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Abstract Statistical relations are useful tools to comprehend the intrinsic physics processes of gamma-ray
bursts (GRBs). In this work we collect spectral lag (τ ), variability (V ) and optical peak time (tp,o). We
find that there is a correlation between variabilities and spectral lags, reading asV = −0.0075(±0.0007)×

log10 τ+0.0351(±0.0024) . There may also exist a relatively weak positive tendency between GRBs optical
band peak times and their spectral time lags. Its Pearson coefficient is 0.398, which indicates a weak linear
correlation. If we contain some “negative spectral lag” samples, then the latter relation would be worse due
to two outlying points. Theτ−V relation is consistent with previous studies, and the positive trend between
τ andtp,o indicates the spectral lag of GRB might be caused by the curvature effect, but this conclusion is
not significant.
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1 INTRODUCTION

Gamma-ray bursts (GRBs) are irregular pulses of gamma-
ray radiation from the universe (Kumar & Zhang 2015).
After decades of research, there still remains many open
questions on this spectacular phenomenon. Thanks to
the observations made by severalγ-ray/X-ray satellites
(BeppoSAX, KONUS/Wind, HETE-2, Swift, Integral,
AGILE, Fermi) and follow-up observations made by
all kinds of observatories (Kumar & Zhang 2015), we
are able to obtain various energy bands signals from
GRBs. From these observations we may deduce some
information on GRBs such as redshift, duration and vari-
ability. Correlating these direct or indirect observational
parameters may shed light on the intrinsic characters of
GRBs.Amati et al.(2002) discovered the positive relation
betweenEp,z and the geometrically-corrected gamma-
ray energyEγ,iso, whereEp,z is peak photon energy of
prompt spectrum in the source frame of GRBs. Similarly,
Wei & Gao (2003); Yonetoku et al. (2004) found the
positive correlation betweenEp,z and Lγ,p,iso, which
provided further evidence for Amati relation. Besides, it
suggests the overlapping hard-to-soft pulses might cause
such intensity-tracking pattern of at least some bursts
(Lu et al. 2012). Ghirlanda et al.(2004) found thatEp,z

was correlated withEγ (Kumar & Zhang 2015). Besides,
relations between three variables were also discovered like
Liang-Zhang relation:Ep,z−Eγ,iso−tb,z, wheretb,z is the
afterglow light curve break time in the rest frame of burst
(Liang & Zhang 2005).

GRBs spectral lag (τ ) is the arrival time difference be-
tween high-energy and low-energy photons (Ukwatta et al.
2010). Since the discovery of this phenomenon in 1990s,
authors have put forward several models to explain it. It can
be explained as the result of spectral evolution of radiation
process (e.g.,Dermer 1998; Kocevski & Liang 2003;
Shao et al. 2017). It can also be explained by geometric
effect such as the curvature effect (e.g.,Qin et al. 2004;
Shen et al. 2005; Lu et al. 2006; Shao et al. 2017). Some
other models like quantum theory of gravity, violation of
Einstein equivalence principle also predict the time lag
when light travels through space. It is also highly possible
that spectral lag has more than one origin. Spectral lags can
be used to study spectral evolution of GRBs (e.g.,Band
1997) and cosmography (e.g.,Ellis et al. 2006). Band
(1997) studied the time lag of discriminator light curves
and found the hard-to-soft evolution of GRBs spectrum. It
is also connected with some other parameters of GRBs,
such as peak luminosity, which may help us to reveal
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the radiation mechanisms and some other characters of
GRBs. Norris et al. (2000); Norris (2002); Norris et al.
(2005) found an anti-correlation between these two
characteristic quantities of GRBs, andIoka & Nakamura
(2001) proposed an off-axis angle model to interpret such
relation (Shen et al. 2005).

The variability (V ) of GRBs is a quantitative measure
of whether its light curve is spiky or smooth (Schaefer
2007). Typically, a larger value of variability means a
spikier light curve. To calculate the normalized variance of
light curve around a smooth version of this light curve is a
reasonable measurement ofV (Fenimore & Ramirez-Ruiz
2000), but it involves too many free parameters (Schaefer
2007). Schaefer(2007) improved the definition of variabil-
ity, and we adopt this definition here. For a background-
subtracted light curve (C), they did box smoothing to make
a smoothed light curve (Csmooth). With these two light
curves and uncertaintyσC , the variability is:

V =

〈

(C − Csmooth)
2 − σ2

C

C2
smooth,max

〉

. (1)

Despite of different definitions, it still shows a positive
correlation with GRB luminosity (Reichart et al. 2001).

After a preliminary correlation analysis, we found
there existed possible relation among these quantities, so
we did a work on data collection and analysis between
spectral lag and variability of prompt phase of GRBs.
We also investigated the systematic trend betweenτ and
optical peak timetp,o of afterglow.

This paper is arranged as follows. In Section2, we
introduce our data collection and selection criteria. In
Section3, we show our analysis method. We present the
statistic results and discuss the potential reasons for our
results in Section4.

2 DATA COLLECTION AND CRITERION

We collected three quantities of GRBs: spectral lag (τ ),
variability (V ) and optical band peak time of afterglow
phase (tp,o), and discussed two correlations here, namely
τ − V and τ − tp,o. All data come from papers which
have been published. Due to the long distance from GRBs
to us, it is quite difficult to know all detailed information.
Those GRBs with all parameters data we need are rare. The
authors might also calculate spectral lags in GRBs source
frame(Bernardini et al. 2015; Wei et al. 2017), but these
data are insufficient up to now and so we do not use them
here. For the two samples here, we just obtained 49 and
25 GRBs which satisfied the conditions separately. Nearly
all of them are long duration GRBs (LGRBs) except GRB
040924A, whoseT 90 is less than 2 s. Therefore, we do not
discuss short duration GRBs here. The data are listed in

Table1. We also need to do some transformations because
of all kinds problems. See Section2.1and Section2.2 for
details.

2.1 τ − V Relation

We collected 49 GRBs which had bothτ andV values.
But in different papers, the definitions or calculations of
both τ and V may be also different. Spectral time lag
(τ ) is the time shift between soft and hard light curves
of GRBs (Schaefer 2007). Schaefer(2007) took 25–50
keV as soft band and 100–300 keV as hard band, and
calculated the time lag between light curves of these two
bands. However,Ukwatta et al.(2012) set 100–150 keV
and 200–250 keV as soft and hard band separately. This
is a common problem (e.g.,Ashcraft & Schaefer 2007;
Xiao & Schaefer 2011). Considering the narrow energy
band range from soft to hard in most papers (in these
papers, the energy bands they took are all inside 25–300
keV), we can assume thatτ varies with the energy band gap
linearly. Then we deduced the average time lag of GRBs
(τ∗) using this simple formula:

τ∗ =
τ

δE
, (2)

where the energy bands gapδE is defined as the difference
between the center of two bands.

Shao et al.(2017) found that the peak arrival time
tpeak is a function of photon energyE (the mid value of
each energy channel), namely:

tpeak(E) = t0 + τ × (
E

1keV
)−β , (3)

whereβ is power index. They gave a sample of GRBs and
foundβ varied from 0 and 1. However, this relation only
works when each energy band is small enough. Here we
take 25-50 keV as soft band and 100-300 keV as hard band.
In this situation, a precise model is unnecessary because
of the large range of energy band. Figure 2 inShao et al.
(2017) shows that when we choose the energy bands being
the edge of the energy range (0-300 keV), we can just use
the average spectral time lag, namelyτ∗ as the calibrated
spectral.

Variability has at least three definitions (Schaefer
2007). Meanwhile, data defined in different way are not
interconvertible. So we only chose those papers that
used the same definition. Here we used the definition of
Schaefer(2007). Data ofτ andV of GRBs in our sample
can be found in Table1.

2.2 τ − tp,o Relation

We collected 25 GRBs which had bothτ andtp,o values.
Values of τ were all converted intoτ∗ as shown in
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Table 1 Spectral Lag(τ ), Variability(V ) and the Optical Peak Time(tp,o) of GRBs

GRB Redshift Normalized Lag Variability tp,o Ref.
(×102 ms MeV−1) (×10−3) (s)

910706 · · · 3.7+3.7
−3.7 2.3+1.3

−1.3 · · · 1,1
911225 · · · 3.9+5.2

−5.2 3.3+1.1
−1.1 · · · 1,1

920116 · · · 3.4+2.0
−2.0 26.5+1.4

−1.4 · · · 1,1
920802 · · · 2.0+1.2

−1.2 30+2
−2 · · · 1,1

920814B · · · 1.7+3.2
−3.2 13+2

−2 · · · 1,1
921031 · · · 0.25+0.49

−0.49 33+3
−3 · · · 1,1

921110 · · · 4.4+1.4
−1.4 19.3+0.8

−0.8 · · · 1,1
921206 · · · 1.85+0.25

−0.25 13.3+0.2
−0.2 · · · 1,1

930517 · · · 43.2+7.8
−7.8 20.1+1.5

−1.5 · · · 1,1
930801 · · · 56+10

−10 5+1
−1 · · · 1,1

940604 · · · 6.2+2.0
−2.0 26.2+1.3

−1.3 · · · 1,1
941026 · · · 63+12

−12 9.3+0.4
−0.4 · · · 1,1

941114 · · · 3.4+1.6
−1.6 38.4+1.5

−1.5 · · · 1,1
950206 · · · 4.9+3.0

−3.0 17+1
−1 · · · 1,1

950223 · · · 96.5+7.3
−7.3 6.8+0.2

−0.2 · · · 1,1
951007 · · · 3.0+2.2

−2.2 23.9+4.4
−4.4 · · · 1,1

960418B · · · 5.3+2.2
−2.2

2.9+0.5
−0.5

· · · 1,1
960813B · · · 0.12+0.25

−0.25
12.5+0.6

−0.6
· · · 1,1

970508A 0.835 31+18
−18

4.7+0.9
−0.9

· · · 2,3,3
971210 · · · 0.12+0.98

−0.98
24.6+0.8

−0.8
· · · 1,1

971214B 3.42 1.8+1.8
−1.8

15.3+0.6
−0.6

· · · 2,3,3
980703A 0.966 24.6+6.2

−6.2
6.4+0.3

−0.3
· · · 2,3,4

981130 · · · 1.72+0.37
−0.37

7.7+0.4
−0.4

· · · 1,1
990123 1.6 9.8+1.8

−1.8
17.5+0.1

−0.1
16.2+1.6

−1.6
2,3,4,5

990216B · · · 5.9+6.2
−6.2

23+0.7
−0.7

· · · 1,1
990506A 1.3 2.5+1.2

−1.2
13.1+0.1

−0.1
· · · 2,3,4

990510A 1.619 1.85+0.62
−0.62

10+0.1
−0.1

· · · 2,3,4
000524A · · · 1.97+0.61

−0.61
22.5+0.4

−0.4
· · · 1,1

010921A 0.45 55+18
−18

1.4+1.5
−1.5

· · · 2,3,4
020124 3.2 4.9+3.1

−3.1
13.1+2.6

−2.6
· · · 2,3,4

020813A 1.25 9.8+2.5
−2.5

13.1+0.3
−0.3

· · · 2,3,4
021004A 2.3 37+25

−25
3.8+4.9

−4.9
30.3+8.8

−6.7
2,3,3,5

030115A 2.5 25+12
−12

6.1+4.2
−4.2

· · · 6,3,3
030226A 1.986 18+18

−18
5.8+4.7

−4.7
4340.0+3.0

−0.7
2,3,3,7

030329A 0.169 8.6+2.5
−2.5

9.7+0.2
−0.2

· · · 2,3,4
030429A 2.65 1.6+9.1

−9.1
5.5+5.7

−5.7
· · · 2,8,3

030528A 0.78 769+31
−31

2.2+1.9
−1.9

· · · 2,3,3
041219A 0.31 10.9+1.5

−1.5
· · · 213+21

−21
9,10,9

050126 2.29 133.66+0.98
−0.98

3.9+1.5
−1.5

· · · 2,11,3
050318A 1.444 20+11

−11
7.1+0.9

−0.9
· · · 2,12,3

050401A 2.898 31+15
−15

13.5+1.2
−1.2

· · · 2,13,3
050505A 4.27 34.6+6.3

−6.3
3.5+1.9

−1.9
· · · 2,11,3

050525A 0.606 27+16
−16

13.5+0.3
−0.3

41.1+10.6
−5.6

2,14,4,5
050820A 2.615 43+18

−18
· · · 118.07+0.55

−0.55
2,3,15

050922C 2.198 13.6+6.8
−6.8

3.3+0.6
−0.6

. . . 2,13,4
051111 1.55 33+25

−25
2.4+0.7

−0.7
· · · 2,13,4

060110 5.0 46.3+6.3
−6.3

· · · 8.3+4.2
−2.5

16,11,5
060124A 2.296 4.9+2.5

−2.5
14+2

−2
· · · 2,3,3

060210A 3.91 66+26
−26

1.9+0.4
−0.4

80.0+0.2
−3.5

2,13,4,15
060223A 4.41 23.4+6.2

−6.2
7.5+3.3

−3.3
· · · 17,3,4

060526A 3.22 38+15
−15

11.2+3.9
−3.9

45.69+0.24
−0.24

2,12,4,15
060605A 3.773 308+185

−185
· · · 97.00+0.21

−0.42
2,3,15

060607A 3.075 96.6+5.4
−5.4

5.9+1.4
−1.4

52.03+0.49
−0.49

2,11,4,15
060904B 0.703 12+44

−44
· · · 308.9+8.2

−1.2
18,13,15

060926A 3.2086 50.2+5.4
−5.4 · · · 18.5+1.9

−1.9 2,11,5
061007A 1.262 5.2+2.2

−2.2 · · · 25.6+4.2
−0.9 2,13,15

061121 1.314 2.2+1.0
−1.0 · · · 30.8+3.9

−0.4 2,13,15
061126 1.1588 4.88+0.49

−0.49 · · · 10.7+1.4
−4.2 2,11,5
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Table 1 Continued.

GRB Redshift Normalized Lag Variability tp,o Ref.
(×102 ms MeV−1) (×10−3) (s)

071010B 0.95 40+16
−16 · · · 70.3+1.0

−1.0 2,13,15
080210A 2.641 25.9+8.3

−8.3 · · · 94.92+0.28
−0.28 2,11,15

080319B 0.937 2.30+0.60
−0.60 · · · 14.3+4.9

−0.5 2,13,15
080319C 1.95 17.4+9.1

−9.1 · · · 117+12
−12 2,13,7

090424A 0.544 1.4+1.4
−1.4 · · · 114.0+6.2

−1.3 2,13,5
091024A 1.092 91+60

−60 · · · 211.3+1.4
−1.0 2,13,15

100621A 0.542 120+31
−31 · · · 3443.0+0.6

−6.2 2,13,7
100906A 1.727 10.5+7.9

−7.9 · · · 46.0+5.1
−0.4 2,13,15

110213A 1.46 60+75
−75 · · · 100.8+6.2

−0.4 2,13,15

The third column listsτ∗, which has been converted into average time lag as mentionedin Sect.2.1. The
fourth column lists peak time of optical band in source frame. Redshift in the first column would be used
if we only know the peak time in observed frame. The last column lists the number of references of these
parameters, and we simply give the number of data available.
References:(1) Ashcraft & Schaefer (2007); (2) Ruffini et al. (2016); (3) Schaefer (2007); (4)
Mosquera Cuesta et al.(2008); (5) Gao et al.(2015); (6) Yonetoku et al.(2004); (7) Ghirlanda et al.(2012);
(8) Xiao & Schaefer(2009); (9) Kopač et al.(2013); (10)Foley et al.(2008); (11)Xiao & Schaefer(2011);
(12) Li et al. (2012); (13) Ukwatta et al.(2012); (14) Minaev et al.(2014); (15) Beskin et al.(2015); (16)
Wei et al.(2014); (17) Racusin et al.(2016); (18) Cano et al.(2017).

Section2.1. tp,o is the time difference between trigger time
and peak flux time in optical band in source frame. Most
of thesetp,o values came fromR-band light curves fitting
(Beskin et al. 2015; Gao et al. 2015; Kopač et al. 2013),
while some special ones such as GRB080319C was de-
duced fromN -band data (Liang et al. 2010). Considering
the large span oftp,o (from10 to105 s) and relatively small
bands difference (hundreds of nanometers), we simply
neglect the difference intp,o from detailed bands likeR-
band andN -band. Some papers only included data in
observers reference, so we need to convert them to the
source frame. The data can also be found in Table1.

3 ANALYSIS METHOD

As mentioned in Section2, we did some transformations
to make sure that all parameters are normalized. After this
procedure, we did correlation analysis and tried to find
any relation between these parameters. Here, we used five
statistical methods to determine whether two parameters
are correlated or not. The statistical methods that we
used included: Pearson coefficient, Spearman coefficient,
Kindall coefficient, cosine similarity, and correlation
ratio (Feigelson & Babu 2012). The first four relation
coefficients are all quantitative measures of the linearityof
two sets of data from different aspects, while the last one
judges the nonlinear correlation. From these assessment
methods we found that there are potential correlations
between these characteristic quantities. Finally, due to the
existence of asymmetric error bars in the data of these three
quantities, we used Monte Carlo (MC) simulation when we
fit these data in linear model.

For a two dimensional data set, with each point being
(xi

+σa

−σb
, yi

+σc

−σd
), whereσa 6= σb andσc 6= σd, we generate

a simulated data set as shown below:

xi,sim =

{

xi + ξi1 × σa, ξi1 ≥ 0,

xi + ξi1 × σb, ξi1 < 0,
(4)

yi,sim =

{

yi + ξi2 × σc, ξi2 ≥ 0,

yi + ξi2 × σd, ξi2 < 0,
(5)

whereξi1 and ξi2 are both random numbers that follow
standard normal distribution. For each simulated data set
we can get a set of fitting parameters and statistical
coefficients. Here we made105 times simulations and
obtained the distributions of these parameters. From the
distributions we can deduce the center values and uncer-
tainties of fitting parameters and statistical coefficients,
including slope, intercept, Pearson coefficient and so on.
Figure1 includes the distribution of slope and intercept of
τ∗ − V fitting, and Figure2 shows the result ofτ∗ − tp,o.
They all follow the Gauss distribution, and so we simply
take the central value and standard deviation as our fitting
central value and1σ error bar. The other parameters, like
Pearson coefficient, are all deduced from this method.

4 RESULTS AND DISCUSSION

4.1 τ∗-V

Figure3 shows the correlation between spectral lags and
variabilities of GRBs in our sample. There are 49 samples
in this panel. The red points mean their 1σ confidence
intervals contain zero in normal coordinate. When we did
the transformation from normal coordinate to logarithmic
coordinate, the difficulty arose. Similar with some previous
works (Ukwatta et al. 2010, 2012; Bernardini et al. 2015),
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Fig. 1 105 MC simulation realizations forτ∗ − V fitting. The left panel shows the probability density function (PDF) of
the slope while the right panel shows the intercept.
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Fig. 2 The same as Fig.1, but corresponds toτ∗ − tp,o fitting.

we did not consider such samples firstly (10; 20.4% of
the total samples). All the central values of lags in our
samples are positive. The blue points are samples we fit
with linear model involving MC method, and the black
line shows the fitting result. The black line is the best fit
to the data using MC simulation. From the figure, we can

deduce that there is an obvious negative trend between
these two quantities. Pearson coefficient of blue points is
−0.564, meaning a relatively good linearity, while the high
value of correlation ratio shows a nonlinear model is also
a good choice. Detailed fitting parameters and correlation
coefficients are displayed in Table2.
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Fig. 3 Variability (V ) as a function of spectral lag (τ∗).
The red points represent those 1σ error including zero
samples, and the blue points are samples whose lags are
well above zero. The black solid line is the best linear
fit using MC simulation, and its expression isV =
−0.0075(±0.0007)× log10 τ + 0.0351(±0.0024).
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Fig. 4 Optical peak times (tp,o) versus the spectral time
lag (τ∗). The data are the same as those in Fig.3. The black
solid line is the best linear fitting line using MC simulation,
and its expression islog10 tp,o = 0.382(±0.062) ×
log10 τ + 0.475(±0.214).

There usually is a time difference between the arrival
time of soft photons and hard photons in GRBs. However,
the reasons for this spectral lag are still controversial. As
we have discussed in introduction, the spectral lags may
have more than one origin. For different origins, spectral
lag may show diverse properties. From our results we may
give some constraints on these models.

Variability represents the complexity of GRB light
curves (Kumar & Zhang 2015). Its definition varies among
authors. In principle, it should be closely correlated with
the prompt emission of GRBs. Fernimore and Ramirez-

Ruiz and Reichart et al. (2001) proposed correlation
between GRB luminosity and variability (Kumar & Zhang
2015). Despite different definitions, it was found that
there existed a positive correlation betweenV and peak
luminosity: Lγ,p,iso ∝ V m, where the indexm ranges
from 3.3 (Reichart et al. 2001) to 1.1 (Guidorzi et al.
2005). This relation hints at the potential correlations
betweenV and some other characters of prompt emission
like τ∗, the spectral lag. Figure3 shows an obvious anti-
correlation between these two parameters. Here we cannot
explain the intrinsic reason for this picture, but it helps
to test some other discovered physics.Norris et al.(2000)
found an anti-correlation between spectral lag (τ in the
observer frame) and peak luminosity (Lγ,p,iso), reads

L53 ≈ 1.3× (τ/0.01 s)−1.14, (6)

whereL53 is the luminosity in unit of1053erg s−1. Some
others considered lags in the rest frame and obtained
similar results. From these two relations (L−V andL−τ )
above, we may easily deduce a simple negative correlation
betweenτ∗ and V . On this point, Figure3 displays a
consistent result. Note that we use the normalizedτ∗
instead of the direct spectral lag of two light curves in
different energy bands.

Table 2 Correlation Coefficients betweenτ∗ andV and
Fitting Parameters

Correlation Coefficients

coefficient type value p-value

Pearson −0.564 ± 0.049 0.00019
Spearman −0.586 ± 0.053 0.00009
Kendall −0.411 ± 0.043 0.00023

correlation ratio 0.957± 0.004
cosine similarity 0.708± 0.017

Linear fitting using MC

V = −0.0075(±0.0007) × log10 τ∗ + 0.0351(±0.0024)

4.2 τ∗-tp,o

For the same reason mentioned in Section4.1, we do not
consider four points whose central values are positive but
1σ error bar containing zero. The left samples contain 22
data points, which are shown in Figure4. The black line
shows the fitting result as well. Pearson coefficient of these
samples is 0.398, meaning a relatively weak linearity, but
the positive correlation betweenτ∗ and tp,o is obvious.
Detailed results are displayed in Table3.

In Figure 4, we may find a clear positive trends
betweenτ∗ and tp,o. This result is interesting for their
different emission region (τ∗ is the spectral time lag
of gamma-ray prompt emission whiletp,o belongs to
afterglow). Here we can interpret the result using the
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curvature model of time lag.Sari & Piran(1997) described
the angular spreading model. Considering an advancing
spherical shock whose Lorentz factor isΓ and radius
is R. Because of radiation beaming, we can only see
photons up to solid angle ofΓ−1. Two photons are emitted
simultaneously, but one is from the line of sight while the
other is from an angle ofΓ−1 away. The arrival time delay
due to this factor is

Tangular ≈ R/2Γ2c, (7)

where the approximationcos θ ≈ 1− θ2/2 has been used.
This timescale is called angular spreading timescale.

In the curvature model, the spectral lag should scale
with this angular spreading timescale (Sonbas et al. 2015).
That means a direct correlation betweenτ∗ andΓ. Several
papers gave different results. But they all gave a negative
correlation betweenτ∗ andΓ, i.e.

τ∗ ∝ Γ−α, (8)

whereα should be a positive number (Qin et al. 2004;
Shen et al. 2005; Lu et al. 2006). Shen et al. (2005)
showedα was around 1 whileLu et al.(2006) got the result
that it was at least 2 and varied with energy band.

Meanwhile,tp,o is closely correlated with the deceler-
ation time. In the constant ISM,

tp,o ∝ Γ−β , (9)

where β = 8/3 for adiabatic blast wave andβ =

7/3 for the radiative case (Sonbas et al. 2015). From the
expression ofτ∗ andtp,o onΓ, we may easily deduce the
following two relations:

tp,o
τ∗

∝ Γα−β , (10)

Slog tp,o,log τ∗ =
β

α
, (11)

where “S” denotes the slope betweenlog tp,o and log τ∗
like Figure 4. From Equation (10) we know these two
quantities are positively correlated, and in Equation (11)
we may get a rough result in that if we assumed a linear
relationship between them, then the slope oflog tp,o and
log Γ would be aroundβ/α. Its value should vary around
1 to 3 for different models. For example,Shen et al.(2005)
calculated a series of spectral lags using curvature model
from a set of relatively large range parameters. They
assumed the intrinsic spectral lag to be less than 1 s, and
the Lorentz factor of emission area above 50, which might
ignore some other possibility. Their result shows most
spectral lags are shorter than 0.1 s, which is obviously
different from the real situation. The curvature model
might show quite different result for some extreme values

like small Lorentz factor because beaming effect become
invalid and spreading time would be wrong with this
situation. This might be why the predicted value shows at
most seven times larger than our fitting result. This relation
also suggests a direct link between the prompt emission
and the afterglow emission through Lorentz factor of
emission region.

Table 3 Correlation Coefficients betweenτ∗ andtp,o and
Fitting Parameters

Correlation Coefficients

coefficient type value p-value

Pearson 0.398± 0.051 0.073
Spearman 0.372± 0.075 0.096
Kendall 0.255± 0.058 0.103

correlation ratio 0.812 ± 0.016
cosine similarity 0.959 ± 0.003

Linear fitting using MC

log10 tp,o = 0.382(±0.062) × log10 τ∗ + 0.475(±0.214)

5 CONCLUSION AND DISCUSSION

In this work we collected data of three parameters of
GRBs: spectral lag, variability and optical peak time and
did correlation analysis. We found that there existed a
negative correlation between variabilities and spectral lags.
This shows an opposite trend between optical peak times
and lags. The former resultV = −0.0075(±0.0007) ×

log10 τ∗ + 0.0351(±0.0024) helps us to verify some
relations which have been found before (Norris et al. 2000;
Reichart et al. 2001). The latter relationlog10 tp,o =

0.382(±0.062) × log10 τ∗ + 0.475(±0.214) might be
caused by the curvature model. Thetp,o − τ∗ relation is
also a bridge and tie to link prompt emission stage and
afterglow stage of GRBs, which is intriguing.

Here, we have not discussed those negative central
spectral lag situations due to limited samples. This reflects
the relative rarity of negative spectral lag to some degree.
The incomplete samples may also introduce bias. The
clustering of spectral lag in Figure3 is also noteworthy.
The samples are divided by the boundaryτ∗ = 103 s. Such
a character may indicate a different origin. The negative
1σ error bar for some points is also a confusing problem.
Because it has various potential sources, spectral lag
may exhibit different evolution with frequency (Wei et al.
2017). The negative value of lag may also indicate
an entirely different physics origin, especially for the
emission mechanism and radiation region.

In our calculation above, we did not consider those
data which could fall below zero because of the difficulty
in coordinate transformation, but it could introduce a bias.
Here we do an analysis that is not rigorous. First, the
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general trend of these two pairs of quantities should not
change no matter whether we take these red points in
Figure 3 and Figure4. Second, if we just consider the
center values regardless of error bars, we calculate the
Pearson coefficients and corresponding p-value as well.
The Pearson coefficient and p-value ofτ∗ − V case are
–0.55 and4.3 × 10−5 respectively, while forτ∗ − tp,o
case they are 0.27 and 0.18, respectively. From these
calculations we may get a qualitative conclusion that the
negative linear correlation betweenτ∗ and V is strong
enough, but the linear correlation between another pair of
quantities,τ∗ and tp,o, maybe only suitable for a small
part of GRBs, because if we did not consider the two
obvious outlying points, the correlation would be relatively
credible.
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