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Abstract Radioheliograph images are essential for the study of solar short term activities and long term
variations, while the continuity and granularity of radioheliograph data are not so ideal, due to the short
visible time of the Sun and the complex electron-magnetic environment near the ground-based radio
telescope. In this work, we develop a multi-channel input single-channel output neural network, which
can generate radioheliograph image in microwave band from the Extreme Ultra-violet (EUV) observation
of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The
neural network is trained with nearly 8 years of data of Nobeyama Radioheliograph (NoRH) at 17 GHz
and SDO/AIA from January 2011 to September 2018. The generated radioheliograph image is in good
consistency with the well-calibrated NoRH observation. SDO/AIA provides solar atmosphere images in
multiple EUV wavelengths every 12 seconds from space, so the present model can fill the vacancy of limited
observation time of microwave radioheliograph, and support further study of the relationship between the
microwave and EUV emission.
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1 INTRODUCTION

Microwave radioheliograph data are essential for the
diagnosis of the solar atmosphere and the surveillance
of solar activity (Shibasaki 2013; Huang & Nakajima
2009; Mei et al. 2017; Tan et al. 2016). The quality
and the continuity of the radioheliograph data is not
as good as optical observation. The optical devices, for
example, the Extreme Ultra-violet (EUV) observatory,
can be launched into space, because of relatively small
aperture comparing to the radioheliograph array (Lemen
et al. 2011; Sandel et al. 2000; Wülser et al. 2004). The
spacecraft can provide more continuous observation for
the Sun, compared with the ground-based observatory
which cannot observe the Sun for all-time due to the
limited visible duration of the Sun. Moreover, the ground-
based radio devices are more liable to be affected by the
complex electromagnetic environment, which will cause
calibration problems. In this work, we intend to develop a
machine-learning program which can learn the patterns of
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solar EUV images and the well-calibrated radioheliograph
images, we then produce the radioheliograph image from
EUV data to provide full-time microwave heliograph.

Conventionally, the modeling and reconstruction of
radioheliograph image from EUV observation are based on
the differential emission measure (DEM) method. Both the
EUV radiation and radio emission come from the thermal
electrons in the corona during non-flaring time. The corona
electron density (ne) and temperature (Te) distribution can
be obtained by DEM inversion of the multi-channel EUV
emission (Pallavicini et al. 1981; Cheng et al. 2012), then
the radio brightness temperature can be derived from ne

and Te distribution with a given emission mechanism.
Zhang et al. (2001) used thermal bremsstrahlung emission
mechanism to predict the microwave heliograph image
with the EUV data of EIT (Extreme-ultraviolet Imaging
Telescope) on-board SOHO (Solar and Heliospheric
Observatory), and find that the predicted radio flux is
systematically larger than that observed by a factor of
2.0. Meanwhile, Alissandrakis et al. (2019) modeled
the sunspot-associated microwave emission based on
the gyro-resonance emission mechanism with potential
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extrapolations of the photospheric magnetic field, in
which the DEM was inverted from the EUV image of
Atmospheric Imaging Assembly (AIA) on-board the Solar
Dynamics Observatory (SDO) (Lemen et al. 2011). More
recently, Li et al. (2020) find that the predicted radio flux
is closer to the observations in the case that includes the
contribution of plasma with temperatures above 3 MK than
in the case of only involving low temperature plasma, and
confirmed the thermal origin of the quiet corona radio
emission. The predicted value of the DEM method depends
on the physics model, including the derivation of ne, Te and
magnetic field, and the emission mechanism.

The observed radio flux in the line of sight is a
convoluted result of the wave excitation and the wave
propagation process (Shibasaki et al. 2011; Tan et al.
2015). The brightness temperature at a given position
is affected by both local conditions and the large-scale
coronal structures. This creates some difficulty to the
modeling of radio emission from EUV data with a pixel
to pixel translation (such as in the DEM method), while
the machine-learning method with a convolutional neural
network (CNN) has the advantage of connecting areas to
pixels.

The machine-learning method has recently been
applied to solar physics (Bobra & Mason 2019). Ma et al.
(2017) used a neural network based on the multimodal
learning architecture to classify the existence of the radio
burst. Li & Zhu (2013) used a multi-layer model to predict
the solar flare based on sequential sunspot data. Xu et al.
(2019) used long short term memory (LSTM) network to
classify multiple types of the solar radio spectrum. As a
large set of image data, SDO data is suitable for various
purposes of machine learning work. Neural networks like
CNN and the generative adversarial networks (GAN) can
be used for data generation and competition. For examples,
Szenicer et al. (2019) used a combined CNN to produce
the EUV irradiance map from SDO/AIA image, Kim
et al. (2019) applied GAN to generate the magnet flux
distribution of the Sun from SDO/AIA image, and Xu et al.
(2020) used the GAN for the de-convolution of the solar
radio image.

In this work, we proposed a model for radiohelio-
graph reconstruction from SDO/AIA multi-channel EUV
images, using the machine-learning method based on a
multi-channel input single-channel output neural network.
In Section 2, the dataset, the architecture and training
process of the neural network is elaborated. In Section 3,
we present the statistical results and some representative
cases to show the reliability of the trained neural network.
In Section 4, we summarize the result, and discuss the
meaning of the result and further usage of this method.

2 METHOD

2.1 Dataset

In this work, the microwave image data we use
is from the Nobeyama Radioheliograph (https:
//solar.nro.nao.ac.jp/norh/html/daily/ ,
NoRH) (Nakajima et al. 1994). The EUV image
data we use is provided by SDO/AIA (Lemen
et al. 2011), which is downloaded with sunpy
(Mumford et al. 2015) from Virtual Solar Observatory
(https://sdac.virtualsolar.org/cgi/search ,
VSO). The dataset we used is the 17 GHz radioheliograph
image at noon of Nobeyama local time from January
2011 to September 2018, and the SDO/AIA image of
five wavelengths: 171, 193, 211, 304, 335 Å for the
corresponding time. The original size of the EUV image
from SDO/AIA is (4096, 4096) pixels, while the original
size of radio heliograph image from NoRH is (512, 512)
pixels. For the convenience of further training, the original
data is feed to the following prepossessing steps:

1. Shift the solar center to the center of the image.
2. Crop the image to 1.1 times of the solar radius.
3. Re-sample the EUV image into the size of (512, 512)

pixels.
4. Modify the NaN (not a number) points and minus

values in the data to zero.
5. Normalize the brightness temperature with 104 K to

avoid the byte overflow of float-type number during
the training.

6. Save as Numpy form (.npy) file format for faster load.
7. Manually select and mark the corrupted or not well-

calibrated data frames, which would be sheltered from
the training.

The final size of the total dataset is about 18 GB with
2622 data frames, and the data is stored in RAMDisk
to accelerate the data loading in the training and testing
process.

2.2 Neural Network Architecture

We used a multi-input single-output four level U-Net
(abbreviated as MISO-UNet) to produce the microwave
heliograph data. The detailed architecture is shown in
Figure 1. This MISO-UNet has 3.35 × 106 parameters,
the size of the trained parameter-set file is 12.79 MB. The
loss-function is the Mean Square Error (MSE) between the
observed NoRH image (labeled as OBS) and the neural
network generated image (labeled as GEN):

Loss =

∑
i(IOBS,i − IGEN,i)2

Npix
, (1)

where IOBS,i and IGEN,i are the normalized brightness
temperature of the ith pixel in the observed image and

https://solar.nro.nao.ac.jp/norh/html/daily/
https://solar.nro.nao.ac.jp/norh/html/daily/
https://sdac.virtualsolar.org/cgi/search
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Fig. 1 The architecture of the neural network, where the arrows represent the data flow direction, the white blocks
represent the nodes in the data flow, and the size of each node is marked beneath the block.

the generated image, respectively. The value of brightness
temperature is normalized with 104 K. Npix is the total
number of pixel in the training data. The neural network is
implemented with PyTorch (Paszke et al. 2017, 2019), an
open source machine learning library. The source code of
the data processing and neural network is available online1.

2.3 Training

We randomly selected out 235 frames as the test set, which
are sheltered from the training process. The rest 2387
frames of EUV-radio data is used for the training. The
training of 8000 epochs took 94 hours on a single node
with four Nvidia Titan Xp GPUs.

The image pattern of radio heliograph is highly related
to observation time or the sequence index. There are
more active regions at solar high year, while the radio
heliograph of solar low year is more similar to pure
disk. Consequently, the sequence index of the data frame
also directly contains the information of radio heliograph
image. For a better learning of the relation between EUV
and radio heliograph, we need to intermingle the dataset,
so that the neural network is not fed with the information
of data order. During the training process, the data frames
are shuffled in each epoch.

The converged value of the loss-function is about
7 × 10−4, corresponding to about 300 K in brightness
temperature.

3 RESULTS

After the training process, the trained parameter-set can be
loaded into the MISO-UNet model for the production of
radio heliograph image. We use the data frames from the
test set to verify the reliability of the trained model.

1 https://github.com/Pjer-zhang/NorhBot

It is found that the neural network generated image
is well consistent with the observed one. Figure 2 shows
three representative cases from the test-set as examples
for the comparison of the observed radio images and the
neural network generated ones in detail. From left to right,
the first column is a case in solar high year (Case 1),
where multiple active regions can be seen on the solar
surface. The second column represents a case in solar
low year (Case 2). The third column represents a case of
bad observation (Case 3), mainly from the radio-frequency
interference of the complex electromagnetic environments.

The linear fit result of Case 1 and Case 2 is close to
y = x, and the correlation value is close to 1.0. To exclude
the dark area outside the solar disk in NoRH observation,
we only consider the pixels with brightness temperature
greater than 1000 K in both GEN and OBS in the statistical
investigation. The results indicate that the flux intensity
of the generated image and the observed image are well
correlated except the observation is corrupt (as in Case 3
shown in the third column of Fig. 2). Moreover, from the
first case, we selected three regions to show the detailed
comparison of an active region, a quiet region, and a flare,
which are marked as blue, red, and green box in the first
column of Figure 2. Figure 3 shows the detailed zoom in
of the comparison. From the comparison of the GEN and
OBS of the quiet region, one can see regular spaced stripe
structures in OBS, which are not visible in GEN. For the
structure and shape of the active region, GEN and OBS
are generally consistent with each other. However, the flare
region is not well reconstructed by this method, and the
generated brightness temperature is much lower than the
observed value as shown in the third column of Figure 3.

Figure 4 shows the histogram distribution of the linear
fit slope a, the relative error (re), and the correlation
coefficient (cc) between GEN and OBS for the test data
set. It is found that ninety percent of the linear fit slope

https://github.com/Pjer-zhang/NorhBot
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Fig. 2 Three cases of comparing the observed image and neural network generated image and the corresponding statics.
These three cases are not included in the training dataset. The date-time of the image is marked on the top-right corner
of the image. The top row is the observed image, the middle row is the generated image using 5-channel EUV data.
The bottom row shows the correlation of the observed data and the generated data, where the x-axis is the observed
brightness temperature, the y-axis is the generated brightness temperature, the color indicates the number of pixels with
corresponding generated and observed brightness temperature, the red line marks the reference line of x equals y, the
black dashed line indicates the linear fit result y = ax + b. The linear fit result and the correlation between the observed
and generated flux are labeled in each panel of the bottom row.

falls in the range 0.80 < a < 1.02, with an average value
of 0.91. The average value of re is 0.09, and for 90% of
the test frames, re is less than 0.1. The average value of cc
is 0.94, and for 90% of the test frames, cc is above 0.91.
By inspecting every frame of the test cases, we find that
the frames with a < 0.8, cc < 0.9, or re > 0.1 are mostly
embedded with a flare-like bright region.

4 CONCLUSIONS AND DISCUSSION

This work proposed a model to reconstruct radioheliograph
image from EUV image with a machine learning method
based on MISO-UNet. The model generated radio image

is in good consistent with the NoRH observed image at
17 GHz, which indicates that the EUV emission and the
radio emission has a strong inner relation. We inspected the
image details of the generated images compared with the
observation. As shown in Figure 3, for quiet region there
are regular spaced strips in the observed image, which does
not appear in the generated images. We suppose the reason
is that, the regular strips in the observation may be due to
the instrumental artifacts, which is arbitrary for different
image. The training process learns the pattern between the
EUV and radioheliograph image, the arbitrary information
cannot be assimilated by the model. The structures of the
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Fig. 3 The zoom-in comparison of the observed and MISO-UNet generated image. These three columns from left to right
present the results for a quiet region, an active region, and a flare, respectively. These there regions are marked as blue,
red and green box in Fig. 2, respectively. Note that the color-scale is re-adjusted to show the difference.

active region are well reconstructed. The flux of the flare
region is not well reconstructed. On one hand, this is due to
the unbalanced sample distribution of the data-set, because
the flare is rare compared to the active region and quiet
Sun. On the other hand, the radio emission at flare time is
mainly produced by non-thermal electrons, while the non-
flare emission is coming from the thermal electrons. The
bad prediction result of the flare region may be improved
by including more data-frames with flare in the future
work. Comparing with the DEM method, we can have
higher precision of brightness temperature prediction with
the machine learning method. The correlation of machine
learning prediction is above 0.8 with an average value
of 0.94 for the test cases, and the linear fit for the flux
intensity of OBS and GEN is also much closer to y = x
than the DEM prediction results (Zhang et al. 2001; Li
et al. 2020). This may be partially due to the uncertainty of
the DEM inversion and the emission mechanism assumed
in the prediction. Either thermal bremsstrahlung emission
or gyro-resonance radiation is assumed in the modeling
with DEM method, while the quiet microwave emission is
a mixture of the two mechanisms (Shibasaki et al. 2011).

In addition, the DEM method of the radio flux
estimation is a pixel-to-pixel operation, the final brightness
temperature only considers the EUV flux of the pixel with
the same coordinate in the sky plane. While in the MISO-
UNet, the final brightness temperature value of any pixel

considers not only the influence of the pixel with the
same coordinate, but also the effects of surrounding large
scale structures. The large and small scale features of all
EUV channels spread though the neural network to the
final brightness temperature by convolution operations. In
fact, the observed radio flux is a convoluted results of the
wave excitation and propagation process. The brightness
temperature of a given position is affected by both local
conditions and the large-scale coronal structures, such as
coronal holes, loop systems, and streamers etc (Shibasaki
et al. 2011). It is important to consider the nearby
structures when deriving the observed radio emission of a
given point. The MISO-UNet is suitable for the prediction
of microwave emission map because it has the advantage
of connecting areas to pixels. However, it needs to note
that the machine learning method can only predict the
data of the trained frequency which is fed to the training
process, and the DEM method can calculate the brightness
temperature of the quiet Sun at different radio frequencies.

Finally, NoRH was shut down on 2020 March 31
after continuously observing the full Sun for about eight
hours every day in the past three decades. The trained
MISO-UNet can produce radio heliograph image when
SDO/AIA data is available. The present work is not only
helpful to correct the bad observation data of NoRH due
to electromagnetic interference and so on but may also
provide a virtual interferometric microwave observation
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Fig. 4 The histogram of the linear fit slope, the relative
error, and the correlation coefficient between GEN and
OBS for the test cases. The relative error is defined as
RMSE(IGEN, IOBS)/average(IOBS).

from SDO/AIA data in the future. This method is also
useful for the modeling and image reconstruction of radio
observation in other wavelengths. The results can support
further study of the relationship between the microwave
and EUV emission.
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