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Abstract With aperture synthesis (AS) technique, a number of smadiraras can be assembled to form a
large telescope whose spatial resolution is determinethéylistance of two farthest antennas instead of
the diameter of a single-dish antenna. In contrast fromectimaging system, an AS telescope captures
the Fourier coefficients of a spatial object, and then imgletinverse Fourier transform to reconstruct
the spatial image. Due to the limited number of antennask-theier coefficients are extremely sparse in
practice, resulting in a very blurry image. To remove/rezgloicir, “CLEAN” deconvolution has been widely
used in the literature. However, it was initially designedd point source. For an extended source, like the
Sun, its efficiency is unsatisfactory. In this study, a desyral network, referring to Generative Adversarial
Network (GAN), is proposed for solar image deconvolutione®Experimental results demonstrate that the
proposed model is markedly better than traditional CLEANsofar images. The main purpose of this
work is visual inspection instead of quantitative scieatfomputation. We believe that this will also help
scientists to better understand solar phenomena with hightg images.

Key words: deep learning (DL) — generative adversarial network (GAN)selar radio astronomy —
image reconstruction — aperture synthesis

1 INTRODUCTION can be obtained. Taking advantage of the earth rotation,
one can get more Fourier components. Nevertheless, the

The spatial resolution of a single-dish antenna is limited=ourier components are very sparse in practice due to
by the diameter of the dish, subject tg/D, where \ the limited number of antennas, resulting in blurry image.
represents wavelength anf is the dish diameter. It For an AS telescope, image quality degradation is caused
is a considerable challenge to construct a large singld?y sparse Fourier sampling in frequency domain. Fourier
dish antenna, considering building materials, buildingsampling is described to a frequency-domain image
technology, architecture and cost. Aperture synthesig (Agnultiplied by a sampling function as shown in Figs@).
synthesizes a bunch of small antennas to form a bidf iS corresponding to a spatial image convolved by a
antenna whose spatial resolution is determined by thgoint spread function (PSF) or dirty beam as shown in
distance of two farthest antennas, namely maximunfrigure 1(b). The sampling function and the PSF are the
baseline, still subject td./D, whereD is the maximum Fourier transform pairs. Convolving a clear image with
baseline. Nowadays, AS has been developed intensivelfie PSF/dirty beam would result in a dirty image which
in radio astronomy. Many large radio telescopes, likeooks blurry. This happens because the PSF has strong
world-wide low frequency array (LOFAR), Atacama |arge sidelobes which would cause Signal aliasing. To eliminate
millimeter array (ALMA) and square meter array (SKA), aliasing, deconvolution, which is the inverse process of
domestic MingantU SpEctral Radioheliograph (MUSER)convolution, was employed. In radio astronomy, a category
have been constructed. MUSER is a solar dedicated ASf deconvolution algorithms, namely CLEANHbgbom
telescope with the maximum baseline of 3 km, consistingt974 Wakker & Schwarz 1988 ornwell 2008, has been

of 100 small antennas. Each pair of antennas compogtensively studied.

of an interferometer, recording a Fourier component at Deconvolution is a deblurring problem essential-
each time. We can have x (n — 1)/2 interferometers ly. There are basically four categories of image de-
givenn antennas, thus x (n — 1)/2 Fourier components blurring methods in the literature. The first, CLEAN
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(b) Dirty beam (Point Spread Function)

(@) Sampling function

Fig.1 Sampling function of an aperture synthesis.

(Hogbom 1974 Wakker & Schwarz 1988 Cornwell 2 APERTURE SYNTHESISPRINCIPLE

2008, is mostly used in deconvolution of point source. L o _
The second solves an inverse problem by imposind®Ven original spatial image b(z, y), the corresponding
reqularized constraint, such as Total Variation (Tv)iMage in frequency domain by'(u,v), they are the
(Maetal. 2008 Wenetal. 2011 Rudinetal. 1992 Fourier transform pairs, named by brightness function and
Beck & Teboulle 200§ sparsenes&{ad & Aharon 2006 visibility function, respectively. If there are all Fourie
Zhang et al. 2014Wenger et al. 20L0Xu etal. 2018} coefficients, I(1,m) c_;an _be _completely rc_econstructed.
The third is developed on multi-scale signal decompositioff!OWeVer. the real situation is thaf(u,v) is sparsely
(Wakker & Schwarz 1988 Cornwell 2008, such as sampled I?) Foum_ar domam..So, g sampled visibility
wavelet, exploiting the multi-scale feature and specaptr  function V="(u, v) is only available in an AS system,
resentation of signal. The last is a learning based metho§fich is represented by

(Xiang etal. 2015 Su & Basu 2002 Rubinstein et al. VP (u,v) = V(u,v) x S(u,v) 1)
2012 2009 Xu et al. 2014, which learns signal represen- ’ ’ .
tation by using machine learning. where S(u,v) is the sampling function in frequency

domain. Applying inverse Fourier transform to both sides
The reconstructed image from an AS system usuallyf Equation (1), we can get

looks very blurry since highly sparse sampling in Fourier
domain. This situation is very common in radio astronomys? (i, m) = // V (u,v)S(u, v) exp(—i27 (ul+vm))dudv,
observation. To address this problem, CLEAN algorithm
was widely used. This paper introduces a novel deconvo- b
lution algorithm based on Generative Adversarial Network (2)

L whereI” (1, m) is a dirty image deduced from the Fourier
(GAN) (Goodfellow etal. 201 to accomplish image

D ) . L
deconvolution. It should be pointed out that deep leammgﬁransform of .(u.’v)' $|nce ConVOIUt.IOh operz.itlon n
T . requency domain is equivalent to multiplication in sphtia
models are mostly used in image processing. As the . . . .
omain, Equation (2) can be rewritten into

are applied to scientific data, their outputs cannot easily
return to original data range, which makes computing of IP(1,m) = I(l,m) @ BP(l,m), ()
physical parameters invalid. Thus, this proposed model is

mainly with the purpose of visual inspection instead ofwhere the symbol&” denotes convolution operator, and
guantitative analysis, through reconstructing high-iyal b : _

images from dirty images. We believe that this is also B~ (I,;m) = // S(u,v) exp(—i2n(ul+vm))dudv, (4)
important for scientific research, so that the scientists 5

can better find/understand interesting solar activitiemfr
current observations. which is the dirty beam or PSF. For easy understanding, we

draw a sketch map in Figuéfor illustrating the imaging
The rest of this paper is organized as follows. Section rocess of an AS system, from both frequency and spatial
gives the principle of AS. Section 3 gives the details of thedomain.
proposed deep neural network for image deconvolution. From Equation (3), it is only possible to derive
Experimental results are provided in Section 4. The final ” (z,y) instead ofI(z,y), i.e., dirty image in spatial
section draws our conclusions. domain, while the ideal imagd(z,y) is unavailable
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Fig.2 Imaging principle of aperture synthesis.

since it is polluted by dirty beanB(z,y). To restore model at all. Instead, an extreme non-learning relation
I(z,y), we have to delete dirty beaB(x,y) from the between input and output is learnt in a data-intensive
left side of Equation (3). This process is usually namednanner. This advantage of DL makes itself possess more
“CLEAN" deconvolution. For point source, like stellar flexibility and applicability. GAN Goodfellow et al. 2014
object, Hogbom, et. al. proposed a classical HogbonXu et al. 2018pis a DL model which was recently raised
CLEAN algorithm, which was witnessed to perform well and has been extensively investigated in many kinds of
given dirty beam. However, it was unsatisfactory for anapplications, especially image reconstruction, such as
extended source, like the Sun, so a bunch of algorithmsnage denoising, image synthesis, super-resolution. A
were proposed later, such as multi-resolution CLEANGAN is comprised of a generator and a discriminator. The

(MRC), multi-scale Clean and wavelet CLEAN. generator makes fake image close to real one/ground-truth,
while the discriminator distinguishes between fake image
3 NETWORK EOR IMAGE DECONVOL UTION and real one. Repeating adversarial learning between

them, a powerful generator can be learnt, which could
Recently, deep learning (DL) Gpodfellowetal. generate image very close to real one. The principle of
2014 Xuetal. 2018b Hinton & Salakhutdinov 2006 GAN is originated from zero-sum minimax game, which
Hinton et al. 2006Bengio 2009LeCun et al. 19891998  is mathematically represented by
was intensively developed and achieved big success in
many application fields, such as image processing, speech
recognition, natural language understanding, pattern £ ,\n(G,D) =E,[log D(y)] (5)
r_ecc_)gnltlon and t_:omp_uter vision. The advantages of DL 4 E, . [log(1 — D(G(z, 2)))],
lie in twofold. First, it can learn a model from mass
of data, which would be more applicable in practice.whereD represents a detect@r, represents a generatgr,
While traditional machine learning model or physicalis a realimage an@(z, z) is a fake image. In Equation (5),
model would not make full use of mass of available datay is coming from a distribution of real data,is coming
Second, DL does not need to fully acquire knowledges ofrom our simulated data (e.g., degraded images in image
a physical process. It would not establish a mathematicgirocessing), and is coming from a random noise. For

G* =arg min mgxﬁGAN(G, D),
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Fig. 3 Principle diagram of image deconvolution network.

optimizing D, we expect the largeb(y) on the real data the first four layers of a VGG-16 network are extract to
and the smalletD(G(z, z)) on the fake data generated give ®(y) and®(G(z, z)). Thus, the final objective is

by the generator G. While for optimizin§, we expect
that it can generate enough realistic sam@ler, ) to

cheatD successfully. During training procesb, and G

are optimized alternatively, by fixing one and optimizing In our model, the generator is a classical UNet,
the other. consisting of multiple layers of convolution and transpgbse
As Equation (5) indicated, a general GAN only convolution as illustrated in Figurd. From Figure4,

discriminate fake and true of the output. However, most olUNet is in the shape of an auto-encoder. The encoder
image processing tasks, e.g., well-known image-to-imaggets compressed representation of the input, while the
translation [sola et al. 201 require the correspondences decoder decompresses this representation to reconstruct
between inputs and outputs besides discriminating fakehe input. The most noteworthy feature of UNet is the skip
and true. For this purpose, the conditional GAN (CGAN)connection between corresponding layers of the encoder
was proposed, which is described by and the decoder. This skip connection can combine both
high level semantic information and low level features of
an image, benefiting image processing tasks, especially for
images with less semantic information, such as medical
and astronomy images. The discriminator is a general

G* = i L G,D
arg Inéll mgx (‘,GAN( B} )

, b, (8)
+ ML (G) 4+ ML (G).

G* =arg mén max L.can(G, D),

Leaan(G, D) =E, ,[log D(z,y)] (6)

+ Em,z[l()g(l - D(.I', G(CC, Z)))]7

where D(z,y), D(x,G(z,z)) indicates thatD needs

not only distinguish the real and the fake, but also

tell the correspondence between them. Ibola et al.

convolution neural network consisting of five convolution
layers.

Image generation/reconstruction, such as image
deblurring, denoising and super-resolution, has been

(2016, Phillip Isola etal. described a cGAN model well investigated in the literatureK(gpynetal. 2017

for image-to-image translation, namely pix2pix. In this
work, the network for image deconvolution is on the

basis of pix2pix as demonstrated in FiguBe while

the optimization objective is revised for facilitating our
specific task. Besides cGAN loss and L1 loss of spatia

domainC! ,(G) = E.,..[ly — G(z,2)|1]) in pix2pix

networklsola et al.(2016, a new loss, hamely perceptua

loss Johnson et al. 20} 6is also introduced additionally
as,

L11(G) =Eay:[I2(y) — 2(Glz,2)1), (D)

KupynOrest 2019Nah et al. 2016 Yan & Wang 2017.
Image deconvolution is a typical image generation
problem. Usually, in radio astronomy, it was handled by
“CLEAN" algorithm (Hogbom 1974 Wakker & Schwarz
1988 Cornwell 2008. Two conditions should be held
for the success of the CLEAN algorithm on image

| deconvolution. One is that the signal should be point

source, the other is that dirty beam should be exactly
known, which means the dirty beam of actual system and
the ideal one are exactly the same. However, in practice,
these two conditions do not hold so that the efficiency
of the CLEAN algorithm is compromised. The proposed

where ®(-) represents the feature of an image, specifmodel is learnt from data without any constraint, which
ically, VGG feature from a pre-trained VGG-16 model is completely data-driven, so it has more competitive
(Simonyan & Zisserman 20}4Here, the feature maps of advantages in the era of big data.
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Fig.4 The proposed model for AS image deconvolution.

4 EXPERIMENTAL RESULTS Table 1 Performance Verification of the Proposed

Network with Different Loss Function
To evaluate the proposed model, a database consisting

original/clear and dirty image pairs is firstly established
We collected 41096 images of 198from Atmospheric

Imaging Assembly (AIA) of Solar Dynamics Observatory i
(SDO) as ground-truth/clear images. Then, we apply LeaanG.p) T L1,
MUSER-I dirty beam (as shown in Fidl(b)) to these LoaaniG.p) + L1, + L7, | 37.3543 | 0.94727

clear images, resulting in corresponding dirty images.

For training, validation and testing, the database is spli{4) We also VITr'fy the Ieffect(;v.enéss O_f spatial Iosskand
into three parts: 8000 image pairs for validation, 8000 _?_Erclipst;?? OSZ ZSSTG'me hm gulatldmfc_)ro:r task.
image pairs for testing and the remaining for training. € an on the whole lesting dataset are

The full implementation (based on Pytorch) and the compared in Tabld. It can be observed that the best

trained network can be accessedivid ps: / / gi t hub result is coming from the combination of cGAN loss,
com filterbank/sol ar GAN. From the statistics of spatial-domain L1 loss and perceptual L1 loss.
experimental results, we can observe and conclude that: For objective measurement of image quality, peak

signal to noise ratio (PSNR), visual signal to noise ratio

(1) In the beginning, the generated image is with(VSNR) (Chandler & Hemami 2007 structural similarity
low quality since the training process is far from index measurement (SSIM)Mang et al. 200% Feature
convergence; Similarity (FSIM) (Zhangetal. 2011 and a metric

(2) After about 5000 loops, the learnt model can bedesigned for solar image named perception evaluation
stable, generating high quality images as showr(PE) Deng et al. 201pare employed for evaluating the
in Figure 6, where the left column gives dirty proposed model. PSNR measures the absolute difference
images, the middle column shows output images afteof pixel-to-pixel of two images. VSNR measures visual
GAN deconvolution, the right column shows original fidelity of natural image from aspects of near-threshold
images; and suprathreshold properties of human vision. SSIM

(3) The learnt model can restore image details/structuresay ignore the pixel-to-pixel difference, while pays more
well, as shown in Figuré(b). Compared with dirty attention to the similarity of image structure. FSIM has
image in Figure6(a), the reconstructed one containsthe same principle of SSIM for measuring structural
more details of an image; similarity, additionally considering phase congruendy. P

Loss function | PSNR | SSIM
Legane,p) +£1, | 38.0575 | 0.9561
Legane,p) +£E + £, | 38.4442 | 0.9609
| 35.2378 | 0.9316
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Fig.5 Histograms of dirty image, clean/deconvolved image andimai image (For more clearly, only 16 bins with the
same interval from O to 64 are shown in histogram. We disdaedcpixels with pixel value larger than 64 in histogram
statistics since they account for very small percent).

was specifically designed for solar image by considering In a real situation, a small disturbance exists, which
multi-fractal property of texture features. The statistid ~ will make the situation more complicated, so the model
PSNR, SSIM, FSIM and VSNR are gathered in TaBle should be more flexible and robust for addressing these
for evaluating our proposed model. From TaBJeverage complicated situations. For this purpose, we introduce
5.31dB PSNR, 7.27% SSIM, 13% FSIM and 4.15%one of the noises, namely, Gaussian white noise, in our
VSNR gains can be achieved by the proposed model. Isimulation for checking the flexibility and robustness of
addition, we found that SSIM works well for measuringthe proposed model. The experiment results, as listed
blurriness of image, however, user designed parametens the lower part of Table€, indicate that the proposed
have a significant impact on SSIM indexes. Here, we usenodel still performs well in the case of small disturbance.
the default configuration iWang et al.(2004. It can be  From Table2, the SSIM improvement is remarkable, up
observed that PE is a very good image quality indicatoto 23.4%. The reason lies in that the proposed model can
for measuring solar image quality. From Taldemore accomplish not only deconvolution but also denoising, so
than 50% PE improvement is achieved by the proposethat it achieves more for this case than the case without
deconvolution algorithm. noise. In fact, deep learning has been proved to be highly
efficient in image denoisingT{an et al. 2019 Thus, we



L. Xu et al.: Deep Learning for Image Deconvolution 170-7

(a) 2014-09-17, 09:00 (from left to right: dirty, deconvet’and original images)

(b) 2017-02-01, 03:48 (from left to right: dirty, deconvetyand original images)

(c) 2014-09-17, 09:12 (from left to right: dirty, deconvetand original images)

Fig.6 Image qyality comparison between dirty imagést), deconvolved imagesr{ddie) and original one right)
(SDOJAIA, 193A, dirty images are derived from MUSER-I sampling).

conclude that the proposed model is robust for handlingtatistics of MSEs (given in text over the histograms) show
small noise, partially because it is a data driven model. that the MSE of deconvolved image is much less than that
We also compare the histograms of a dirty image, &f dirty image, which well accords with the statistics in

deconvolved image and an original image in Figgte Table2.

It can be found that the deconvolved image looks more For comparison between the proposed model and
like the original one regarding histogram. In addition, wetraditional Hogbom CLEAN, the dirty image in Figuééa)

use mean square error (MSE) to measure the distandg processed by Hogbom CLEAN. The results of Hogbom
between two histograms of deconvolved image and dirtfCLEAN are shown in Figure7, where Figures7(a)
image relative to that of original image, respectively. Theand (b) demonstrate the images of bright points after
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(a) Bright points of 400 iterations (b) Bright points of 4000 iterationgc) Residual image after 4000 iter@) Final deconvoluted image by
tions Hogbom CLEAN

Fig.7 The reconstructed image by using Hogbom CLEAN ((a) and ¢y shows bright points without quiet solar
background; here only grayscale images are processedtiigiom CLEAN is implemented on grayscale image).

Table2 Performance Comparisons

Test PSNR (dB) SSIM FSIM VSNR PE
image Clean | Dirty Clean | Dirty Clean | Dirty Clean [ Dirty Clean | Dirty
t 43.8750 | 38.3328 | 0.9774 | 0.9057 | 0.9814 | 0.8658 | 33.8485 | 31.6998 | 0.8538 | 0.4743
to 442428 | 38.5245 | 0.9779 | 0.9094 | 0.9821 | 0.8687 | 34.6958 | 31.5655 | 0.8435 | 0.4871
t3 442086 | 38.3940 | 0.9777 | 0.9066 | 0.9816 | 0.8662 | 34.2766 | 31.6877 | 0.8503 | 0.4909
ty 435998 | 37.7312 | 0.9780 | 0.8964 | 0.9823 | 0.8608 | 32.7893 | 31.1593 | 0.8387 | 0.5109
ts 43.7245 | 38.6883 | 0.9781 | 0.9112 | 0.9843 | 0.8699 | 34.5025 | 31.5727 | 0.8344 | 0.5452
te 43.6156 | 38.6416 | 0.9780 | 0.9104 | 0.9842 | 0.8686 | 34.7588 | 31.6789 | 0.8434 | 0.5499
tr 43.6732 | 38.6577 | 0.9763 | 0.9104 | 0.9832 | 0.8647 | 33.2941 | 32.3627 | 0.8443 | 0.5855
ts 43.6642 | 38.5419 | 0.9760 | 0.9082 | 0.9831 | 0.8634 | 32.9892 | 32.4592 | 0.8546 | 0.5864
to 44.4864 | 39.5934 | 0.9788 | 0.9246 | 0.9830 | 0.8813 | 31.5974 | 32.9839 | 0.8677 | 0.6495
tio 452665 | 40.1188 | 0.9795 | 0.9321 | 0.9836 | 0.8886 | 30.6602 | 32.9599 | 0.8663 | 0.6551
Average | 44.0357 | 38.7224 | 0.9738 | 0.9115 | 0.9829 | 0.8698 | 33.3412 | 30.7158 | 0.8497 | 0.5535
Gain | 5.3133 | 0.0743(7.27%) | 0.1131(13.00%) | 1.3282(4.15%) | 0.2962(53.52%)
t 41.9677 | 38.4872 | 0.9727 | 0.7910 | 0.9775 | 0.8634 | 33.3985 | 31.2786 | 0.8560 | 0.4732
ta 42.1381 | 38.6822 | 0.9729 | 0.7911 | 0.9783 | 0.8666 | 34.0933 | 31.3234 | 0.8570 | 0.4830
t3 42.0155 | 38.5471 | 0.9724 | 0.7911 | 0.9774 | 0.8644 | 33.8954 | 31.3592 | 0.8646 | 0.4895
ty 417254 | 37.8749 | 0.9730 | 0.7897 | 0.9784 | 0.8589 | 34.1138 | 30.9221 | 0.8569 | 0.5099
ts 41.8152 | 38.8721 | 0.9728 | 0.7847 | 0.9789 | 0.8666 | 33.1041 | 31.1079 | 0.8790 | 0.6447
te 415429 | 38.8339 | 0.9731 | 0.7846 | 0.9792 | 0.8660 | 33.5437 | 31.2165 | 0.8488 | 0.5392
tr 40.9006 | 38.8615 | 0.9718 | 0.7876 | 0.9790 | 0.8638 | 30.3722 | 31.7513 | 0.8601 | 0.5816
ts 40.6091 | 38.7367 | 0.9712 | 0.7870 | 0.9789 | 0.8621 | 30.8858 | 31.8612 | 0.8614 | 0.5769
tg 42.0649 | 39.7943 | 0.9749 | 0.7903 | 0.9794 | 0.8795 | 32.7078 | 32.3192 | 0.8829 | 0.6394
tio 43.1939 | 40.3570 | 0.9761 | 0.7884 | 0.9796 | 0.8867 | 31.9447 | 32.0454 | 0.8418 | 0.5351
Average | 41.7973 | 38.9047 | 0.9731 | 0.7886 | 0.9787 | 0.8678 | 32.8059 | 31.5185 | 0.8608 | 0.5472
Gain | 2.8926 | 0.1845(23.40%) | 0.1109(12.78%) | 1.2874(4.08%) | 0.3136(57.31%)

Test images are indexed hy,: = 1,2,...,10, representing ‘2012-08-31 19:48:06UT’, ‘2014-09-17 8R@UT’, ‘2014-09-17
09:00:06UT’, '2014-09-17 09:12:06UT’, ‘2015-05-28 1208JT’, ‘2016—-05-18 02:00:05UT’, ‘2016-05-18 02:12:05UR017-02-01
03:48:04UT’, ‘2017-02-01 04:00:04UT’, ‘2017-09-03 0QRJT’ from top to down.

Hogbom CLEAN of 400 and 4000 iterations, respectively.5 CONCLUSIONS

Figure 7(c) is the residual image corresponding to

Figure 7(b). Figure 7(d) gives the final deconvoluted This paper makes an effort on a deep learning model
image which combines the residual image (Fig)) and for solar image deconvolution. By adversarial learning on
the image of bight points (FigZ(b)). From Figure7, it the pairs of original image and dirty image in a GAN
can be concluded that Hogbom CLEAN can successfulliramework, a powerful generator is learnt for deconvolving
restore bright points in an image, however fail to restordlirty image. The experimental results demonstrate that the
image details. This conclusion also confirms that HogbonProposed model can recover the details of solar image
CLEAN is designed for point source instead of extendednuch better than the traditional CLEAN. In addition, the
source. Comparing Figuré and Figure6, the proposed proposed model is data-driven instead of physical model.

model is dramatically superior to Hogbom CLEAN on For this reason, itis more applicable under some complex
restoring image details/fine structures. situations, even unknown the PSF. It should be pointed

that the proposed model is mostly concerned with visual
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inspection instead of rigorous scientific analysis cutyent ~ computation, 1, 541,https://doi.org/10.1162/
In our near-future work, we will place more effort on the neco. 1989. 1. 4. 541
scientific research of our model. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. 1998,

. ) Proceedings of the IEEE, 86, 2278t t ps: // doi . or g/
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