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Abstract The form of timing residuals due to errors in pulsar spin period P and its derivativeṖ , in
positions, as well as in proper motions, has been well presented for decades in the literature. However,
the residual patterns due to errors in the pulsar acceleration have not been reported previously, while a
pulsar in the Galaxy or a globular cluster (GC) will be unavoidably accelerated. The coupling effect of
the pulsar transverse acceleration and the Römer delay on timing residuals is simulated in this work. The
results demonstrate that the residuals due to the effect canbe identified by the oscillation envelopes of the
residuals. It is also shown that the amplitude of the residuals due to the effect is usually relatively small,
however, it may probably be observable for pulsars distributed in the vicinity of the core of a nearby GC.
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1 INTRODUCTION

Pulsars are very stable rotators with rapid radio pulses.
Pulsar timing analysis is based on the measurement of the
precise pulse times of arrival (TOAs) at the telescope. The
remarkable TOAs period stability opens up a wide range
of potential applications, e.g. establishing a pulsar-based
time standard (Kaspi et al. 1994; Hobbs et al. 2012),
detecting nanohertz-frequency gravitational waves (GWs)
(e.g. Jenet et al. 2004; Sesana et al. 2008; Verbiest et al.
2009; Lee et al. 2011; NANOGrav Collaboration et al.
2015; Desvignes et al. 2016; Reardon et al. 2016;
Burke-Spolaor et al. 2019), developing pulsar-based
navigation techniques (Sheikh et al. 2006; Deng et al.
2013; Zheng et al. 2019), improving the solar system
ephemeris (e.g.Champion et al. 2010), studying various
scientific targets such as the interstellar medium and the
solar wind (You et al. 2007, 2012), etc. Using the TEMPO1

or TEMPO22 programs, the TOAs can be transformed to
the solar system barycenter which approximates an inertial
frame. The spin period and period derivatives, the position
and the proper motion of the pulsar can also be obtained
by fitting the TOAs to a pulsar timing model (Hobbs et al.
2006; Edwards et al. 2006). The differences between the
observed and the model predicted TOAs are known as
timing residuals.

1 http://www.pulsar.princeton.edu/tempo
2 http://www.atnf.csiro.au/research/pulsar/

tempo2

Fitting errors in the parameters of the timing model
will be revealed by systematic trends in the timing
residuals. The patterns of these residuals due to various
errors in the timing model, such as in pulsar spin period
P and its derivativeṖ , in positions and in proper motions
have been well presented for decades in the literature
(Lyne & Graham-Smith 2012). It was also noticed
that the fitted period derivative may be different from
its intrinsic value if the pulsar is accelerating in the
gravitational field of the Galaxy or a globular cluster (GC)
(Phinney 1992, 1993). Some authors further studied the
gravitational effects of the dark matter halo on pulsar
timing (Schneider 1990; Larchenkova & Doroshenko
1995; Fargion & Conversano 1996; Seto & Cooray
2007; Siegel et al. 2007; Baghram et al. 2011;
Bramante & Linden 2014; Nomura et al. 2020). Though
the magnitudes of the timing parameters of the accelerating
pulsar have been widely investigated, the residual patterns
for errors in pulsar acceleration have not been reported
previously.Phinney(1992, 1993) showed that if a pulsar
experiences a component of accelerational along the line
of sight, the observed period derivative is generally related
to the intrinsic value byṖobs = Ṗint + (al/c)P . Thus
one may infer that its residual pattern should be identical
with that due to an error in the spin period derivativeṖ .
However, up to date, the residual pattern due to an error in
the transverse acceleration of a pulsar is still unknown.

Edwards et al.(2006) estimated the magnitude of the
acceleration terms, for both the Galactic gravitational

http://www.pulsar.princeton.edu/tempo
http://www.atnf.csiro.au/research/pulsar/tempo2
http://www.atnf.csiro.au/research/pulsar/tempo2
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acceleration (a ∼ 10−11 m s−2) and the greater
acceleration in GCs (a ∼ 10−8 m s−2), for all pulsars in
the Australia Telescope National Facility (ATNF) Pulsar
Catalogue3 (Manchester et al. 2005). They affirmed that
only the radial acceleration term and Shklovskii term
involvinga exceed 1 nanosecond (ns) for a 20-yr observing
campaign. Thus, all the other acceleration terms are
neglected in TEMPO2 (see section 2.3 of Edwards et al.
2006). However, as we demonstrate later (in subsection
2.1), the amplitudes, due to the coupling effect of the
pulsar transverse acceleration and the Römer delay, could
be clearly larger than the maximum allowable systematic
error of the TEMPO (∼ 100 ns) and TEMPO2 (∼ 1 ns)
programs, and may also be detectable for pulsars in the
nearest GCs, and thus need more investigations.

In this work, we present a realistic simulation of the
residual pattern for a pulsar with transverse acceleration,
and its possible applications are also discussed. The
organization of this paper is as follows. The magnitude
of the coupling effect and its influences on pulsar timing
parameters are described in Section2. The simulations and
results are detailed in Section3. Finally, we summarize the
main results in Section4.

2 METHODS

2.1 The Coupling Effect of the Pulsar Transverse
Acceleration and the Römer Delay

The issue is essentially attributed to the geometric propaga-
tion delay (Edwards et al. 2006). The displacement vector
(R) from the observatory to an isolated pulsar is the sum
of the position of the pulsar (R0), the displacement of the
pulsar (k) in the time elapsed since epochtpos and the
barycentric position of the observatory (r)

R = R0 + k − r = R0 + k‖ − r‖ + k⊥ − r⊥. (1)

where the radial and transverse components are denoted by
subscripts, i.e.i‖ = i ·R0/|R0| andi⊥ = i− i‖R0/|R0|,
andi is an arbitrary vector. Neglecting terms of the order
of |R0|

−3, the following relation is obtained

|R| = |R0|+ k‖ − r‖ +
1

|R0|
(
|k⊥|

2

2
+

|r⊥|
2

2
− k⊥ · r⊥)

(1 −
k‖

|R0|
+

r‖

|R0|
).

(2)
The terms in the first pair of parentheses are the Shklovskii
effect, annual parallax and annual proper motion. The
displacementk may be broken into the first and second
derivatives (Edwards et al. 2006)

k = µ|R0|(t
psr − tpos) +

a

2
(tpsr − tpos)

2, (3)

3 https://www.atnf.csiro.au/research/pulsar/
psrcat/

whereµ is the velocity divided by the distance,a is the
acceleration vector andtpsr is the proper time measured at
the pulsar.

Edwards et al.(2006) assumed thatk = µ|R0|(t
psr −

tpos), and except for radial acceleration term and
Shklovskii term, all the other acceleration terms are
neglected in TEMPO2. Consequently, TEMPO2 does
not include the coupling effect of the pulsar transverse
acceleration and the R̈omer delay, i.e. for the annual proper
motion term of Equation (2),

k⊥ · r⊥

|R0|
= µ⊥ · r⊥(t

psr − tpos)+
a⊥ · r⊥

2|R0|
(tpsr − tpos)

2,

(4)
the second term on the right hand side is neglected (see
also equation 24 of Edwards et al. 2006). Thus, the
magnitude of the timing residual of the coupling effect can
be expressed as

∆′
R⊙ = −

a⊥ · r⊥

2|R0|c
(tpsr − tpos)

2, (5)

where c is the speed of light. If one takesa⊥ ∼ 5 ×
10−8m s−2, R0 ∼ 1 kpc andr⊥ ∼ 1 AU as an estimation
for the case of a pulsar in a GC, the amplitude of the
residual is about160 ns for a 20-yr observing campaign.

2.2 The Effects on Pulsar Timing Residuals

As described above, the coupling effect of the pulsar
transverse acceleration and the Römer delay is not
included in the timing model of TEMPO2. Applying
ecliptic coordinates (λ, β) and assuming a circular Earth
orbit that is centered on the Sun, the Römer time delay is
given by (Lyne & Graham-Smith 2012)

tR = t⊕ cos(ωt− λ) cos β, (6)

wheret⊕ ≃ 498.7 s is the light travel time from the Sun
to the Earth,ω ≃ 2.0 × 10−7 s−1 is the angular velocity
of the Earth in its orbit,λ andβ are the ecliptic longitude
and latitude of the pulsar respectively, andλ = −π/2 and
β = π/4 are assumed in the following calculations.

A neglected transverse accelerationa⊥ will induce
errors in the coordinates, i.e.δλ = [v⊥(t

psr − tpos) +
1
2
a⊥(t

psr − tpos)
2] sin ξ/d0 andδβ = [v⊥(t

psr − tpos) +
1
2
a⊥(t

psr − tpos)
2] cos ξ/d0, in whichv⊥ is the transverse

velocity,ξ (= π/4 is taken in the following calculations) is
the angle between the acceleration and the longitude line,
andd0 is the distance between the pulsar and the Earth.
The errors give rise to periodic timing errors

δtR = t⊕ sin[ω(tpsr − tpos)− λ] cosβδλ

− t⊕ cos[ω(tpsr − tpos)− λ] sinβδβ.
(7)

The corresponding error of a pulse phase isδφ = 2πνδtR,
in whichν is the rotation frequency of the pulsar.

https://www.atnf.csiro.au/research/pulsar/psrcat/
https://www.atnf.csiro.au/research/pulsar/psrcat/
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Fig. 1 The simulated timing residual due to the coupling
effect of the pulsar transverse acceleration and the Römer
delay. The transverse accelerationa⊥ = 5 × 10−8 ms−2

and the distanced0 = 1 kpc are adopted in the simulations.

3 SIMULATIONS

3.1 The Residual Pattern

We firstly develop a phenomenological spin-down model
to describe the pulse phase evolution, so that the model
can be a tool for simulating the TOA data. Assuming the
pure magnetic dipole radiation in vacuum is the braking
mechanism for a pulsar’s spin-down (Lorimer & Kramer
2004), the pulse phase evolution can be described as

φ̈(t) +
8π2B2R6 sin θ2

3c3I
φ̇(t)3 = 0, (8)

whereB is the strength of the dipole magnetic field at
the surface of the neutron star, andR (≃ 106 cm),
I (≃ 1045 g cm2) andθ (≃ π/2) are the radius, moment
of inertia and angle of magnetic inclination, respectively.
Solving Equation (8) and incorporating the coupling effect
into the phase evolution, one can get the theoretical phase
functionΦT(t) = φ(t) + δφ.

We take the moderate initial values ofP0 = 0.005 s

and Ṗ0 = 1.0 × 10−20 s s−1 for a millisecond pulsar
(MSP). The transverse accelerationa⊥ = 5× 10−8m s−2

is assumed for the gravitational field of the GC (Phinney
1993). We assume a certain time interval∆tint = 106 s
between each two nearby TOAs to simulate the observed
TOA series (Xie et al. 2015; Xie & Zhang 2019). Since
the rotational period is nearly constant, the pulsar spin
frequencyν, and its derivativeṡν and ν̈ can be obtained
by fitting the TOA series to third order (cubic term) of its
Taylor expansion over a time spanTs,

Φ(t) = Φ0+ ν(t− t0)+
1

2
ν̇(t− t0)

2 +
1

6
ν̈(t− t0)

3. (9)

The pulsar periodP = 1/ν and its derivativeṖ = −ν̇/ν2

are quoted in place ofν and ν̇ respectively. Here we are
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Fig. 2 The simulated timing residuals with three
oscillation modes and the transverse acceleration of a
pulsar.Upper panel: the residual in fitting the phase with
Eq. (9). Bottom panel: the residual in fitting the phase with
Eq. (11).

not concerned with the relativistic frame transformation
between observatory proper time and pulsar proper time,
thus t = tpsr and t0 = tpos are simply taken in the
simulation. A timing residual is conventionally defined as

(Residual) ≡
ΦT(t)− Φ(t)

2πν
. (10)

The results are displayed in Figure1. One can clearly see
the residual pattern with oscillation period of one year.The
oscillation envelope of the residual due to velocity error
consists of two straight lines, while two parabolic curves
correspond to the acceleration origin. This characteristic
may be utilized to identify the transverse acceleration of
a pulsar. The root-mean-square (rms) of the residual due
to the effect is about100 ns, which is consistent with the
estimate of Equation (5). Considering the larger distance
d0 for most of the GCs, the rms of practical residuals
(inversely proportional tod0) would be much smaller, and
probably be drowned by other timing residuals. Hence the
pattern formed by the residuals has not been reported.

The pulsar transverse acceleration cannot be well
determined if the oscillation is drowned by other timing
residuals. Based on the simulated envelopes of the residual
curves, we speculate that the pulse phase with the annual
effects may be characterized by

Φ(t) = Φ0 + ν(t− t0) +
1

2
ν̇(t− t0)

2 +
1

6
ν̈(t− t0)

3

+ ν̇′(t− t0)
2 cos[ω(t− t0) + λ′],

(11)
in which ν̇′ andλ′ are free parameters.ν̇′ is responsible
for the residual due to the coupling effect, andω is the
angular velocity of the Earth in its orbit. We perform again
the residual simulation with the same parameters, but fit the
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phase sequences with Equation (11). The magnitude of the
simulated residuals is fairly low (≪ 1 ns), which means the
effect can be described well with Equation (11), at least for
the case that the timing residuals are uncorrelated in pulsar
timing.

If the annual effect correlates with “red noises”, which
consist of low-frequency structures in timing residuals, it
may cause some errors in estimating the parameters of the
timing model and their uncertainties (Coles et al. 2011).
For this case, we firstly construct a phenomenological
model for the pulsar timing residual with multi-periodic
oscillations, and the pulse phase evolution can be rewritten
in the following form

φ̈+
8π2B2R6 sin θ2

3c3I
G(t)2φ̇3 = 0, (12)

in whichG(t) = 1+
N
∑

i=1

ki sin(2π
t

Ti

), andki andTi are the

magnitude and period for thei-th oscillation, respectively.
Then, we simulate the “red noises” for three oscillation
modes, and the period for two of them is about one year.
Thus in the simulations, the three oscillation modes with
k1 = k2 = k3 = 10−4, T1 = 0.9 yr, T2 = 1.1 yr
and T3 = 5.0 yr are adopted (seeZhang & Xie 2013;
Xie et al. 2015, for more details about the simulation). For
the annual effect, we also takea⊥ = 5× 10−8 ms−2. The
simulated residuals in fitting the phase with Equation (9)
and Equation (11) are shown in the upper and lower panels
of Figure2, respectively. By comparing the two residuals,
one can see that the annual effect of the transverse
acceleration is fully separated out by Equation (11), since
the curve in the bottom panel overlaps completely with the
residual curve for the same oscillation modes but not the
annual effect.

3.2 Residual Amplitudes of Pulsars in GCs

In the above simulations,d0 = 1 kpc and a⊥ = 5 ×
10−8 m s−2 are assumed. However in more practical cases,
distances for many GCs are usually& 5 kpc, thus inducing
residuals with amplitude of only tens of nanoseconds,
which is relatively small, even though these pulsars have
the highest timing precision (e.g.,Perera et al. 2019).
However, a pulsar’s transverse acceleration due to the GC’s
mean field differs from its location with respect to the
center of gravity (CoG) and the GC geometry.

We define the plane running through the CoG and
perpendicular to our line-of-sight asO, the core radius
of the GC asrc, the impact parameter for each pulsar
from the CoG asR′

⊥, the line-of-sight position going
perpendicularly throughO as l and the pulsar’s spherical
radiusr′ (=

√

R′2
⊥ + l2). Then the cluster acceleration felt

at any given radius out from the core can be written as
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Fig. 3 The amplitudes of timing residuals due to the
coupling effect of the pulsar transverse acceleration and
the R̈omer delay, for pulsars in a GC for 20-yr observing
campaign. Upper panel: the residual amplitude with
respect tol, andR′

⊥ = rc is taken in the calculation.
Bottom panel: the residual amplitude with respect toR′

⊥,
andl = rc is assumed.

(Prager et al. 2017)

ar(r
′) = −4πGρcr

3
cr

′−2[sinh−1(
r′

rc
)−

r′

rc
√

1 + (r′/rc)2
]

(13)
wherear(r′) is the mean-field acceleration andρc is the
core density. The King density profile which most strongly
sets the GC potential (King 1962),

ρ(r′) ≃ ρc[1 + (r′/rc)
2]−

3

2 , (14)

is included in the model. We get the transverse acceleration
a⊥ by projecting the accelerationar(r′) along the
transverse direction by a factor ofR′

⊥/r
′. Substituting

typical values ofρc = 106 M⊙ pc−3 andd0 = 5 kpc for
the GC, and using Equation (5), we obtain the amplitude of
the residuals for variousl or R′

⊥, as depicted in Figure3.
As expected, the amplitudes are very sensitive torc, and
actually proportional to the mass of the core. The results
also imply that the residuals due to the coupling effect may
probably be observed, particularly for those pulsars which
are distributed in the vicinity of big cores and located near
theO plane.

The amplitudes of the residuals presented in Figure1
and Figure3 do not depend on the initial values of pulsar
spin parameters (e.g.P and Ṗ ), and thus are universal
for different pulsars. The simulations for MSPs or normal
pulsars in the Galaxy withgG = 10−10 m s−2 are also
performed, and we found that the acceleration is small and
has little influence on pulsar timing.



Y. Xie & L.-C. Wang: Residual due to Pulsar Transverse Acceleration 191–5

4 SUMMARY

We simulated the timing residuals of a pulsar due to
the coupling effect of the transverse acceleration and
the R̈omer delay, for a 20-yr observing campaign. It
is found that the envelopes of the residuals due to the
pulsar acceleration are two parabolic curves, which may
be used to identify the transverse acceleration of a pulsar.
Even if drowned by other timing residuals, they can also
be modeled well and separated out with Equation (11).
However, the annual effect on pulsar timing is usually
relatively small: for pulsars in the Galactic field, the
acceleration due to the Galactic potential is of the order of
aboutgG = 10−10 ms−2, which induces timing residual
< 1 ns. Only for these pulsars in GCs, this effect is
possibly needed. We calculated the amplitudes for pulsars
distributed around the cores of GCs, and the results imply
that the coupling effect may probably be observed for
pulsars located near theO plane in close clusters. We
expect to gain more details on the timing residuals and
a much deeper understanding of GC dynamics applying
future larger samples of MSPs with higher precision data,
to be acquired by China’s Five-hundred-meter Aperture
Spherical radio-Telescope (FAST) and the future Square
Kilometre Array (SKA).
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