sun (one is in the photosphere, and
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the other one is in the corona), so their long-term varia-

tions differ in fine details. Sammis et al. (2000) studied the

relationship between sunspots and large flares, and found

that there is a general trend for large regions to produce

large flares, but it is less significant than the dependence

on magnetic class. Eren et al. (2017) analyzed different

types (C, M, and X classes) of X-ray solar flares occurring

in sunspot groups (a total of 4262 active regions) for the

time period 1996–2014, and found that large and complex

sunspot groups have the flare-production potential about

eight times higher than the small and simple active regions.

To understand the periodic variations and distributions of

solar flares with the sunspot group numbers between 1996

July and 2016 December, Oloketuyi et al. (2019) studied

the periodicities and distributions of the solar soft X-ray

flares with B, C, M, and X-class. They found that the dif-

ference in periodic variations of the flare classes could be

attributed to the magnetic flux system of sunspot groups

producing them. Kilcik et al. (2011) analyzed the solar ac-

tivity cycle by focusing on time variations of the number of

sunspot groups as a function of their modified Zurich class,

and found that large sunspot groups appear to reach their

maximum in the middle of the solar cycle (phases 0.45–

0.5), while the international sunspot numbers and the small

sunspot groups generally peak much earlier (phases 0.29–

0.35). We infer that this is also a possible reason for ex-

plaining the phase different (tens of months) between flare

activity and sunspot activity, which has been confirmed by

Deng et al. (2013b) who studied the relative phase analyses

of 10.7 cm solar radio flux with sunspot numbers.

In conclusion, in this paper we showed that GSF is de-

layed with regard to SN with an average of 7.8 months for

the period 1965–2009. The obtained phase lag is smaller

than the characteristic value (in the range between 10 and

15 months) derived by Temmer et al. (2003). To understand

the phase relationship between GSF and SN at different

timescales, the energy balance in the flaring solar corona

should be considered. From a model of the dynamic en-

ergy balance in the corona over the solar cycle, Wheatland

& Litvinenko (2001) found that the expected global coro-

nal response time (the time for flares to remove available

coronal energy) is 8.8 months. A solar flare is a sudden re-

lease of magnetic energy that was stored in the corona, and

the flare rate is believed to increase with the stored energy.

The available magnetic energy is expected to vary cycli-

cally with the rate of energy supply to the corona, but with

a phase delay with respect to the variation in energy supply.

Therefore, our analysis result is consistent with and fur-

ther enhances the numerical model proposed by Wheatland

& Litvinenko (2001), and may provide evidence about the

storage of magnetic energy in the corona.
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