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Abstract With aperture synthesis (AS) technique, a number of small antennas can be assembled to form a
large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of
the diameter of a single-dish antenna. In contrast from a direct imaging system, an AS telescope captures
the Fourier coefficients of a spatial object, and then implement inverse Fourier transform to reconstruct
the spatial image. Due to the limited number of antennas, theFourier coefficients are extremely sparse in
practice, resulting in a very blurry image. To remove/reduce blur, “CLEAN” deconvolution has been widely
used in the literature. However, it was initially designed for a point source. For an extended source, like the
Sun, its efficiency is unsatisfactory. In this study, a deep neural network, referring to Generative Adversarial
Network (GAN), is proposed for solar image deconvolution. The experimental results demonstrate that the
proposed model is markedly better than traditional CLEAN onsolar images. The main purpose of this
work is visual inspection instead of quantitative scientific computation. We believe that this will also help
scientists to better understand solar phenomena with high quality images.

Key words: deep learning (DL) — generative adversarial network (GAN) —solar radio astronomy —
image reconstruction — aperture synthesis

1 INTRODUCTION

The spatial resolution of a single-dish antenna is limited
by the diameter of the dish, subject toλ/D, whereλ

represents wavelength andD is the dish diameter. It
is a considerable challenge to construct a large single-
dish antenna, considering building materials, building
technology, architecture and cost. Aperture synthesis (AS)
synthesizes a bunch of small antennas to form a big
antenna whose spatial resolution is determined by the
distance of two farthest antennas, namely maximum
baseline, still subject toλ/D, whereD is the maximum
baseline. Nowadays, AS has been developed intensively
in radio astronomy. Many large radio telescopes, like
world-wide low frequency array (LOFAR), Atacama large
millimeter array (ALMA) and square meter array (SKA),
domestic MingantU SpEctral Radioheliograph (MUSER)
have been constructed. MUSER is a solar dedicated AS
telescope with the maximum baseline of 3 km, consisting
of 100 small antennas. Each pair of antennas compose
of an interferometer, recording a Fourier component at
each time. We can haven × (n − 1)/2 interferometers
givenn antennas, thusn× (n− 1)/2 Fourier components

can be obtained. Taking advantage of the earth rotation,
one can get more Fourier components. Nevertheless, the
Fourier components are very sparse in practice due to
the limited number of antennas, resulting in blurry image.
For an AS telescope, image quality degradation is caused
by sparse Fourier sampling in frequency domain. Fourier
sampling is described to a frequency-domain image
multiplied by a sampling function as shown in Figure1(a).
It is corresponding to a spatial image convolved by a
point spread function (PSF) or dirty beam as shown in
Figure 1(b). The sampling function and the PSF are the
Fourier transform pairs. Convolving a clear image with
the PSF/dirty beam would result in a dirty image which
looks blurry. This happens because the PSF has strong
sidelobes which would cause signal aliasing. To eliminate
aliasing, deconvolution, which is the inverse process of
convolution, was employed. In radio astronomy, a category
of deconvolution algorithms, namely CLEAN (Högbom
1974; Wakker & Schwarz 1988; Cornwell 2008), has been
extensively studied.

Deconvolution is a deblurring problem essential-
ly. There are basically four categories of image de-
blurring methods in the literature. The first, CLEAN
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(a) Sampling function
(b) Dirty beam (Point Spread Function)

Fig. 1 Sampling function of an aperture synthesis.

(Högbom 1974; Wakker & Schwarz 1988; Cornwell
2008), is mostly used in deconvolution of point source.
The second solves an inverse problem by imposing
regularized constraint, such as Total Variation (TV)
(Ma et al. 2008; Wen et al. 2011; Rudin et al. 1992;
Beck & Teboulle 2009), sparseness (Elad & Aharon 2006;
Zhang et al. 2014; Wenger et al. 2010; Xu et al. 2018a).
The third is developed on multi-scale signal decomposition
(Wakker & Schwarz 1988; Cornwell 2008), such as
wavelet, exploiting the multi-scale feature and spectral rep-
resentation of signal. The last is a learning based method
(Xiang et al. 2015; Su & Basu 2002; Rubinstein et al.
2012, 2009; Xu et al. 2014), which learns signal represen-
tation by using machine learning.

The reconstructed image from an AS system usually
looks very blurry since highly sparse sampling in Fourier
domain. This situation is very common in radio astronomy
observation. To address this problem, CLEAN algorithm
was widely used. This paper introduces a novel deconvo-
lution algorithm based on Generative Adversarial Network
(GAN) (Goodfellow et al. 2014), to accomplish image
deconvolution. It should be pointed out that deep learning
models are mostly used in image processing. As they
are applied to scientific data, their outputs cannot easily
return to original data range, which makes computing of
physical parameters invalid. Thus, this proposed model is
mainly with the purpose of visual inspection instead of
quantitative analysis, through reconstructing high-quality
images from dirty images. We believe that this is also
important for scientific research, so that the scientists
can better find/understand interesting solar activities from
current observations.

The rest of this paper is organized as follows. Section 2
gives the principle of AS. Section 3 gives the details of the
proposed deep neural network for image deconvolution.
Experimental results are provided in Section 4. The final
section draws our conclusions.

2 APERTURE SYNTHESIS PRINCIPLE

Given original spatial image byI(x, y), the corresponding
image in frequency domain byV (u, v), they are the
Fourier transform pairs, named by brightness function and
visibility function, respectively. If there are all Fourier
coefficients, I(l,m) can be completely reconstructed.
However, the real situation is thatV (u, v) is sparsely
sampled in Fourier domain. So, a sampled visibility
function V D(u, v) is only available in an AS system,
which is represented by

V D(u, v) = V (u, v)× S(u, v), (1)

where S(u, v) is the sampling function in frequency
domain. Applying inverse Fourier transform to both sides
of Equation (1), we can get

ID(l,m) =

∫∫

∑

V (u, v)S(u, v) exp(−i2π(ul+vm))dudv,

(2)
whereID(l,m) is a dirty image deduced from the Fourier
transform ofV D(u, v). Since convolution operation in
frequency domain is equivalent to multiplication in spatial
domain, Equation (2) can be rewritten into

ID(l,m) = I(l,m)⊗BD(l,m), (3)

where the symbol “⊗” denotes convolution operator, and

BD(l,m) =

∫∫

∑

S(u, v) exp(−i2π(ul+vm))dudv, (4)

which is the dirty beam or PSF. For easy understanding, we
draw a sketch map in Figure2 for illustrating the imaging
process of an AS system, from both frequency and spatial
domain.

From Equation (3), it is only possible to derive
ID(x, y) instead ofI(x, y), i.e., dirty image in spatial
domain, while the ideal imageI(x, y) is unavailable
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Fig. 2 Imaging principle of aperture synthesis.

since it is polluted by dirty beamB(x, y). To restore
I(x, y), we have to delete dirty beamB(x, y) from the
left side of Equation (3). This process is usually named
“CLEAN” deconvolution. For point source, like stellar
object, Högbom, et. al. proposed a classical Högbom
CLEAN algorithm, which was witnessed to perform well
given dirty beam. However, it was unsatisfactory for an
extended source, like the Sun, so a bunch of algorithms
were proposed later, such as multi-resolution CLEAN
(MRC), multi-scale Clean and wavelet CLEAN.

3 NETWORK FOR IMAGE DECONVOLUTION

Recently, deep learning (DL) (Goodfellow et al.
2014; Xu et al. 2018b; Hinton & Salakhutdinov 2006;
Hinton et al. 2006; Bengio 2009; LeCun et al. 1989, 1998)
was intensively developed and achieved big success in
many application fields, such as image processing, speech
recognition, natural language understanding, pattern
recognition and computer vision. The advantages of DL
lie in twofold. First, it can learn a model from mass
of data, which would be more applicable in practice.
While traditional machine learning model or physical
model would not make full use of mass of available data.
Second, DL does not need to fully acquire knowledges of
a physical process. It would not establish a mathematical

model at all. Instead, an extreme non-learning relation
between input and output is learnt in a data-intensive
manner. This advantage of DL makes itself possess more
flexibility and applicability. GAN (Goodfellow et al. 2014;
Xu et al. 2018b) is a DL model which was recently raised
and has been extensively investigated in many kinds of
applications, especially image reconstruction, such as
image denoising, image synthesis, super-resolution. A
GAN is comprised of a generator and a discriminator. The
generator makes fake image close to real one/ground-truth,
while the discriminator distinguishes between fake image
and real one. Repeating adversarial learning between
them, a powerful generator can be learnt, which could
generate image very close to real one. The principle of
GAN is originated from zero-sum minimax game, which
is mathematically represented by

G∗ =argmin
G

max
D

LGAN(G,D),

LGAN(G,D) =Ey [logD(y)]

+ Ex,z[log(1 −D(G(x, z)))],

(5)

whereD represents a detector,G represents a generator,y

is a real image andG(x, z) is a fake image. In Equation (5),
y is coming from a distribution of real data,x is coming
from our simulated data (e.g., degraded images in image
processing), andz is coming from a random noise. For
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Fig. 3 Principle diagram of image deconvolution network.

optimizingD, we expect the largerD(y) on the real data
and the smallerD(G(x, z)) on the fake data generated
by the generator G. While for optimizingG, we expect
that it can generate enough realistic sampleG(x, z) to
cheatD successfully. During training process,D andG

are optimized alternatively, by fixing one and optimizing
the other.

As Equation (5) indicated, a general GAN only
discriminate fake and true of the output. However, most of
image processing tasks, e.g., well-known image-to-image
translation (Isola et al. 2016), require the correspondences
between inputs and outputs besides discriminating fake
and true. For this purpose, the conditional GAN (cGAN)
was proposed, which is described by

G∗ =argmin
G

max
D

LcGAN(G,D),

LcGAN(G,D) =Ex,y[logD(x, y)]

+ Ex,z[log(1−D(x,G(x, z)))],

(6)

where D(x, y), D(x,G(x, z)) indicates thatD needs
not only distinguish the real and the fake, but also
tell the correspondence between them. InIsola et al.
(2016), Phillip Isola et.al. described a cGAN model
for image-to-image translation, namely pix2pix. In this
work, the network for image deconvolution is on the
basis of pix2pix as demonstrated in Figure3, while
the optimization objective is revised for facilitating our
specific task. Besides cGAN loss and L1 loss of spatial
domain(LI

L1
(G) = Ex,y,z[‖y − G(x, z)‖1]) in pix2pix

networkIsola et al.(2016), a new loss, namely perceptual
loss (Johnson et al. 2016), is also introduced additionally
as,

LP
L1(G) = Ex,y,z[‖Φ(y)− Φ(G(x, z))‖1], (7)

whereΦ(·) represents the feature of an image, specif-
ically, VGG feature from a pre-trained VGG-16 model
(Simonyan & Zisserman 2014). Here, the feature maps of

the first four layers of a VGG-16 network are extract to
giveΦ(y) andΦ(G(x, z)). Thus, the final objective is

G∗ = argmin
G

max
D

LcGAN(G,D)

+ λ1L
I
L1(G) + λ2L

P
L1(G).

(8)

In our model, the generator is a classical UNet,
consisting of multiple layers of convolution and transposed
convolution as illustrated in Figure4. From Figure4,
UNet is in the shape of an auto-encoder. The encoder
gets compressed representation of the input, while the
decoder decompresses this representation to reconstruct
the input. The most noteworthy feature of UNet is the skip
connection between corresponding layers of the encoder
and the decoder. This skip connection can combine both
high level semantic information and low level features of
an image, benefiting image processing tasks, especially for
images with less semantic information, such as medical
and astronomy images. The discriminator is a general
convolution neural network consisting of five convolution
layers.

Image generation/reconstruction, such as image
deblurring, denoising and super-resolution, has been
well investigated in the literature (Kupyn et al. 2017;
KupynOrest 2019; Nah et al. 2016; Yan & Wang 2017).
Image deconvolution is a typical image generation
problem. Usually, in radio astronomy, it was handled by
“CLEAN” algorithm (Högbom 1974; Wakker & Schwarz
1988; Cornwell 2008). Two conditions should be held
for the success of the CLEAN algorithm on image
deconvolution. One is that the signal should be point
source, the other is that dirty beam should be exactly
known, which means the dirty beam of actual system and
the ideal one are exactly the same. However, in practice,
these two conditions do not hold so that the efficiency
of the CLEAN algorithm is compromised. The proposed
model is learnt from data without any constraint, which
is completely data-driven, so it has more competitive
advantages in the era of big data.
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Fig. 4 The proposed model for AS image deconvolution.

4 EXPERIMENTAL RESULTS

To evaluate the proposed model, a database consisting
original/clear and dirty image pairs is firstly established.
We collected 41 096 images of 193̊A from Atmospheric
Imaging Assembly (AIA) of Solar Dynamics Observatory
(SDO) as ground-truth/clear images. Then, we apply
MUSER-I dirty beam (as shown in Fig.1(b)) to these
clear images, resulting in corresponding dirty images.
For training, validation and testing, the database is split
into three parts: 8000 image pairs for validation, 8000
image pairs for testing and the remaining for training.
The full implementation (based on Pytorch) and the
trained network can be accessed viahttps://github.
com/filterbank/solarGAN . From the statistics of
experimental results, we can observe and conclude that:

(1) In the beginning, the generated image is with
low quality since the training process is far from
convergence;

(2) After about 5000 loops, the learnt model can be
stable, generating high quality images as shown
in Figure 6, where the left column gives dirty
images, the middle column shows output images after
GAN deconvolution, the right column shows original
images;

(3) The learnt model can restore image details/structures
well, as shown in Figure6(b). Compared with dirty
image in Figure6(a), the reconstructed one contains
more details of an image;

Table 1 Performance Verification of the Proposed
Network with Different Loss Function

Loss function PSNR SSIM

LcGAN(G,D) + LI
L1 38.0575 0.9561

LcGAN(G,D) + LI
L1 + LP

L1 38.4442 0.9609

LcGAN(G,D) + LI
L2 35.2378 0.9316

LcGAN(G,D) + LI
L2 + LP

L2 37.3543 0.94727

(4) We also verify the effectiveness of spatial loss and
perceptual loss as claimed in Equation (7) for our task.
The PSNR and SSIM on the whole testing dataset are
compared in Table1. It can be observed that the best
result is coming from the combination of cGAN loss,
spatial-domain L1 loss and perceptual L1 loss.

For objective measurement of image quality, peak
signal to noise ratio (PSNR), visual signal to noise ratio
(VSNR) (Chandler & Hemami 2007), structural similarity
index measurement (SSIM) (Wang et al. 2004), Feature
Similarity (FSIM) (Zhang et al. 2011) and a metric
designed for solar image named perception evaluation
(PE) (Deng et al. 2015) are employed for evaluating the
proposed model. PSNR measures the absolute difference
of pixel-to-pixel of two images. VSNR measures visual
fidelity of natural image from aspects of near-threshold
and suprathreshold properties of human vision. SSIM
may ignore the pixel-to-pixel difference, while pays more
attention to the similarity of image structure. FSIM has
the same principle of SSIM for measuring structural
similarity, additionally considering phase congruency. PE

https://github.com/filterbank/solarGAN
https://github.com/filterbank/solarGAN
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Fig. 5 Histograms of dirty image, clean/deconvolved image and original image (For more clearly, only 16 bins with the
same interval from 0 to 64 are shown in histogram. We discard the pixels with pixel value larger than 64 in histogram
statistics since they account for very small percent).

was specifically designed for solar image by considering
multi-fractal property of texture features. The statistics of
PSNR, SSIM, FSIM and VSNR are gathered in Table2
for evaluating our proposed model. From Table2, average
5.31dB PSNR, 7.27% SSIM, 13% FSIM and 4.15%
VSNR gains can be achieved by the proposed model. In
addition, we found that SSIM works well for measuring
blurriness of image, however, user designed parameters
have a significant impact on SSIM indexes. Here, we use
the default configuration inWang et al.(2004). It can be
observed that PE is a very good image quality indicator
for measuring solar image quality. From Table2, more
than 50% PE improvement is achieved by the proposed
deconvolution algorithm.

In a real situation, a small disturbance exists, which
will make the situation more complicated, so the model
should be more flexible and robust for addressing these
complicated situations. For this purpose, we introduce
one of the noises, namely, Gaussian white noise, in our
simulation for checking the flexibility and robustness of
the proposed model. The experiment results, as listed
in the lower part of Table2, indicate that the proposed
model still performs well in the case of small disturbance.
From Table2, the SSIM improvement is remarkable, up
to 23.4%. The reason lies in that the proposed model can
accomplish not only deconvolution but also denoising, so
that it achieves more for this case than the case without
noise. In fact, deep learning has been proved to be highly
efficient in image denoising (Tian et al. 2019). Thus, we
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(a) 2014-09-17, 09:00 (from left to right: dirty, deconvolved and original images)

(b) 2017-02-01, 03:48 (from left to right: dirty, deconvolved and original images)

(c) 2014-09-17, 09:12 (from left to right: dirty, deconvolved and original images)

Fig. 6 Image quality comparison between dirty images (left), deconvolved images (middle) and original one (right)
(SDO/AIA, 193Å, dirty images are derived from MUSER-I sampling).

conclude that the proposed model is robust for handling
small noise, partially because it is a data driven model.

We also compare the histograms of a dirty image, a
deconvolved image and an original image in Figure5.
It can be found that the deconvolved image looks more
like the original one regarding histogram. In addition, we
use mean square error (MSE) to measure the distance
between two histograms of deconvolved image and dirty
image relative to that of original image, respectively. The

statistics of MSEs (given in text over the histograms) show
that the MSE of deconvolved image is much less than that
of dirty image, which well accords with the statistics in
Table2.

For comparison between the proposed model and
traditional Högbom CLEAN, the dirty image in Figure6(a)
is processed by Högbom CLEAN. The results of Högbom
CLEAN are shown in Figure7, where Figures7(a)
and (b) demonstrate the images of bright points after
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(a) Bright points of 400 iterations (b) Bright points of 4000 iterations(c) Residual image after 4000 itera-
tions

(d) Final deconvoluted image by
Högbom CLEAN

Fig. 7 The reconstructed image by using Högbom CLEAN ((a) and (b) only shows bright points without quiet solar
background; here only grayscale images are processed sinceHögbom CLEAN is implemented on grayscale image).

Table 2 Performance Comparisons

Test
PSNR (dB) SSIM FSIM VSNR PE

image Clean Dirty Clean Dirty Clean Dirty Clean Dirty Clean Dirty

t1 43.8750 38.3328 0.9774 0.9057 0.9814 0.8658 33.8485 31.6998 0.8538 0.4743
t2 44.2428 38.5245 0.9779 0.9094 0.9821 0.8687 34.6958 31.5655 0.8435 0.4871
t3 44.2086 38.3940 0.9777 0.9066 0.9816 0.8662 34.2766 31.6877 0.8503 0.4909
t4 43.5998 37.7312 0.9780 0.8964 0.9823 0.8608 32.7893 31.1593 0.8387 0.5109
t5 43.7245 38.6883 0.9781 0.9112 0.9843 0.8699 34.5025 31.5727 0.8344 0.5452
t6 43.6156 38.6416 0.9780 0.9104 0.9842 0.8686 34.7588 31.6789 0.8434 0.5499
t7 43.6732 38.6577 0.9763 0.9104 0.9832 0.8647 33.2941 32.3627 0.8443 0.5855
t8 43.6642 38.5419 0.9760 0.9082 0.9831 0.8634 32.9892 32.4592 0.8546 0.5864
t9 44.4864 39.5934 0.9788 0.9246 0.9830 0.8813 31.5974 32.9839 0.8677 0.6495
t10 45.2665 40.1188 0.9795 0.9321 0.9836 0.8886 30.6602 32.9599 0.8663 0.6551

Average 44.0357 38.7224 0.9738 0.9115 0.9829 0.8698 33.3412 30.7158 0.8497 0.5535

Gain 5.3133 0.0743(7.27%) 0.1131(13.00%) 1.3282(4.15%) 0.2962(53.52%)

t1 41.9677 38.4872 0.9727 0.7910 0.9775 0.8634 33.3985 31.2786 0.8560 0.4732
t2 42.1381 38.6822 0.9729 0.7911 0.9783 0.8666 34.0933 31.3234 0.8570 0.4830
t3 42.0155 38.5471 0.9724 0.7911 0.9774 0.8644 33.8954 31.3592 0.8646 0.4895
t4 41.7254 37.8749 0.9730 0.7897 0.9784 0.8589 34.1138 30.9221 0.8569 0.5099
t5 41.8152 38.8721 0.9728 0.7847 0.9789 0.8666 33.1041 31.1079 0.8790 0.6447
t6 41.5429 38.8339 0.9731 0.7846 0.9792 0.8660 33.5437 31.2165 0.8488 0.5392
t7 40.9006 38.8615 0.9718 0.7876 0.9790 0.8638 30.3722 31.7513 0.8601 0.5816
t8 40.6091 38.7367 0.9712 0.7870 0.9789 0.8621 30.8858 31.8612 0.8614 0.5769
t9 42.0649 39.7943 0.9749 0.7903 0.9794 0.8795 32.7078 32.3192 0.8829 0.6394
t10 43.1939 40.3570 0.9761 0.7884 0.9796 0.8867 31.9447 32.0454 0.8418 0.5351

Average 41.7973 38.9047 0.9731 0.7886 0.9787 0.8678 32.8059 31.5185 0.8608 0.5472

Gain 2.8926 0.1845(23.40%) 0.1109(12.78%) 1.2874(4.08%) 0.3136(57.31%)

Test images are indexed byti, i = 1, 2, . . . , 10, representing ‘2012–08–31 19:48:06UT’, ‘2014–09–17 08:48:06UT’, ‘2014–09–17
09:00:06UT’, ‘2014–09–17 09:12:06UT’, ‘2015–05–28 12:48:06UT’, ‘2016–05–18 02:00:05UT’, ‘2016–05–18 02:12:05UT’, ‘2017–02–01
03:48:04UT’, ‘2017–02–01 04:00:04UT’, ‘2017–09–03 00:48:04UT’ from top to down.

Högbom CLEAN of 400 and 4000 iterations, respectively.
Figure 7(c) is the residual image corresponding to
Figure 7(b). Figure 7(d) gives the final deconvoluted
image which combines the residual image (Fig.7(c)) and
the image of bight points (Fig.7(b)). From Figure7, it
can be concluded that Högbom CLEAN can successfully
restore bright points in an image, however fail to restore
image details. This conclusion also confirms that Högbom
CLEAN is designed for point source instead of extended
source. Comparing Figure7 and Figure6, the proposed
model is dramatically superior to Högbom CLEAN on
restoring image details/fine structures.

5 CONCLUSIONS

This paper makes an effort on a deep learning model
for solar image deconvolution. By adversarial learning on
the pairs of original image and dirty image in a GAN
framework, a powerful generator is learnt for deconvolving
dirty image. The experimental results demonstrate that the
proposed model can recover the details of solar image
much better than the traditional CLEAN. In addition, the
proposed model is data-driven instead of physical model.
For this reason, it is more applicable under some complex
situations, even unknown the PSF. It should be pointed
that the proposed model is mostly concerned with visual
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inspection instead of rigorous scientific analysis currently.
In our near-future work, we will place more effort on the
scientific research of our model.
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