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Abstract Statistical relations are useful tools to comprehend thrensic physics processes of gamma-ray
bursts (GRBs). In this work we collect spectral lag, (variability (1) and optical peak timet{ ). We
find that there is a correlation between variabilities aretspl lags, reading &8 = —0.0075(£0.0007) x
log,, 7+0.0351(+0.0024) . There may also exist a relatively weak positive tendentyéen GRBs optical
band peak times and their spectral time lags. Its Pearsdficieet is 0.398, which indicates a weak linear
correlation. If we contain some “negative spectral lag” pks, then the latter relation would be worse due
to two outlying points. The — V relation is consistent with previous studies, and the jpesitend between

T andt, , indicates the spectral lag of GRB might be caused by the tuneaffect, but this conclusion is
not significant.
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1 INTRODUCTION was correlated withe, (Kumar & Zhang 2015 Besides,
relations between three variables were also discovered lik
Gamma-ray bursts (GRBSs) are irregular pulses of 9aMM&-iang-zhang relationE,, , — E-, 10— tp,, Wherety, , is the
ray radiation from the univers&kgmar & Zhang 2015  afterglow light curve break time in the rest frame of burst
After decades of research, there still remains many OPefl iang & Zhang 2005
guestions on this spectacular phenomenon. Thanks to
the observations made by severatay/X-ray satellites GRBs spectral lagr is the arrival time difference be-
(BeppoSAX, KONUS/Wind, HETE-2, Swift, Integral, tween high-energy and low-energy photod&atta et al.
AGILE, Fermi) and follow-up observations made by 2010. Since the discovery of this phenomenon in 1990s,
all kinds of observatoriesKumar & Zhang 201 we  authors have putforward several models to explainit. It can
are able to obtain various energy bands signals fronbe explained as the result of spectral evolution of radiatio
GRBs. From these observations we may deduce sonpmocess (e.g..Dermer 1998 Kocevski & Liang 2003
information on GRBs such as redshift, duration and vari-Shao et al. 201)7 It can also be explained by geometric
ability. Correlating these direct or indirect observatibn effect such as the curvature effect (eQin et al. 2004
parameters may shed light on the intrinsic characters ddhen et al. 20Q5Lu et al. 2006 Shao et al. 201)7 Some
GRBs.Amati et al.(2002 discovered the positive relation other models like quantum theory of gravity, violation of
betweenk, , and the geometrically-corrected gamma-Einstein equivalence principle also predict the time lag
ray energyl, is,, whereE, , is peak photon energy of when light travels through space. It is also highly possible
prompt spectrum in the source frame of GRBs. Similarlythat spectral lag has more than one origin. Spectral lags can
Wei & Gao (2003; Yonetoku et al. (2009 found the be used to study spectral evolution of GRBs (eBand
positive correlation betweett, , and L, i, Which 1997 and cosmography (e.gEllis etal. 200¢. Band
provided further evidence for Amati relation. Besides, it(1997 studied the time lag of discriminator light curves
suggests the overlapping hard-to-soft pulses might causend found the hard-to-soft evolution of GRBs spectrum. It
such intensity-tracking pattern of at least some burstss also connected with some other parameters of GRBs,
(Luetal. 2012. Ghirlanda et al.(2009 found thatE, ,  such as peak luminosity, which may help us to reveal
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the radiation mechanisms and some other characters d&blel. We also need to do some transformations because
GRBs. Norris et al. (2000; Norris (2002; Norrisetal. of all kinds problems. See Secti@il and Sectior?.2 for
(2005 found an anti-correlation between these twodetails.
characteristic quantities of GRBs, aiaka & Nakamura
(2001 proposed an off-axis angle model to interpret suck2.1 = — V' Relation
relation Shen et al. 2005

The variability (/) of GRBs is a quantitative measure
of whether its light curve is spiky or smootis¢haefer

We collected 49 GRBs which had bothand V' values.

But in different papers, the definitions or calculations of

2007. Typically, a larger value of variability means a bOth T and.V may be also different. Spectrql time lag
(7) is the time shift between soft and hard light curves

spikier light curve. To calculate the normalized variante o
light curve around a smooth version of this light curve is aof GRBs Schaefer 2007 Schaefer(2007 took 25-50

reasonable measurementiof(Fenimore & Ramirez-Ruiz keV as soft ba_nd and 100-300 _keV as hard band, and
2000, but it involves too many free parameteBchaefer calculated the time lag between light curves of these two

2007. Schaefef2007 improved the definition of variabil- bands. HowevelJkwatta et al.(2012 set 100-150 keV i

ity, and we adopt this definition here. For a background-_and 200-250 keV as soft and hard band separately. This
subtracted light curve (C), they did box smoothing to makd> @ common problem (e.gA_,\shgraft& Schaefer 2007

a smoothed light curve(moom). With these two light Xiao & Schaefer 2011 Considering the narrow energy

curves and uncertainty., the variability is: band range from soft to hard in most papers (in these
papers, the energy bands they took are all inside 25-300

v < (C = Camootn)? — 02 > keV), we can assume thataries with the energy band gap

2 (1) linearly. Then we deduced the average time lag of GRBs
Smoot (7+) using this simple formula:
Despite of different definitions, it still shows a positive .
correlation with GRB luminosityReichart et al. 2001 ™= 35E )
After- a prel|m|.nary corlrelat|on analysis, we f.o-und where the energy bands gap is defined as the difference
there existed possible relation among these quantities, so
. . . etween the center of two bands.
we did a work on data collection and analysis between . .
— Shao et al.(2017 found that the peak arrival time
spectral lag and variability of prompt phase of GRBs. . X .
: . . tpeak 1S @ function of photon energf (the mid value of
We also investigated the systematic trend betweemd .
. . each energy channel), namely:
optical peak time, , of afterglow.
This paper is arranged as follows. In Secti&nwe )8 3)
introduce our data collection and selection criteria. In lkeV’ 7
Section3, we show our analysis method. We present theyhere is power index. They gave a sample of GRBs and
statistic results and discuss the potential reasons for oysund 3 varied from 0 and 1. However, this relation only

tpeak(E) =to+ 7 % (

results in Sectiod. works when each energy band is small enough. Here we
take 25-50 keV as soft band and 100-300 keV as hard band.
2 DATA COLLECTION AND CRITERION In this situation, a precise model is unnecessary because

N _ of the large range of energy band. Figure 2Simao et al.
We collected three quantities of GRBs: spectral 1a (2017 shows that when we choose the energy bands being
variability (V) and optical band peak time of afterglow {4 edge of the energy range (0-300 keV), we can just use

phase {;,,), and discussed two correlations here, namelyy, o average spectral time lag, namelyas the calibrated
T — V andt — t, .. All data come from papers which spectral.

have been published. Due to the long distance from GRBs Variability has at least three definitionSdhaefer

to us, it is quite difficult to know all detailed information. 2007. Meanwhile, data defined in different way are not
Those GRBS with all parameters data we nged arerare. The..convertible. So we only chose those papers that
authors might also calculate spectral lags in GRBS SOUrCggeq the same definition. Here we used the definition of

frame@ernardini et al. 201,5Wei et al. 2017, but these Schaefe(2007. Data ofr andV of GRBs in our sample
data are insufficient up to now and so we do not use therg,, pe found in Tablé.

here. For the two samples here, we just obtained 49 and

25 GRBs which satisfied _the conditions separately. Nearly 5 _ _ t,.0 Relation

all of them are long duration GRBs (LGRBs) except GRB

040924A, whosd'90 is less than 2 s. Therefore, we do not We collected 25 GRBs which had bothandt, , values.
discuss short duration GRBs here. The data are listed iMalues of 7 were all converted intor, as shown in
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Table1 Spectral Lagt), Variability(V') and the Optical Peak Timg(,) of GRBs

GRB Redshift Normalized Lag Variability 5,0 Ref.
(x10%2 ms MeV—1) (x1073) (s)
3.7 1.3
910706 3'7:{gg 2'3%'? o 1,1
911225 3.9723 3.3 11
920116 3.455 QG.E;j 1,1
920802 2.0113 3073 1,1
9208148 17753 1312 1,1
921031 0.2570:99 3313 1,1
921110 44714 19.370-% 1,1
0.25 +0.2
921206 1 851%5 13.3;?‘% 1,1
930517 43.3{07;8 23.1171;5 11
930801 56710 571 1,1
940604 6.272°0 26.271°3 1,1
12 0.4
941026 63112 9.3754 1,1
941114 3.4%% 38.:1;}:? 1,1
950206 4.973703 171102 1,1
950223 96.%72;3 6.872‘424 1,1
951007 3.0123 23.9794 1,1
9604188 53122 2.9702 1,1
9608138 - -- 0.12%922 12,5708 11
970508A  0.835 31718 47105 233
971210 e 0.127958 24.670°% 1,1
971214B  3.42 18718 15.3%0-8 233
980703A  0.966 24.675°2 6.475% 234
0.37 +0.4
981130 1721057 7T 11
990123 1.6 9.871% 17.5701 16.2%8 23,45
6.2 0.7
990216B - -- 5.9:{?% 23t% ) e 11
990506A 1.3 2.5113 13.1791 2,34
990510A  1.619 1.8570-82 10%9] 234
0.61 +0.4
000524A - 1.9+71t8(l61 22.%%4 11
010921A  0.45 55718 14713 2,34
020124 3.2 4.9%37 131758 234
020813A  1.25 9.8122 13.1703 - 234
021004A 2.3 37738 3.8749 30.3788 23,35
030115A 25 25712 6.1793 - 6,3,3
030226A  1.986 18%1% 5.8T47 4340.0732 23,37
030329A  0.169 8.6722 9.7153 - 234
9.1 5.7
030429A  2.65 16757 55107 283
030528A  0.78 769751 2.277°9 - 233
041219A  0.31 10.972 : 213731 9,10,9
050126 2.29 133.667 598 3.9712 - 2,113
11 0.9
050318A  1.444 20177] 71108 2,12,3
050401A  2.898 31718 135713 2,133
050505A  4.27 34.6753 3.571°9 - 2,113
050525A  0.606 27718 13.5703 41.111%8 2,14,4,5
050820A  2.615 43718 : 118.077535 23,15
050922C  2.198 13.675% 3.375:8 2,134
051111 1.55 33728 24757 - 2,134
060110 5.0 46.375°3 . 8.3152 16,115
060124A  2.296 4.9723 1412 - 233
060210A  3.91 66750 1.9790% 80.075°2 2,13,4,15
060223A  4.41 23.475°2 7.5752 - 1734
060526A  3.22 38718 11.2739 45.6970 24 2,12,4,15
060605A  3.773 3087152 : 97.00%0 %5 23,15
060607A  3.075 96.6724 5.9717% 52.03%099 2,11,4,15
060904B  0.703 12+ 308.91%3 18,13,15
060926A  3.2086  50.275% 18.571% 2,115
061007A  1.262 52122 256755 2,13,15
061121 1.314 22119 30.8739 2,13,15
061126 1.1588  4.887079 107753 2,115
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Table 1 Continued.

GRB Redshift Normalized Lag Variability  tp,0 Ref.
(x10%2 ms MeV—1) (x1073) (s)

071010B  0.95 40118 e 70.3%1-0 2,13,15
080210A  2.641 25.975% e 94.927023% 211,15
080319B  0.937 2.301050 e 14.3%52 2,13,15
080319C  1.95 17.4751 - 117713 2,13,7
090424A  0.544 14te o 114.076-2 2,135
091024A  1.092 91%50 - 211.37 15 2,13,15
100621A  0.542 12073} o 3443.0705 2,137
100906A  1.727 10579 - 46.075°% 2,13,15
110213A  1.46 60172 - 100.870% 2,13,15

The third column listsr., which has been converted into average time lag as mention®dct.2.1 The
fourth column lists peak time of optical band in source fraRedshift in the first column would be used
if we only know the peak time in observed frame. The last caidists the number of references of these
parameters, and we simply give the number of data available.

References:(1) Ashcraft & Schaefer (2007); (2) Ruffinietal. (2016; (3) Schaefer (2007); (4)
Mosquera Cuesta et §2008); (5) Gao et al(2015; (6) Yonetoku et al(2004); (7) Ghirlanda et al(2012);

(8) Xiao & Schaefer(2009; (9) Kopact et al(2013); (10) Foley et al.(2008; (11) Xiao & Schaefer(2011);
(12) Li et al. (2012; (13) Ukwatta et al.(2012); (14) Minaev et al.(2014); (15) Beskin et al.(2015; (16)
Wei et al.(2014); (17) Racusin et al(2016; (18) Cano et al(2017).

Section2.1 ¢, , is the time difference between trigger time For a two dimensional data set, with each point being
and peak flux time in optical band in source frame. Most(z; 7%, y;77¢), whereo, # o, ando. # o4, We generate

1—op? yzfod

of theset,, , values came fronk-band light curves fitting a simulated data set as shown below:

(Beskin et al. 2015Gao et al. 2015Kopac et al. 2018 vt & X 0ur & >0,

while some special ones such as GRB080319C was de- Tisim = { vt X oy En - 0. (4)
duced fromN-band datal(iang et al. 201D Considering

the large span df, , (from 10 to 10° s) and relatively small Yi + o X 0oy Ein >0,

bands difference (hundreds of nanometers), we simply —Yisim = { Vi + &2 X 04, En <0, ()

neglect the difference if, , from detailed bands likéz-
band andN-band. Some papers only included data inwhere&; and¢&;; are both random numbers that follow

source frame. The data can also be found in Table we can get a set of fitting parameters and statistical
coefficients. Here we mad&0® times simulations and

obtained the distributions of these parameters. From the

distributions we can deduce the center values and uncer-
3 ANALYSISMETHOD tainties of fitting parameters and statistical coefficients

including slope, intercept, Pearson coefficient and so on.

As mentioned in Sectio@, we did some transformations Figurelincludes the distribution of slope and intercept of
to make sure that all parameters are normalized. After thig- — V" fitting, and Figure2 shows the result of, — ¢, o.
procedure, we did correlation analysis and tried to find! "€y all follow the Gauss distribution, and so we simply
any relation between these parameters. Here, we used filake the central value and standard deviation as our fitting
statistical methods to determine whether two parameter€ntral value ando error bar. The other parameters, like
are correlated or not. The statistical methods that wé&earson coefficient, are all deduced from this method.
used included: Pearson coefficient, Spearman coefficient,

Kindall coefficient, cosine similarity, and correlation 4 RESULTSAND DISCUSSION

ratio (Feigelson & Babu 2012 The first four relation , 4 -V

coefficients are all quantitative measures of the linearfity

two sets of data from different aspects, while the last on&igure 3 shows the correlation between spectral lags and
judges the nonlinear correlation. From these assessmeveriabilities of GRBs in our sample. There are 49 samples
methods we found that there are potential correlations this panel. The red points mean theis tonfidence
between these characteristic quantities. Finally, dudeo t intervals contain zero in normal coordinate. When we did
existence of asymmetric error bars in the data of these threhe transformation from normal coordinate to logarithmic
guantities, we used Monte Carlo (MC) simulation when wecoordinate, the difficulty arose. Similar with some prexgou
fit these data in linear model. works (Ukwatta et al. 20102012 Bernardini et al. 2015
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Fig.1 10° MC simulation realizations for, — V fitting. The left panel shows the probability density functiPDF) of
the slope while the right panel shows the intercept.
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Fig.2 The same as Fid., but corresponds te, — ¢, , fitting.

we did not consider such samples firstly (10; 20.4% ofdeduce that there is an obvious negative trend between
the total samples). All the central values of lags in ourthese two quantities. Pearson coefficient of blue points is
samples are positive. The blue points are samples we fit0.564, meaning a relatively good linearity, while the high
with linear model involving MC method, and the black value of correlation ratio shows a nonlinear model is also
line shows the fitting result. The black line is the best fita good choice. Detailed fitting parameters and correlation
to the data using MC simulation. From the figure, we carcoefficients are displayed in Tali?e
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Ruiz and Reichart etal. (200]) proposed correlation
between GRB luminosity and variabilitiKGgmar & Zhang

oo — —— Linear fitting 2015. Despite different definitions, it was found that
+ there existed a positive correlation betweéérand peak
0.03 —t luminosity: L, 50 o< V™, where the indexn ranges
{—;Lﬂ* from 3.3 Reichartetal. 2001to 1.1 Guidorziet al.
_ oo H*_I: I 2009. This relation hints at the potential correlations
~3— between and some other characters of prompt emission
2 T _\\ + like 7., the spectral lag. Figur& shows an obvious anti-
o T N correlation between these two parameters. Here we cannot

== i explain the intrinsic reason for this picture, but it helps
to test some other discovered physidsrris et al.(2000
10 15 20 25 30 35 40 45 50 85 found an anti-correlation betvyeeq spectral lagirf the
logt+ (ms Mev-1) observer frame) and peak luminositly/(;, iso), reads

Fig.3 Variability (1) as a function of spectral lag-(). Lsz ~ 1.3 x (7/0.01s) " 114, (6)
The red points represent those &rror including zero
samples, and the blue points are samples whose lags ambiere Lss is the luminosity in unit ofl0>3ergs~!. Some

well above zero. The black solid line is the best lineargthers considered lags in the rest frame and obtained
](I—’[O.li)%?g(i,v(l)%ozlg)]ﬂalggg Taidolggi,)f(xﬁgéggﬁr)‘.ﬁ —  similar results. From these two reI_atiorIs{Va_ndeT) .
above, we may easily deduce a simple negative correlation
betweenr, and V. On this point, Figure3 displays a
consistent result. Note that we use the normalized
40 instead of the direct spectral lag of two light curves in

i . Linearfitting different energy bands.
30 Table 2 Correlation Coefficients betweey and V" and
_ Fitting Parameters
£ 25
: e . . Correlation Coefficients
<20 _ coefficient type value p-value
L]
Pearson —0.564 £0.049 0.00019
1.5 ) r—}—«
= Spearman —0.586 + 0.053  0.00009
iy — 7 5 Kendall —0.411+£0.043  0.00023
+ correlation ratio 0.957 £+ 0.004
05 cosine similarity 0.708 £ 0.017
1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 - — -
logT. (ms MeV-1) Linear fitting using MC

V = —0.0075(£0.0007) X log;, 7« + 0.0351(40.0024)

Fig.4 Optical peak timest(, ,) versus the spectral time

lag (). The data are the same as those in Big-he black

solid line is the best linear fitting line using MC simulatjon

and its expression idog;ytpo = 0.382(£0.062) x 4.2 Titpo

I 0.475(40.214). . .
8107+ ( ) For the same reason mentioned in Sectah we do not

consider four points whose central values are positive but
There usually is a time difference between the arrivalis error bar containing zero. The left samples contain 22
time of soft photons and hard photons in GRBs. Howevergata points, which are shown in Figude The black line
the reasons for this spectral lag are still controversial. A shows the fitting result as well. Pearson coefficient of these
we have discussed in introduction, the spectral lags magamples is 0.398, meaning a relatively weak linearity, but
have more than one origin. For different origins, spectrathe positive correlation between and tp,o IS Obvious.
lag may show diverse properties. From our results we mapetailed results are displayed in Tal3le
give some constraints on these models. In Figure 4, we may find a clear positive trends
Variability represents the complexity of GRB light betweenr, andt,,. This result is interesting for their
curves Kumar & Zhang 201} Its definition varies among different emission region7{ is the spectral time lag
authors. In principle, it should be closely correlated withof gamma-ray prompt emission whilg, , belongs to
the prompt emission of GRBs. Fernimore and Ramirezafterglow). Here we can interpret the result using the



B. Liao et al.: Correlations among Variability, Optical Peak Time and @@ Time Lag of LGRBs 172-7
curvature model of time lagari & Piran(1997) described like small Lorentz factor because beaming effect become
the angular spreading model. Considering an advancinigvalid and spreading time would be wrong with this
spherical shock whose Lorentz factor Iisand radius situation. This might be why the predicted value shows at
is R. Because of radiation beaming, we can only seemostseven times larger than our fitting result. This refatio
photons up to solid angle & !. Two photons are emitted also suggests a direct link between the prompt emission
simultaneously, but one is from the line of sight while theand the afterglow emission through Lorentz factor of

other is from an angle df—! away. The arrival time delay
due to this factor is

Tangular ~ R/2F2C;

where the approximatiors § ~ 1 — 6% /2 has been used.
This timescale is called angular spreading timescale.

In the curvature model, the spectral lag should scale

with this angular spreading timescatonbas et al. 2015
That means a direct correlation betweerandI'. Several

papers gave different results. But they all gave a negative

correlation between, andT, i.e.

(8)

where o should be a positive numbeQin et al. 2004
Shenetal. 2005 Luetal. 2008. Shen et al. (2005
showedy was around 1 whileu et al.(2006 got the result
that it was at least 2 and varied with energy band.

—
Te T,

Meanwhilet,, , is closely correlated with the deceler-

ation time. In the constant ISM,

tp,0 X 1"—[‘37 (9)

where S 8/3 for adiabatic blast wave ang
7/3 for the radiative caseSpnbas et al. 2035From the
expression of. andt, , onI', we may easily deduce the
following two relations:

tp-,o
Tx

o T8, (10)

B

Slog tp,o,log Te — Ev

(11)

where ‘S” denotes the slope betweéogt, , andlog T,
like Figure 4. From Equation 10) we know these two
guantities are positively correlated, and in Equatit) (

emission region.

Table 3 Correlation Coefficients between andt,, , and
Fitting Parameters

Correlation Coefficients

coefficient type value p-value
Pearson 0.398 £ 0.051 0.073
Spearman 0.372£0.075 0.096
Kendall 0.255 + 0.058  0.103
correlation ratio 0.812 £+ 0.016
cosine similarity 0.959 £ 0.003

Linear fitting using MC
log( tp,o = 0.382(1+0.062) X log;q 7« + 0.475(40.214)

5 CONCLUSION AND DISCUSSION

In this work we collected data of three parameters of
GRBs: spectral lag, variability and optical peak time and
did correlation analysis. We found that there existed a
negative correlation between variabilities and specags|
This shows an opposite trend between optical peak times
and lags. The former result = —0.0075(+£0.0007) x
log,o 7« + 0.0351(£0.0024) helps us to verify some
relations which have been found befokofris et al. 2000
Reichartetal. 2001 The latter relationlog;tp 0
0.382(£0.062) x logyq 7« + 0.475(+0.214) might be
caused by the curvature model. Thg, — 7. relation is
also a bridge and tie to link prompt emission stage and
afterglow stage of GRBs, which is intriguing.

Here, we have not discussed those negative central
spectral lag situations due to limited samples. This reflect
the relative rarity of negative spectral lag to some degree.
The incomplete samples may also introduce bias. The
clustering of spectral lag in Figur@is also noteworthy.

we may get a rough result in that if we assumed a linealr he samples are divided by the boundary= 103 s. Such

relationship between them, then the slopdwft, , and
log I would be aroundB/«. Its value should vary around
1 to 3 for different models. For examplghen et al(2009

a character may indicate a different origin. The negative
1o error bar for some points is also a confusing problem.
Because it has various potential sources, spectral lag

calculated a series of spectral lags using curvature modetay exhibit different evolution with frequency\gi et al.

from a set of relatively large range parameters. They2017. The negative value of lag may also indicate
assumed the intrinsic spectral lag to be less than 1s, arah entirely different physics origin, especially for the
the Lorentz factor of emission area above 50, which mighemission mechanism and radiation region.

ignore some other possibility. Their result shows most In our calculation above, we did not consider those
spectral lags are shorter than 0.1s, which is obviouslygata which could fall below zero because of the difficulty
different from the real situation. The curvature modelin coordinate transformation, but it could introduce a bias
might show quite different result for some extreme valuedHere we do an analysis that is not rigorous. First, the
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general trend of these two pairs of quantities should notGhirlanda, G., Ghisellini, G., & Lazzati, D. 2004, ApJ, 6331
change no matter whether we take these red points ihirlanda, G., Nava, L., Ghisellini, G., et al. 2012, MNRAIQQ,
Figure 3 and Figured. Second, if we just consider the 483
center values regardless of error bars, we calculate th&uidorzi, C., Frontera, F., Montanari, E., et al. 2005, MNRA
Pearson coefficients and corresponding p-value as well. 363, 315
The Pearson coefficient and p-valueqf— V case are loka, K., & Nakamura, T. 2001, ApJL, 554, L163
-0.55 and4.3 x 10~° respectively, while forr, — t,,  Kocevski, D, &Liang, E. 2003, ApJ, 594, 385
case they are 0.27 and 0.18, respectively. From thes&opac, D., Kobayashi, S., Gomboc, A, etal. 2013, ApJ, 722,
calculations we may get a qualitative conclusion that thekumar, P., & Zhang, B. 2015, Phys. Rep., 561, 1
negative linear correlation between and V is strong L Z- Chen, L., & Wang, D. 2012, PASP, 124, 297
enough, but the linear correlation between another pair of "9 E-~W., Y, S--X., Zhang, J., etal. 2010, ApJ, 725,220
quantities,r, and ¢ maybe only suitable for a small Liang, E., &.Zhang’ B. 2005, ApJ, 633, .611

T poor ) : Lu, R. J., Qin, Y. P, Zhang, Z. B., & Yi, T. F. 2006, MNRAS,
part of GRBs, because if we did not consider the two

. . . . . 367, 275
gg;ci);zoutlymg points, the correlation would be reldljve Lu, R.-J., Wei, J.-J., Liang, E.-W., et al. 2012, ApJ, 75& 11
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