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Abstract We investigated the dependence of the parameters of the segments of spiral arms of the Galaxy
on the age of classical Cepheids. The catalog of Cepheids (Mel’nik et al.) was divided into two samples—
relatively young (P > 9d) and relatively old (P < 9d) objects. The parameters of the spiral structure were
determined both for two samples separately and jointly for the combination of two systems of segments
traced by young and old objects. For most of the segments, their parameters for young and old objects differ
significantly. Taking into account the difference between the two segment systems, we obtained the estimate
R0 equal to7.23+0.19

−0.18 kpc, which in the modern Large Magellanic Cloud (LMC) calibration corresponds
to the value ofR0 = 8.08+0.21

−0.20|stat.
+0.38
−0.36|cal. kpc. It is shown that the displacement between the segments is

not reduced to the effect of differential rotation only. To interpret this displacement for objects of Perseus
and Sagittarius-2 segments, we carried out a dynamic modeling of the change in the position of the segment
points when moving in the smooth gravitational field of the Galaxy. At the angular velocity of rotation of the
spiral patternΩp = 25.2± 0.5 km s−1 kpc−1 (Dambis et al.) the observed displacement between segments
on young and old objects can be explained by the amplitude of spiral perturbations of the radial velocity
of u = 10 ± 1.5 km s−1. For the constructed double system of spiral segments, it isdemonstrated that the
assumption of constancy of the pitch angles within each segment and the assumption that the pole of the
spiral pattern is in the direction of the nominal center of the Galaxy do not contradict the data within the
range of uncertainty.
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1 INTRODUCTION

The spiral structure is a significant feature of many
disk galaxies. The spiral arms, that is, the branches of
the spiral pattern, are visible against the background of
the galactic disk as narrow elongated areas of increased
brightness, delineated by regions of intense star formation.
The presence of spiral arms in the Milky Way has been
known since the mid-20th century (e.g.,van de Hulst et al.
1954), but the question of the morphology of the spiral
structure is still not fully clarified (see, e.g., a brief review
in Nikiforov & Veselova 2018a).

The most common model of a spiral arm is the
logarithmic spiral, with a single value of the pitch anglei

for all the arms or with a different value for each arm.
However, the number of arms in different models of the
Galaxy may be different, and the specified number of
arms largely determines the value ofi. For example,

Francis & Anderson(2012) adopted a two-arm logarithmic
model of a spiral structure with a constant pitch anglei =

−5.◦56 ± 0.◦06, which was the same for both arms traced
by giant molecular clouds, H II regions, 2MASS sources
and H I distribution for Galactocentric distances up to12–
15 kpc. On the other hand,Vallée (2008), based on the
analysis and comparison of a number of works, suggested a
four-arm logarithmic model with a pitch anglei = −12.◦8

as the most suitable model for a spiral pattern, consistent
with the tangential directions to the arms determined
by observations of H II,12CO, 13CO and26Al. According
to a survey inVallée(2015), published pitch angle values,
depending on the accepted number of arms, cover from
−6◦ to−28◦ for the global Galaxy.

In many studies, the spiral pattern is assumed to be
symmetrical: the arms pass into each other when turning
around the Galactic center at an angle of180◦ in the case
of a two-arm pattern or90◦ in the case of a four-arm
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pattern. This assumption, however, leads to an additional
condition: the pitch angles of the arms in this case must be
equal.Efremov(2011), based on the analysis of data on the
distribution of neutral, molecular and ionized hydrogen,
suggested the presence of a symmetrical logarithmic four-
arm spiral pattern in the inner part of the Galaxy, but noted
that the symmetry may be broken in the outer regions.

In recent years, the assumption of equal pitch angles
for all arms has been gradually abandoned. For example, in
Bobylev & Bajkova(2014) the value of the pitch angle for
four segments of the arms is estimated based on data on the
spatial distribution of masers and very young open clusters
in the Outer arm. The resulting pitch angles of individual
segments are compatible with each other and close toi =

−13◦ ± 1◦.

However, the results of a number of studies suggest the
possibility of a significantly more complex morphology.
Lépine et al. (2001) considered the spiral pattern as a
superposition of two- and four-arm models with different
pitch angles (6◦ for two-arm and12◦ for four-arm); thus,
the total number of spiral arms is six. The proposed model
better satisfies the data on Cepheid kinematics than the
two-arm and four-arm models separately and can explain
the possible bifurcation of arms, an example of which
can be observed in the galaxy M101.Englmaier et al.
(2011), according to the data on the distribution of neutral
hydrogen, suggest the following model of a spiral pattern:
in the inner part of the Galaxy, two significant arms start
from the ends of the bar, then, at a Galactocentric distance
of about7.8 kpc, the two-arm pattern splits into four arms,
continuing to a distance of about20 kpc. The bifurcation
points were not180◦ apart; one of the branching points
is presumably located near the Sun, which may affect the
velocity distribution in the solar neighborhood.

The problem of determining the parameters of the
Galactic spiral structure can also be associated with the
problem of determining the distance to the Galactic center
(R0) under the assumption that the Galactic center is
the pole of the spiral arms. Fixing the value ofR0 is
a standard assumption in studies of the spiral structure
(e.g., in the mentioned worksR0 = 7.5–8.0 kpc).
Due to complex correlations with other parameters of
spiral arms (seeNikiforov & Veselova 2018a), this creates
an additional source of systematic errors, different for
different subsystems due to mismatch of methods for
determination of heliocentric distances and mismatches
(at least for calibrations) of photometric distance scales.
FreeingR0 when modeling the spiral structure largely
removes these problems. On the other hand, this gives
another independent method for determiningR0. The
question of a reliable value ofR0 cannot be considered
closed with confidence, since modern estimates still differ

significantly from each other. For example,Braga et al.
(2018), based on data on Cepheids in the bulge,
obtained an estimate ofR0 = 8.46 ± 0.03 (stat.) ±
0.11 (sys.) kpc; according to data on the S0-2 star
orbiting the supermassive black hole at the Galactic center,
Gravity Collaboration et al.(2019) presented an estimate
of R0 = 8.178 ± 0.013 (stat.) ± 0.022 (sys.) kpc, and
Do et al. (2019) gave a value of7.946 ± 0.050 (stat) ±
0.032 (sys) kpc.

In our previous works (Nikiforov & Veselova 2015,
2018a) we proposed a new approach for determining
the geometric parameters of the Milky Way spiral arm
segments from the spatial distribution of tracing objects:
in an effort to minimize assumptions, we do not assume or
determine the number of spiral arms, but rather estimate
the parameters ofindividual detected segments of arms,
considering the geometric pole to be the same for all
segments and obtaining the parameterR0 together with
the geometric parameters, such as the pitch angles and
the positional parameters of the segments. The method
was tested on maser source data, and we obtained a solar
Galactocentric distance estimate ofR0 = 8.8 ± 0.5 kpc.
Our numerical experiments (Nikiforov & Veselova 2018b)
have confirmed the effectiveness of the algorithm de-
veloped by us for a wide range of possible parameter
values and made it meaningful to develop a more complex
method that will take into account the influence of distance
uncertainties and the natural scatter of objects across the
segments.

Using the maximum likelihood method, we developed
an algorithm for the spatial modeling of spiral arm
segments taking into account the natural dispersion
across the segment and the uncertainty of the distance
modulus,d. The algorithm does not require the initial
strict assignment of the object to a specific segment. In
Veselova & Nikiforov (2018) the proposed method was
applied to data on the spatial distribution of classical
Cepheids from the catalog inMel’nik et al. (2015). The
initial assignment of objects to segments was carried out
by analyzing the distribution ofXs coordinates, whereXs

is the abscissa of the intersection point of the logarithmic
spiral corresponding to the object’s phase by the direction
to the Galactic center.

In this paper, based on the developed algorithm
(Sect.2), we find out whether the age heterogeneity of
classical Cepheids is a significant factor in the spatial
modeling of spiral segments traced by these objects, and
then investigate the detected age effects. In Section3,
we determine the parameters of the spiral structure for
old and young Cepheids separately and together, allowing
for a distinction between two systems of segments traced
by young and old objects. Then we perform a dynamic
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modeling to interpret the detected displacement between
the Perseus and Sagittarius-2 segments in the two systems
(Sect. 4). In Section5, we show how a fixed value of
R0 affects the estimates of the pitch angles, and test the
possibility of rejecting other standard assumptions when
studying the spiral structure—the constancy of the pitch
angles and the coincidence of the arms pole with the
Galactic center.

2 THE METHOD OF MODELING THE SPIRAL
ARM SEGMENTS

2.1 Likelihood Function for a Set of Segments

We investigate the distribution of objects in the projection
on the Galactic plane in the Cartesian coordinate system.
The model of the center line of the segment depends on a
number of parameters (p) and represents the dependence
of the Galactoaxial distance on the Galactocentric longi-
tudeλ measured from the sunward direction clockwise

Rmod = Rmod(λ,p). (1)

We assume that the displacementw of the object
across the segment (for which the shape of the center line is
given by the model) and the error of the distance modulus
obey the normal distribution, so the likelihood function
is the product of the corresponding distribution functions,
taking into account the uniform dispersionσw across the
arm and the uncertainty of the distance modulusσd. For
one segment, the likelihood function is given as

L =

N∏

j=1

1√
2πσw

exp

[

−w2(d0,j ,p)

2σ2
w

]

× 1√
2πσd

exp

[

− (dobs,j − d0,j)
2

2σ2
d

]

,

(2)

but for convenience we use the negative log likelihood
functionL represented as

L = − lnL = N ln(2π) +N lnσd +N lnσw

+
1

2

N∑

j=1

min
d0,j

[
w2(d0,j ,p)

σ2
w

+
(dobs,j − d0,j)

2

σ2
d

]

︸ ︷︷ ︸

S2

j

, (3)

whereN is the number of objects,dobs,j represents the
observed (measured) distance modulus of thej-th object
andd0,j is its reduced distance modulus (see Fig.1). The
expression in square brackets can be considered as the
square of weighted distance from the reduced position of
the j-th object to the center line of the segment at the
accepted value ofd0,j . The calculation of the segment
parameters is performed as follows: first, we find the
minimum valueS2

j of the square of weighted distance by
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Fig. 1 Location of an object relative to the center line
of a spiral segment (curved line). The Sun is placed at
the origin of the Cartesian coordinate system,XY is the
Galactic plane andC represents the Galactic center.Oj is
the observed position of thej-th object,O′

j signifies the
reduced position of the same object,Omod,j is the point
on a center line for which the distancew from reduced
position is minimal (the “model position” of the object)
and Λmod,j is the Galactocentric longitude of the point
Omod,j .

varying the reduced distance modulusd0,j for eachj-th
object at a given set of parametersp, i.e. we determine the
reduced positionO′

j of an observed positionOj of the j-
th object by shifting it on the line of sight so that forO′

j

the weighted distance is minimal.Omod,j is the point on a
center line for which the distancew from reduced position
is minimal. In fact, this is a projection of the reduced
positionO′

j on the model spiral. Next we can determine the
overall minimumL0 for the segment while minimizing its
parametersp. The shape of the center line of the segment
determines the value of the weighted distance.

When considering a set of segments, the likelihood
function takes the form of a product of functions for
individual segments. We assumeσd to be the same for the
entire sample of objects, butσw has its own value (σw,a)
for each segment. For a set ofNsegmsegments the negative
log likelihood function is represented as

L = N ln(2π) +N lnσd +

Nsegm∑

a=1

Na lnσw,a

+
1

2

Nsegm∑

a=1

Na∑

j=1

min
d0,j

[
w2(d0,j ,pa)

σ2
w,a

+
(dobs,j − d0,j)

2

σ2
d

]

.

(4)
HereN is the total number of objects,Na is the number
of objects tracing thea-th segment andpa is the set of
parameters of thea-th segment
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2.2 Likelihood Function in Case of a Logarithmic
Model

The assumption about the model of the segment center
line is applied when we calculate the weighted distances.
We have chosen the logarithmic spiral as the most popular
model. We assume the spiral to be in the Galactic plane and
the direction from the Sun to the spiral pole (to the Galactic
center) to be known. The spiral arm is then represented by
a segment of the logarithmic spiral

Rmod(λ;R0, k,Xs) = |R0 −Xs|ekλ. (5)

Here, λ ∈ (−∞,+∞) is the Galactocentric longitude
(it is measured from the sunward direction clockwise
when viewed from the North Galactic Pole);k ≡ tan i,
where i is the pitch angle (it is negative for a trailing
segment);Xs is the abscissa of the point, at which the
segment intersects the direction to the Galactic center. In
the sunward directionλ = 0± 2πn, n ∈ Z.

In general, we assume a value of the solar
Galactocentric distanceR0 to be common for all segments,
but the pitch angles,Xs values and dispersionsσw may
differ for different segments. For a logarithmic model the
likelihood functionL for a set of segments takes the form

L = N ln(2π) +N lnσd +

Nsegm
∑

a=1

Na lnσw,a

+
1

2

Nsegm
∑

a=1

Na
∑

j=1

min
d0,j

[

w2(d0,j ;R0, ia,Xs,a)

σ2
w,a

+
(dobs,j − d0,j)

2

σ2
d

]

.

(6)

To determine the distancew from the reduced position
O′

j of the j-th object with the coordinates(X0,j, Y0,j)

to the spiral, the roots of the following transcendental
equation on the longitudeΛmod, j of the point on the spiral
with the minimum distance toO′

j are calculated

(X0,j −R0)
(
sinΛmod, j − ka cosΛmod, j

)

− ka|R0 −Xs,a|ekaΛmod, j

+ Y0,j (ka sinΛmod, j + cosΛmod, j) = 0,

(7)

where ka ≡ tan i0,a. Optimal parameters of a set of
segments are determined by minimizing the functionL.
In this way, we jointly obtain the values ofR0, pitch
anglesia, parametersXs,a and dispersionsσw,a for a =

1, 2, . . . , Nsegm. Generally the number of optimized values
isM = 3Nsegm+ 1.

In the case of far or sparsely populated segments, the
deviation of objects from the center line of the segment
can be completely explained by only the presence of
uncertainty in the distance moduli. For these segments we

setσw = 0 and the negative likelihood function takes the
form

L =
N

2
ln(2π) +N lnσd +

1

2

N∑

j=1

min
d0,j

(dobs,j − d0,j)
2

σ2
d
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S2

j

.

(8)

2.3 Estimation of Confidence Intervals

The boundaries of the confidence interval of the parameter
pj for the confidence level1σ can be determined from the
equation

Lm(pj) = L0 +
1

2

L0 = minL,

Lm(pj) = min
pj=const

L.

(9)

HereL0 is the minimum of the likelihood function, and
Lm is the profile of the log likelihood function for the
parameterpj obtained by optimizing all parameters except
pj .

To reduce the computation time in our work, the
boundaries of confidence intervals were determined in
the parabolic approximation. We consider the deviation
∆pj > 0 of the parameterpj from the optimal valuep0j ,
then determine the values ofLm at fixedp−j = p0j −∆pj
andp+j = p0j +∆pj , and then find the differencesσ+ and
σ− between the optimal valuep0j and the boundaries of the
confidence interval

σ− =
∆2pj

2
(
Lm(p

−

j )− L0

) , σ+ =
∆2pj

2
(
Lm(p

+
j )− L0

) .

(10)

2.4 Assignment of Objects to Spiral Segments

There may be a question about the correct assignment
of objects to spiral segments. We have proposed and
implemented (Veselova & Nikiforov 2018) the following
algorithm. The initial division of objects into segments
is carried out in accordance with the minima of the
distribution function of the values ofXs which are
computed for every object under the assumption ofR0 and
i0 values on a grid. Next, we identify the basic sample of
objects whose assignment to segments does not depend on
assumptions onR0. Then we optimize the parameters of
segments traced by the basic sample by minimizingL, and
other objects are assigned to the segments in accordance
with the minimum weighted distance: for each object we
compute theS2

j values relative to each segment and assign
the object to the segment with minimalS2

j . Next, the
iterative reassignment of objects to specific segments and
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Fig. 2 Distribution of Xs values in the cases of seven (a) and eight (b) segments in the model, taken from
Veselova & Nikiforov(2018); theXs distributions in the case of a single Sagittarius arm (c) andwhen dividing it into
three separate segments (d), constructed only from the Cepheids tracing these details. The solid line displays the model
function of the distribution of valuesXs calculated with the uncertainty in distance moduli taken into account. In each
panel, the position of the Sun corresponds toXs = 0.0 kpc as marked by the solid vertical line.

Table 1 Parameters of Spiral Segments Traced by Young and Old Cepheids

Young Old
Segment i Xs (kpc) σw (kpc) i Xs (kpc) σw (kpc)

Scutum −11.◦7+0.◦9
−0.◦9

2.01+0.04
−0.03 (0.00) −8.◦9+2.◦1

−2.◦1
1.90+0.06

−0.06 (0.00)

Sagittarius-1−13.◦1+1.◦4
−1.◦4

1.30+0.05
−0.05 0.214+0.033

−0.032 −8.◦3+0.◦8
−0.◦8

1.25+0.02
−0.02 0.119+0.017

−0.017

Sagittarius-2−10.◦9+0.◦6
−0.◦6

0.699+0.023
−0.022 0.065+0.013

−0.013 −7.◦4+0.◦7
−0.◦7

0.600+0.020
−0.020 0.144+0.011

−0.011

Local −9.◦9+1.◦2
−1.◦2

−0.111+0.048
−0.048 0.239+0.033

−0.033 −7.◦0+0.◦6
−0.◦6

0.002+0.023
−0.023 0.174+0.016

−0.016

Perseus −6.◦2+1.◦6
−1.◦6

−1.74+0.09
−0.09 0.490+0.066

−0.065 −7.◦0+1.◦2
−1.◦2

−1.54+0.05
−0.05 0.630+0.036

−0.035

Outer-1 −5.◦2+2.◦8
−2.◦8

−3.94+0.17
−0.17 0.437+0.146

−0.147 −9.◦7+1.◦1
−1.◦1

−3.85+0.07
−0.07 0.368+0.055

−0.055

Outer-1a −8.◦1+1.◦7
−1.◦7

−5.81+0.13
−0.13 (0.00)

Outer-2 −8.◦3+2.◦6
−2.◦6

−7.54+0.54
−0.55 (0.00) −9.◦2+2.◦0

−2.◦0
−7.70+0.27

−0.27 (0.00)

A zero width valueσw indicates that the deviation of the object from the center line of the segment can be
explained by the uncertainty in distance moduli.

the optimization of parameters for the final assignment of
objects into segments are carried out.

We chose classical Cepheids as objects that trace the
spiral structure. InVeselova & Nikiforov (2018) and in
the current work we utilized data from the catalog in
Mel’nik et al. (2015) (see Sect.3 for details). Analysis of

the spatial distribution of 565 Cepheids from this catalog
allowed Dambis et al.(2015) to identify four segments
of the global spiral structure. InVeselova & Nikiforov
(2018), we aimed to undertake a more detailed analysis
of the nearest spiral structure and we also considered a
slightly larger region populated by Cepheids. According
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to the algorithm described above, we investigated the
location of minima of the distribution function ofXs values
for different values ofR0 and for models with different
numbers of segments. Figure2(a) and2(b) depicts the
Xs distribution for models with seven and eight segments.
The analysis of the consistency of the model and observed
distribution functions, conducted applying the Pearson
(χ2) criterion, indicated the preference for a model with
eight segments.

Thus, according to the data on 636 Cepheids, we
preferred an eight segment model of nearby spiral
structure. In comparison with the set of segments presented
in Dambis et al.(2015), we divided the single Sagittarius
arm into three segments (Local arm, Sagittarius-1 and
Sagittarius-2) and, considering a slightly larger spatial
region populated by Cepheids, we also added a more
distant arm (Outer-2) and identified a small segment
(Outer-1a). In Figure2(c) and2(d), we compare the model
with a single Sagittarius arm and the model with three
distinct segments. According to the Pearson criterion, the
model with a single segment is rejected. Note that we did
not draw conclusions about the global spiral structure, and
only discussed the parameters of individual segments.

3 DETERMINATION OF PARAMETERS OF
SEGMENTS TRACED BY CLASSICAL
CEPHEIDS

In this paper we compare the parameters of spiral segments
traced by young and old classical Cepheids from the
catalog inMel’nik et al. (2015). This catalog contains data
on coordinates, proper motions, radial velocities, pulsation
periods and apparent stellar magnitudes of 674 Cepheids.
Authors did not specify the possible value of the distance
modulus error. In our work we assumedσd = 0.14m,
based on comparisons with other distance catalogs, as well
as a sharp restriction from below onσd created by a very
narrow Scutum arm. This value allowed us to determine
the value of dispersions across the arm in fairly populated
segments. We discuss the possible influence of adoptedσd

on parameters of segments later in this section.
According to the distance scale utilized in the catalog,

the distance modulus of the Large Magellanic Cloud
(LMC) is dLMC = 18.25±0.05 (Berdnikov et al. 2000). We
rescale the finalR0 estimate obtained by us to the modern
LMC calibration dLMC = 18.49 ± 0.09 (de Grijs et al.
2014), i.e. we use a correction factor of 1.117 (Sect.6).
Other parameters of spiral segments obtained in this work
should also be multiplied by this factor.

As had been demonstrated by
Karimova & Pavlovskaya (1974), the distribution of
classical Cepheids over pulsation periods has a minimum
near the period of9d (see also Fig.3(a), based on the
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Fig. 3 Distribution of pulsation periods (a) and spatial
distribution of old and young Cepheids projected on the
Galactic plane (b). Old Cepheids are displayed in red and
young Cepheids are marked in blue. The Sun is placed at
X = 0.0 kpc,Y = 0.0 kpc.

data we used). Cepheids with smaller values of the period
have a greater age, then we call the selection of such
objects old, and the rest of the objects are called young. In
total, the sample considered consisted of140 young and
494 old objects. According to different relations for the
age dependence on the pulsation period, we get slightly
different age estimates for the period of9 d. According
to the relation inEfremov (2003), the age estimate is
∼7.6 × 107 yr. If we apply the relation inJoshi & Joshi
(2014), we obtain an estimate of∼7.3 × 107 yr. The
median pulsation period for the old sample is nearly
4.6 d, and if we consider several modern relations, we
conclude that this value corresponds to the age of1 × 108

yr, and the median period for the young sample—13.5

d—corresponds to the age of5× 107 yr.

The spatial distribution of young and old Cepheids is
presented in Figure3(b). We can see that young objects
are situated mostly inside the solar circle, but outside the
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Fig. 4 1σ confidence regions for the Perseus, Local and Sagittarius-2arms. Solid lines signify the center lines of segments,
and dashed lines represent the boundaries of confidence regions. Old objects are displayed in red color and young objects
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solar circle they are located very sparsely. The segment
nearest to the Galactic center (Scutum arm) consists mostly
of young Cepheids, but the Outer segments are mostly
represented by old objects.

In accordance with the previously mentioned algorith-
m, the samples were divided into segments. It was revealed
that young objects form only seven separate segments
(there is no segment Outer-1a), and old objects compose
eight segments. Note that when optimizing the parameters
separately for each of two samples, the estimates ofR0

are similar:R0 = 7.15 ± 0.24 kpc for young objects and
R0 = 7.33 ± 0.29 kpc for old objects. The similarity of
these values provides a basis for joint optimization of the
parameters of two spiral patterns traced by young and old
Cepheids. The results of the simultaneous optimization of
the parameters for two samples are presented in Table1,
and the valueR0 is equal to7.23+0.19

−0.18 kpc. Table2 lists the
differences between the parameters of segments traced by
old and young Cepheids. Difference∆io−y is significant
for the Sagittarius-1 and Sagittarius-2 arms, for the Local
arm significance is marginal because∆io−y is only greater
than2σ. Difference∆Xs,o−y in theXs values is significant
for the Sagittarius-2 arm, but for the Local and Perseus
arms significance is marginal.

In Figure4 we compare the 1σ confidence regions for
old and young segments. We consider only those segments
that are quite large and have significant differences in
parameters of center lines. One can see that for all three
cases confidence regions do not intersect near theX-axis,
so we can say that the young and old segments differ
significantly.

The center lines of all traced segments in the
projection on theXY plane are presented in Figure5.
Dashed lines correspond to segments traced by young

Table 2 Differences between the Parameters of Segments
Traced by Old and Young Cepheids

Segment No Ny ∆io−y ∆Xs,o−y (kpc)

Scutum 6 17 2.◦8± 2.◦3 −0.11± 0.07

Sagittarius-1 44 27 4.◦8± 1.◦6 −0.05± 0.06

Sagittarius-2 94 21 3.◦5± 0.◦9 −0.099± 0.030

Local 66 28 2.◦9± 1.◦3 +0.113± 0.053

Perseus 178 33 −0.◦8± 2.◦0 +0.20± 0.10

Outer-1 89 10 −4.◦5± 3.◦0 +0.09± 0.18

Outer-2 7 4 −0.◦9± 3.◦3 −0.16± 0.60

No andNy denote the numbers of objects that trace the old and
young segments, respectively.∆io−y expresses the difference
between the pitch angles and∆Xs,o−y signifies the difference
between theXs values of the old and young segments.

objects, solid lines—for the old ones. One can see that in
some cases the center lines of the young and old segments
intersect in the region inhabited by Cepheids.

Figure6 features the dependence of theR0 estimate
on the assumed value of uncertaintyσd of the distance
moduli. One can see that the variation in theR0 value
does not exceed the statistical uncertainty ofR0 estimates.
The Xs parameters and pitch angles for all segments
also exhibit no significant dependence onσd, therefore,
we may conclude that the parameters of the center
lines of segments are almost independent of the specific
assumption aboutσd.

4 MODELING THE MOTION IN A SMOOTH
GALACTIC POTENTIAL

In order to explain the bias between the spiral segments
traced by young and old Cepheids, we modeled the
motion of objects which were formed in a spiral arm
segment. We chose the smooth potential of the Galaxy
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considered byCasetti-Dinescu et al.(2013). In that work,
the disk was represented by the Miyamoto–Nagai model,
the halo potential had a logarithmic dependence on
a Galactocentric distance and the bar of the Galaxy
was reproduced as an triaxial ellipsoid (the Ferrers
potential) with a density profile varying by the power law.
Casetti-Dinescu et al.(2013) implemented the Hernquist
potential for reproducing the bulge component of the
Galaxy. In Nikiforov & Veselova (2020, in prep.) we
have shown that this kind of model is not convenient for
our investigation, so we considered three other kinds of
bulge potential models. We chose the Plummer sphere
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Fig. 7 Dependence of the decimal logarithm of the value
χ2 on the values of the angular velocity of the spiral pattern
Ωp and the componentu of the perturbation velocity of the
spiral pattern for the Sagittarius-2 segment.

(Kondrat’ev & Orlov 2008), the Miyamoto-Nagai disk
(Ninkovic 1992) and an isochrone potential. We tried to
estimate the speed of a spiral patternΩp and the radial
componentu of velocity given to an object by a spiral
wave. For a square grid of the parameters in question, one
calculates aχ-squared function for the biases in longitude
λint of the intersection of the young segment and the
old segment and in difference between theXs values for
segments traced by young and old objects.

χ2(u,Ωp) =
(∆Xs,obs−∆Xs,mod)

2

σ2(∆Xs)
+
(λint,obs− λint,mod)

2

σ2(λint)
.

(11)
We ascertained that chosen kind of a bulge potential
does not have a strong influence on results of modeling
because the segments considered are not situated close to
the central part of the Galaxy. We performed numerical
simulations for two large segments. For both Sagittarius-2
and Perseus segments,Ωp andu are strongly correlated and
could not be estimated simultaneously. The dependence of
χ2 on Ωp andu for the Sagittarius-2 segment is depicted
in Figure7. One can see that if we takeu equal to 0, we
obtain too high a value ofΩp (∼31 km s−1 kpc−1). If we
take an estimate ofΩp = 25.2 ± 0.5 km s−1 obtained
by Dambis et al.(2015), we get the value ofu equal to
10± 1.5 km s−1.

5 VARIABILITY OF THE PITCH ANGLES,
INFLUENCE ON THE PITCH ANGLES OF THE
SUN-GALACTIC CENTER DISTANCE AND THE
DISPLACEMENT OF THE POLE OF THE
SPIRAL PATTERN

Savchenko & Reshetnikov(2013) concluded that approx-
imately 2/3 of spiral galaxies manifest variations in the
pitch angle of more than20%, so we investigated the
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question of variability in the pitch angle throughout the
spiral segment. We considered the pitch angle linearly
varying with the Galactocentric longitudeλ i(λ) = i0 +

i1 · λ. The only part of the likelihood function that is to be
changed concerns the distancew from a point to the center
line of a segment. The equation for a longitudeΛmod, j of a
point representing the base of a perpendicular drawn onto
a center line of thea-th segment takes the form

(

sinΛmod, j −

[

ka +
i1,a · Λmod, j

cos2 ia

]

cos Λmod, j

)

(X0,j − R0)+

+

(

cos Λmod, j +

[

ka +
i1,a · Λmod, j

cos2 ia

]

sinΛmod, j

)

Y0,j−

−

[

ka +
i1,a · Λmod, j

cos2 ia

]

∣

∣R0 −Xs,a
∣

∣eka·Λmod, j = 0,

(12)

whereka(Λmod, j) ≡ tan(ia(Λmod, j)) = tan(i0,a + i1,a ·
Λmod, j). Equation (12) is similar Equation to (7), and all
the difference is in the multiplier that occurs due to the
variability in the pitch angle.

We obtained the spiral segment parameters for young
and old subsystems simultaneously by minimizing theL

function (4) taking into account the new equation (12)
for determiningw. We found that no segment has a
significant value ofi1. Therefore, this system of segments
can be described by spiral segments with the constant pitch
angles.

It was also interesting to investigate the dependence of
the pitch angles on the assumed value ofR0. We fixed the
R0 values and optimized the other parameters of segments.
Figure 8 showcases the dependence of the pitch angle
on R0 for young and old segments. One can notice that
although the spread of the pitch angle values for young
segments is greater than that for old ones, the slope of the
dependency onR0 is generally the same for young and
old segments. For several segments, pitch angles change
significantly over the considered range ofR0 values.
For example, the pitch angle of both the young and old
Sagittarius-2 segments changes by more than2.◦5, while
3σi does not exceed2.◦1. On the contrary, the pitch angles
of Outer-2 segments do not vary significantly because of
the large uncertainty. Figure8 demonstrates that in general
the valueR0 can significantly affect the estimates of the
pitch angles.

We also tried to clarify if a bias exists in the pole
of the spiral pattern from the axis on which the Galactic
longitude is equal to0. We consider the coordinates of
a pole to be(X0, Y0) (see Fig.9). Therefore, the solar
Galactocentric distance should be calculated asR0 =
√

X2
0 + Y 2

0 . We also can derive an angular bias of a pole:
θ = arctan(Y0/X0) .

As in the case of variable pitch angle, only the equation
for determining the distance from the reduced position to
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the center line of the segments changes significantly and
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takes the form

(X0,j −X0)(sinΛmod, j − k cosΛmod, j)

− k|X0 −X ′

s|ekΛmod, j

+ (Y0,j − Y0) (k sinΛmod, j + cosΛmod, j) = 0,

(13)

where X ′

s represents the coordinate of the intersection
point of the segment’s central line with the line that is
parallel to theX-axis and passes through the pole of
the spiral pattern (see Fig.9). Simultaneous optimization
of parameters for young and old segments yielded the
following estimate of the pole coordinates:X0 = 7.22 ±
0.19 kpc,Y0 = −0.06±0.15kpc. Therefore, the bias of the
pole is not significant and the angular biasθ = −0.◦5±1.◦3

also can be treated as zeroth.

6 CONCLUSIONS

We divided the sample of Cepheids into relatively young
and old subsystems and considered the spiral pattern
consisting of 15 separate segments (seven formed by
young objects and eight traced by old ones). Estimates
of the parameters were obtained jointly for the two sub-
systems of segments following the maximum likelihood
method for the spatial modeling of spiral arm segments
which takes into account the natural dispersion across the
segment and the uncertainty in the distance moduli. The
obtained estimateR0 = 7.23+0.19

−0.18 kpc in the modern
LMC calibration (de Grijs et al. 2014) corresponds to the
valueR0 = 8.08+0.21

−0.20|stat.
+0.38
−0.36|cal.kpc, which is consistent

with modern estimates such asR0 = 8.34 ± 0.18

kpc obtained byXu et al. (2018) from kinematics of
O stars and masers,R0 = 8.178 ± 0.013 (stat.) ±
0.022 (sys.) kpc (Gravity Collaboration et al. 2019) and
R0 = 7.946 ± 0.050 (stat) ± 0.032 (sys) kpc (Do et al.
2019) from modeling the S0-2 orbit.

For Perseus and Sagittarius-2 segments, a significant
difference between the pitch angles andXs values was
found, and confidence regions for this segments also
show the difference between central lines. To interpret
this displacement for Perseus and Sagittarius-2 objects,
we carried out the dynamic modeling of the motion of
objects which were formed in a spiral arm segment. At
Ωp = 25.2 ± 0.5 km s−1 kpc−1 (Dambis et al. 2015), the
observed displacement can be explained by the valueu =

10± 1.5 km s−1.
We demonstrated that spiral segments traced by

Cepheids do not possess a significant gradient in the pitch
angle. Also, the set of logarithmic segments does not need
the pole of the spirals to be displaced, so the location of the
geometric pole of the spiral pattern is consistent with the
conventional direction to the Galactic center.
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