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Abstract The detection of gravitational waves (GWs) by pulsar timingarrays (PTAs) is not only a very
important supplementation of the verification of general relativity but also a new window to study the
evolution of supermassive binary black holes and the early universe. However, so far the detection sensitivity
of PTAs is not good enough to catch signals of GWs due to the disturbance of various noises. In this paper
we explore the influences of the correlated noises caused by the reference clock errors and solar system
ephemeris errors in pulsar timing on the detection of stochastic gravitational waves background (GWB).
We demonstrate the power-law integrated sensitivity curves of GWB detection under the impacts from
these correlated noises. From the simulated data, we find that the influence of different reference time-
scale is non-negligible, and the influence is even quite hugeif one uses a very old version of solar system
ephemeris. However, the impact from these correlated noises on the sensitivity curve is very limited for the
real observational data released by international pulsar timing arrays (IPTA). We also calculate the signal-
to-noise ratios based on the theoretical GW amplitude permitted by observations. Moreover, we study how
the detection sensitivity increases with more pulsar number and longer observation.

Key words: gravitational waves — pulsars: general — time — ephemerides

1 INTRODUCTION

Multiple millisecond pulsars monitored by radio tele-
scopes regularly form Pulsar Timing Arrays (PTAs).
Gravitational wave (GW) detection is one of the main
scientific goals of PTAs, because they can be regarded
as galactic-scale GW detectors (Ferdman et al. 2010;
Hobbs et al. 2010; Perera et al. 2019; Verbiest et al. 2010).
Gravitational radiation interferes with the propagation path
of the radio pulse between the pulsar and the Earth
Observatory. Pulsar timing analyses give the differences,
commonly known as timing residuals, between observed
pulse times of arrival (TOAs), normally referred to as the
barycentre of the solar system, and the predictions of a
model for the pulsar properties. The timing residuals con-
tains information about the GWs (Detweiler & Szedenits
1979; Estabrook & Wahlquist 1975; Sazhin 1978), and
GW signals can be extracted by correlating the timing
residuals of each pulsar pair (Detweiler & Szedenits 1979;
Jenet et al. 2005). For the two polarization modes of plus
and cross in the frame of general relativity, the correlation

of timing residuals from different pulsar pairs manifests
like a Hellings-Downs curve (Hellings & Downs 1983).

PTA is most sensitive to GWs in the10−9 – 10−7 Hz
frequency band, in which some typical sources are super-
massive black-hole binaries (SMBHBs) with masses in the
range of∼ 107–1010M⊙ during their slow, adiabatic in-
spiral phase (Jaffe & Backer 2003; Rajagopal & Romani
1995; Sesana et al. 2009). Theoretically, PTAs can also
observe other GWs sources, such as cosmic strings
(Kuroyanagi et al. 2013) and relic gravitational waves,
a background originating during inflation in the early
universe (Grishchuk 2001; Zhang et al. 2005; Zhao et al.
2013; Tong et al. 2016). The majority of SMBHBs are
individually unresolvable, but the incoherent superposition
of the very weak radiation from the many binaries in
the population produce a stochastic GW background
(GWB) which can be detected by PTAs (Sesana et al.
2008). Since the first GW event GW150914 was detected
directly by Advance LIGO (Abbott et al. 2016), many
coalescences of binary black hole were observed through
GWs. Moreover, GWs generated by a binary neutron
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star system GW170817 were detected by the network
of Advanced LIGO (LIGO Scientific Collaboration et al.
2015) and Advanced Virgo (Acernese et al. 2015) on 2017
August 17. It is reliable that GWs could be detected by
PTAs in the near future. If not, more stringent constraints
will be placed on aspects of the assembly history of
SMBHBs (Volonteri et al. 2003).

For the detection of GWs by PTAs, there are many
noises which lower the detectability, such as spatially
uncorrelated timing noise, stochastic monopolar clock-
like signal, stochastic dipolar ephemeris-like signal, solar
wind and so on. Numerous studies have already been
carried out about these noises, including construction
of a new timescale TT (IPTA16) (Hobbs et al. 2020),
constraining the masses of the planet-moons systems
tests (Caballero et al. 2018). In this paper, we will focus
on the two correlated cases that the referenced clock
errors and solar system ephemeris errors. As pointed by
Tiburzi et al. (2016), the existence of the two correlated
noises can affect the detection of GWB, even though
GWB causes quadrupolar signal among different pulsar
timing residuals, a different property from the above two
correlated cases. We will analyze the effects of referenced
clock errors and solar system ephemeris errors on the
sensitivity curve of GWB detection by PTAs, respectively.
Moreover, we will discuss the integrated sensitivity
curve for stochastic GWB proposed byThrane & Romano
(2013), which reflects a more credible detection of GWB.

This article is organized as follows. In Section2,
we present the mathematical formulation of integrated
sensitivity curves. In Section3, the GW sensitivity curve of
different clock- and ephemeris- combinations to isotropic
stochastic signals was simulated. In Section4, we then turn
our attention to searches for GWB by arrays of pulsars with
different numbers and observation time span. We conclude
with a brief summary in Section5.

2 INTEGRATED SENSITIVITY CURVE OF
PULSAR TIMING ARRAYS

In this section we introduce the integrated sensitivity
curve for stochastic GWB searches. The characteristic
strain that the PTA is sensitive to scales linearly with
f in the bandwidth range, The sensitivity curves are
usually constructed by taking the ratio of the detector’s
noise power spectral density to its sky- and polarization-
averaged response to a GW (Thrane & Romano 2013).
But for stochastic GWs which has a power-law frequency
dependence in the sensitivity band of the detectors,
to illustrate the improvement in sensitivity that comes
from integrating over frequency, we will show how the
integrated sensitivity is computed for GWB. We follow the
analysis of the paper (Thrane & Romano 2013).

The plane wave for the metric perturbationhab(t,x)
produced by a stochastic GWB can be expanded as
(Allen & Romano 1999):

hab(t,x) =
∫

∞

−∞
df

∫

S2 d2Ω̂
∑

A hA(f, Ω̂)eAab(Ω̂)ei2πf(t−Ω̂·x/c),

(1)

where f is the frequency of the GWs,eAab(Ω̂) are the
polarization tensors, and the indexA = +,× denote the
two independent polarizations. The unit vectorΩ̂ identifies
the propagation direction of a single GW plane.

The simplest GWB that could be considered is an
isotropic, uncorrelated, unpolarized and stationary back-
ground. For this background, the quadratic expectation
values have the form

〈

hA(f, k̂)h∗
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(
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(2)

where

Sh(f) =
3H2

0

2π2

Ωgw(f)

f3
, (3)

is the GW power spectral density, and GWB is often
described by power-law spectra. Hence, the fractional
contribution of the energy density in GW to the total
energy density required to close the universe can be written
as

Ωgw(f) = Ωβ

(

f

fref

)β

, (4)

where β is the spectral index andfref is a reference
frequency typically1 yr−1. The strain power spectral
density of GWB is usually defined by characteristic strain
amplitude as (Moore et al. 2015):

hc(f) ≡
√

fSh(f), (5)

which also follows a power-law form:

hc(f) = Aα

(

f

fref

)α

, (6)

whereAα means the amplitude of the GWB at a pivot
frequencyfref , and the indexα is related toβ as:β =

2α + 2. Different GWB models have different values of
α (Jenet et al. 2006). The index equal to−2/3 represents
the background caused by SMBHB coalescences. The best
current limit on the amplitudeAα of the characteristic
strain of the stochastic isotropic GWB from SMBHBs is
from Shannon et al.(2015), who report a value ofAα <

1× 10−15.
From the point of view of detection, the signal-to-

noise ratio (SNR) is an interesting and important value.
For a cross-correlation search for an unpolarized and
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isotropic stochastic background in the network of PTAs,
the expected SNR ratio is given by (Anholm et al. 2009):

ρ =
√
2T

[

∫ fmax

fmin

df

M
∑

I=1

M
∑

J>1

Γ2
IJ(f)S

2
h(f)

PnI(f)PnJ(f)

]1/2

, (7)

whereM is the number of pulsars, and the observation
time T has been assumed to be the same coincident for
each pulsar. The overlap reduction functionΓIJ (f) for the
pulsar pairI andJ , to a very good approximation, can be
written as (Anholm et al. 2009):

ΓIJ(f) =
1

(2πf)2
1

3
ζIJ , (8)

where
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is the Hellings-Downs function (Hellings & Downs 1983),
andψIJ is the separated angle between the two pulsars.
PnI(f) andPnJ (f) in Equation (7) are the auto power
spectral densities in detectorsI andJ due to the noise via
(Thrane & Romano 2013) :

Pn(f) = 2∆tσ2, (10)

where1/∆t refers to the cadence of TOA measurements
of the special pulsar, andσ is the corresponding root mean
square of the timing noise. The limits of integration shown
in Equation (7) are set as1/T for the lower one and
1/(2∆t) for the upper one, respectively.

Similar to the definition of characteristic strain
for GWs hc(f), the definition of the effective char-
acteristic strain noise amplitudeheff(f) is as follows
(Thrane & Romano 2013)

heff(f) ≡
√

fSeff(f), (11)

and the effective strain noise power spectral density for the
detector network is

Seff ≡
[

M
∑

I=1

M
∑

J>1

Γ2
IJ(f)

PnI(f)PnJ(f)

]−1/2

. (12)

The GW detection sensitivity curve is usually calculated
based on the fractional contribution of the energy density
in noises, which can be written as

Ωeff(f) =
2π2f3Seff(f)

3H2
0

. (13)

However, for the GWB with power-law spectra, the
power-law integrated sensitivity curve is more reasonable
to evaluate GW detection. The power-law integrated

sensitivity curve owns the improvement that comes from
the broadband nature of the signal. Through the integration
over frequency and considering the quantity relationships
mentioned above, one has

Ωβ =
ρ√
2T

[

∫ fmax

fmin
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2β

Ω2
eff (f)

]−1/2

, (14)

where Ωeff(f) can be converted bySeff(f) using
Equation (3). For a set of power-law indices and an
arbitrary choice of the referenced frequencyf ref , we can
calculate the value of the amplitudeΩβ such that the
integrated signal-to-noise ratio has some fixed value, e.g.,
ρ = 1. For each pair of values forβ andΩβ , we can
plot Ωgw(f), whose envelope is the power-law integrated
sensitivity curve (Thrane & Romano 2013):

ΩPI(f) = max
β

[

Ωβ

(

f

fref

)β
]

. (15)

When there only exists white noise in the timing
residuals, the detection rate is proportional to the weighted
mean square value of the timing noise. However, in
practice, the reference clock error and the solar system
ephemeris error will also affect the detection of GWB. In
the next section, we will analyze the effects of these two
correlated noises on the power-law integrated sensitivity
curve for GWB.

3 IMPACTS OF CORRELATED NOISES ON THE
DETECTION OF GWB

The TOA measurements of pulsars are relied on the
reference time, which is often served by the terrestrial
time (TT) published yearly by the Bureau International
des Poids et Mesures (BIPM) labelled by TT (BIPM).
If a bad atomic clock serves as the reference time, then
clock errors will be present in the pre-fit timing residuals
of all pulsars in exactly the same way, and will affect
the model parameter re-fittings for each pulsar. Similarly,
the solar system ephemeris (SSE) errors will also affect
both the timing residuals and the pulsar parameter fittings,
since the TOAs measured at the observatory need to be
converted to the solar system barycenter (SSB). However,
the effects of the clock-like error and the ephemeris-like
error on the timing residuals are different. In contrast
from the reference clock errors whose effect is monopolar,
the SSE errors will affect the timing residuals with a
dipolar property. That is, for two pulsars located in
opposite directions on the celestial sphere, the additional
timing residuals of the two pulsars caused by SSE errors
are exactly the opposite. Even though the effects of
GWB on timing residuals are quadripolar, the clock
errors and SSE errors are two factors disturbing the
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detection of GWB from PTAs. The clock errors and SSE
errors have been speculated on as sources of potential
bias during the process of GW detection (Tiburzi et al.
2016), and the recent work to search for GWs is with
clock- and ephemeris-free combination of timing data
(Tinto & Hartwig 2018). However, below we will focus on
the impacts of the reference clock errors and the SSE errors
on the GWB sensitivity curve through the simulated pulsar
timing data.

For the simulations, we use 20 millisecond pulsars
from Parkes Pulsar Timing Array data released 1 (PPTA
DR1) (Manchester et al. 2013) as our research object. The
timing model parameters of each pulsar are used as the
input quantities for simulations, but for all the pulsars the
reference clock and SSE are set to be TT (BIPM2018) and
DE436, respectively. During the simulating procedure, we
set the cadence of the measurements for each pulsar to
be 20 per year and the identical white timing noise to be
100 ns for all the pulsars. We find that the result shown
in Thrane & Romano(2013) slightly overestimated the
sensitivity. A detailed explanation can be seen in Appendix
A.

Once the reference time scale or the SSE is changed,
the timing model parameters should be re-fitted and the
corresponding post-fit timing residuals are formed. It is
worth to note that the change of the referenced clock or
SSE will lead to additional timing noises for calculations
in Equation (10). To study the effects of the reference
clock errors, we use three different reference atomic time
scales, TT (BIPM2018) and TT (TAI), respectively. Refer
to the impacts from SSE errors, for example we choose
JPL’s DE200, DE405 and DE436, respectively. Moreover,
in order to make a comparison with the case of the real
observational data, we simulated all the 20 pulsars with
a same time span ofT = 10 yr. The post-fit timing
residuals of all the pulsars with different time reference
or ephemeris reference become the original information to
start the analyses.

3.1 Influence of Referenced Clock Error on Detection
of GWB

The clock time system referenced by the pulsar timing
data has a good long-term stability, no frequency drift
or periodic variation, and should be consistent with SI
second. The reference clock time standard TT (BIPM2018)
is currently recommended. The TAI system is a near
real-time system weighted by key laboratories around the
world. The TT (BIPM) scale has been revised every year
by BIPM based on the data sets of TAI. It owns the long-
term stability of TAI and the accuracy of the frequency
standard, which make itself currently the most suitable
time reference for pulsar timing.

Table 1 Pulsars of 15 Years from IPTA DR1. TT
(BIPM2018) and DE436 were referenced.

Pulsar name wrms timing residual (µs)

J0218+4232 6.664
J0437–4715 0.243
J0711–6830 2.024
J0751+1807 3.513
J1024–0719 3.134
J1045–0719 3.303
J1603–7202 1.936
J1643–1224 2.709
J1713+0747 0.310
J1730–2304 2.119
J1744–1134 0.877
J1857+0943 0.511
J2124–3358 2.932
J2129–5721 1.221
J2145–0750 1.228

To study the influence of different referenced clock
on the sensitivity of detecting stochastic GWB, the solid
black and dashed blue curves in Figure1 are carried out
using TT (BIPM2018), TT (TAI) separately. Here, TT
(TAI) is referred to as TT realised by TAI, and differs
from TAI by a constant: TT (TAI)=TAI+32.184s. Since
the TT (BIPM) scale is revised on the basis of TT (TAI),
TT (BIPM) is a time scale superior to TT (TAI). As shown
in Hobbs et al.(2012), TT (TAI) fluctuates relative to TT
(BIPM) although after a quadratic polynomial has been
fitted and removed, which can be detected by ensemble
pulsar time scale. Figure1 shows that the sensitivity curve
based the reference time of TT (TAI) is about 3 times worse
than that based on TT (BIPM2018). This is consistent with
the theoretical expectation that TT (BIPM) performs better
than TT (TAI).

3.2 Influence of Planetary Ephemeris Error on
Detection of GWB

The ideal celestial reference frame is based on the
barycentric celestial reference system and the calculation
of the origin depends on the mass of the planet and its orbit
around it. Due to the estimation error of the planetary mass
calculation, the origin position of the celestial reference
frame is deviated from the ideal SSB. Therefore, if the
position vector of the earth to the SSB provided by the
planetary ephemeris is not completely accurate, it will
directly affect the delay estimation of the pulse signal from
the observation station to the SSB.

To study the influence of different versions of plan-
etary ephemeris on the sensitivity of detecting stochastic
GWB, the following curves in Figure1 is carried out using
different planetary ephemeris separately. It shows that GW
detection ability with DE405 is improved roughly about
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Fig. 1 Different power-law integrated sensitivity curves for different simulated pulsar data sets. The lowest sensitivity
curve expressed by the solid black line is based on the standard clock TT (BIPM2018) and the ephemeris DE436. The
dash-dotted blue line shows the sensitivity curve used TT (TAI) instead as the referenced time scale compared to the
lowest one. The dashed red line represents the sensitivity curve based on DE200 and TT (BIPM2018), while the dotted
pink line is based on DE405 and TT (BIPM2018). The thin solid black line shows the corresponding effective fractional
energy density without frequency integration, that is, theusually unintegrated sensitivity curve based on TT (BIPM2018)
and DE436.

two orders of magnitude on the basis of DE200. The big
discrepancy is originated from the rough consideration
of DE200 and the greatly improvement of the ephemeris
starting from DE405. DE200 was created in 1981 and it
includes nutations but not librations, while DE405 was
released in 1998 and it added several years’ extra data from
telescopic, radar, spacecraft, and VLBI observations (of
the Galileo spacecraft at Jupiter, in particular). The method
of modeling the asteroids’ perturbations was improved,
although the same number of asteroids were modeled.
The ephemeris was more accurately oriented onto the
ICRF. Since DE405 is improved on the basis of DE200
for 14 years, that the accuracy of observation data is
improved and the theoretical model is updated makes
DE405 more accurate than DE200. Compared to the gap
between DE200 and DE405, DE405 has been very close to
DE436. So, the sensitivity curve calculated with DE405 is
only slightly worse than that with DE436.

4 DETECTION ANALYSIS CONFRONTING WITH
OBSERVED DATA

The power law integrated sensitivity curves analyzed
above were based on the simulated TOA data that only
contain white noise. However, in real data there always
exist red noises more or less. In this section, we analyze

the sensitivity curves and the observation strategy on them
based real observational data.

After enough time has elapsed, pulsar timing arrays
enter a new regime where the signal to noise only
scales as

√
T . In addition, in this regime the quality

of the pulsar timing data and the cadence become
relatively unimportant, and the best strategy to increase
the detectability of GWB in this regime is to increase the
number of pulsars in the array (Siemens et al. 2013). In
this section, we discuss the detectability of GWB with
the two subsets of pulsars which are selected from the
International Pulsar Timing Array data release 1 (IPTA
DR1) 1. To reduce the effects from red noises, we choose
combination ‘B’ of IPTA DR1 because the red noises
of some pulsars were partially suppressed. Both subsets
include the pulsars of 10 yr span, but with different pulsar
numbers, one include 15 pulsar while the other 25. To
evaluate the SNR and the sensitivity curve easily, as can
seen from Equations (7) and (14), we set all the pulsars
has the same cadence equalling one every two weeks and
the same data span. So, for all the chosen pulsars, we
cut out the timing residual sequence of pulsars based on
the time span standard of J0030+0451, which has a total
observation time span of 10 yr. Only the timing residuals

1 http://www.ipta4gw.org

http://www.ipta4gw.org
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Table 2 Pulsars of 10 Years from IPTA DR1

Pulsar name wrms (µs) wrms (µs) wrms (µs)
TT (BIPM2018) and DE436 TT (TAI) and DE436 TT (BIPM2018) and DE405

J0030+0451 1.497 1.495 1.500
J0034–0534 4.414 4.413 4.418
J0218+4232 6.578 6.573 6.580
J0437–4715 0.244 0.239 0.296
J0613–0200 1.070 1.071 1.072
J0621+1002 9.879 9.864 9.899
J0711–6830 1.989 1.987 1.991
J0751+1807 3.406 3.408 3.408
J1012+5307 1.660 1.661 1.662
J1024–0719 2.949 2.917 2.943
J1045–4509 3.055 3.053 3.061
J1600–3053 0.846 0.840 0.842
J1603–7202 1.813 1.813 1.820
J1640+2224 1.607 1.612 1.607
J1643–1224 2.652 2.668 2.642
J1713+0747 0.295 0.326 0.272
J1730–2304 2.101 2.111 2.109
J1744–1134 0.863 0.873 0.867
J1857+0943 0.514 0.514 0.514
J1909–3744 0.188 0.190 0.194
J1918–0642 1.553 1.553 1.551
J2033+1734 13.338 13.338 13.336
J2124–3358 2.794 2.792 2.793
J2129–5721 1.151 1.153 1.150
J2145–0750 1.223 1.222 1.219

during the common time span of 10 yr will be retained.
The two subsets of the concrete pulsars’ name are listed in
Table1 and Table2, respectively, where initial information
for calculation including the weighted root mean square
timing residuals (wrms) and the positions of pulsars were
also listed Table2. Note that, since the post-fit timing
residuals serve as the timing noise in Equation (10) now,
the auto power spectral densities of the pulsars are different
from each other.

Improving on earlier work (Kaspi et al. 1994),
(Jenet et al. 2006) developed a frequentist technique in
statistics, and had calculated an upper limit onhyr for
different values ofα. Recently, Shannon et al.(2015)
provided an upper limit ofhyr < 1 × 10−15 at the 95%
confidence level forα = −2/3 using data from PPTA
and available observations from the Arecibo Observatory.
According to the ideal amplitude of GW which can be
detected, we list the calculated SNR of two subsets of
pulsars with different numbers in Table3. According to
Equations (6), (7) and (11), it can be found that the values
of ρ are proportional to the square of characteristic strain
GW amplitudeh. However, it is worth to point out that, for
an amplitude ofAα = 1015, these pulsar timing arrays
operate at thestrong-signal limit (Siemens et al. 2013),
thus the corresponding values of SNR in Table3 were
overestimated.

According to Equation (15), Figure2 plots the power-
law integrated sensitivity curves for GWB using the two
pulsar subsets which contains same time span but different

Table 3 ρ of Different Subsets

Pulsar Number Time Span Aα ρ

25 10-year 10−15 7.0797
10−16 0.0708

15 10-year 10−15 3.8154
10−16 0.0382

pulsar numbers withρ = 1 and ρ = 5, respectively.
The minimum detectable energy density of a GWB will
be reduced by about40%, if one increases the number of
pulsars from 15 to 25. That 90% detection probability is
typically reached when the average SNR is significantly
larger than 3 (Siemens et al. 2013). Thus, in the following
discussions, we typically fix SNR to be 5.

It is believed that the improvement would be even
more significant if the pulsar number is about 25 or more.
To study the effects of observational time span, we use the
pulsar data set shown in Table1 with 10-yr span and 15-
yr span, respectively, to calculate the corresponding power
law sensitivity curves. The results are shown in Figure3,
where one can find that data set with longer observational
time span performs obviously better than that with shorter
during all frequency band,which means that increasing the
observational time span can enhance the detection ability.

We also want to analyze the real observed sensitivity
curves under effects of clock errors and SSE errors.
Here, we choose the 10-years observed data set as
our researching object, and the SNR is set to be 5.
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Fig. 2 Different power-law integrated sensitivity curves for different pulsar number data sets. The lowest sensitivity curve
expressed by the dashed black line is based on the 10-yr time span data set in which 25 pulsars are included. The dash-
dotted red line shows the sensitivity curve used 10-yr time span data set in which 15 pulsars are included. The solid lines
show the same results but withρ = 5.

Figure4 plots the power-law integrated sensitivity curves
for GWB using the 10-years subset, and the partially
enlarged view of Figure4 around 3 × 10−9 Hz. We
have found that searches for GWB signals will benefit
from the implementation with more accurate solar system
ephemeris and referenced clock. Although from Figure4,
the curves drawn by changing the ephemeris and the
referenced clock are almost coincident, from the partially
enlarged view, the sensitivity enhancement of DE436 over
that from pulsar experiments with DE405 can be observed
in the lower-part of the integrated sensitivity curve. We
can concluded that as the timing measurements’ accuracy
increases, the difference between the curves caused by
changing the SSE and the reference clock will be more
noticeable.

5 CONCLUSIONS

We discussed the impacts of two different correlated noises
on the GWB detection. All the analyses are based on the
power law sensitivity curve of GWB. First, we discussed
the influences of two different reference atomic time scales
in pulsar timing on the power law sensitivity curve of
GWB. It was found that sensitivity would increase three
times if one use TT (BIPM2018) as the reference time
scale instead of TT (TAI). As TAI is realised by more
than 500 atomic clocks at 76 laboratories for time keeping
around the world, and is published monthly. Thus, TAI is

in fact the most stable atomic time scale for a quasi real-
time realization. Even so, if the reprocessed version TT
(BIPM2018) serves as the reference time, the power law
integrated sensitivity still has a significant improvement.
Therefore, the influences of the reference clock error is
nontrivial. Second, we analyzed the influences of different
versions of DE ephemeris. Even though the sensitivity
curve will be worse about two orders of magnitude based
on DE200, the result based on DE405 is very close to the
result based on DE421. Since the latest version of SSE is
more and more accurate, the gaps between the two adjacent
versions of SSE will get smaller and smaller. Therefore, in
future the SSE error would be an unimportant factor on the
detection sensitivity of GWB by PTAs.

For the real observation data sets, we selected
millisecond pulsars from IPTA DR1 with time spans
overlapping longer than 10 years , forming two pulsar
subsets with different pulsar numbers separately. The
timing residuals of all the participated pulsars are reserved
according to the common duration, and the resulting wrms
timing residuals serve as the timing noise to calculate the
corresponding noise power spectral densities. First, we
calculated the SNRs for the two pulsar subsets using the
maximum amplitude of GWB permitted by observations
and lower amplitude, respectively. It is proven that timing
observations of more millisecond pulsars will indeed give
an improvement in searching for stochastic GWB. Besides,
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Fig. 3 Power law integrated sensitivity curves of the pulsars listed in Table1 but with different observation durations. The
blue dashed line represents the 10-years observation, and the red solid line represents the 15-years observation.
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Fig. 4 Power law integrated sensitivity curve of 10-yr time span data set in which 25 pulsars are included, but calculated
with different solar system ephemeris and referenced clock.

to estimate the benefit from the observation duration, we
fixed 15 pulsars but with 10 years span and 15 years
span, respectively. We found that the longer data set will
gain an improvement in detection ability in all observed
frequency bands. Therefore, the power law sensitivity
curve will benefit from the observation strategy with arrays

of more millisecond pulsars and longer observation time.
Due to existences of unresolvable red noises, whether
different reference times or different SSE models lead
to little differences of the power-law sensitivity curves.
However, this does not mean that the reference clock errors
and SSE errors are not important for GWB detection.
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In the analysis of NANOGrav 11-yr data set, the upper
limit on a stochastic GWB was found to be sensitive
to the SSE model assumed (Arzoumanian et al. 2018),
which motivated new techniques such as BayesEphem
(Vallisneri et al. 2020) to account for SSE uncertainties
in the gravitational wave analysis. However, for the rapid
improvement in pulsar timing precision, the more accurate
reference time-scale and SSE seem to be increasingly
important.
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Appendix A: A COMPARISON OF CALCULATING
THE INTEGRATED SENSITIVITY
CURVES

In this appendix, we show a comparison between the
results of the integrated sensitivity curves shown in
Thrane & Romano(2013) and our results in this paper. We
think that the result shown inThrane & Romano(2013)
(below we call it “Thrane’s result” for short) overestimated
the detection sensitivity of GWB. For comparison, we also
set the cadence of the measurements for each pulsar to be
20 yr−1, the root mean square of the white timing noise
to be 100 ns identically and total observation time span
T = 5, which are exactly the same as those employed in
Thrane & Romano(2013). Therefore, the resulting power
spectral density of the detector is exactly the same as each
other, since it is only dependent on the cadence and the root
mean square of the timing noise. However, the 20 pulsars
we used are not completely the same as those employed in
Thrane & Romano(2013). This difference will only lead
to differenteffective number defined as follows,

N ≡
M
∑

I=1

M
∑

J>1

ζ2IJ , (A.1)

whereM is the total number of the participant pulsars,
I and J denote the individual pulsars, andζIJ is the
Hellings-Downs function defined as Equation (9). The
pulsar pairs of the 20 pulsars chosen from IPTA used in
Thrane & Romano(2013) give aneffective numberN =

4.74, while the pulsar pairs that we choose from PPTA give
N = 4.73. Due to Equation (14), this tiny difference will
lead to negligible discrepancy of the integrated sensitivity
curve.

For the calculations of the integrated sensitivity
curve, we found that the results sensitively depended
on the integration step during numerically integrating
Equation (14). Thus, we tried many cases of the integration
steps (denoted bydf ), and the corresponding results are

shown in FigureA.1, where Thrane’s result was also
plotted for comparison. It is clear from FigureA.1 that
different integration steps lead to different integrated
sensitivity curves, especially for the most sensitive
region. However, the integrated sensitivity curve will be
convergent to a stable state oncedf is chosen to be
small enough. On the contrary, ifdf is too large, the
corresponding sensitivity curve will be overestimated. This
can be explained as follows. For Equations(8)-(13), it is
not hard to see thatΩeff ∝ f5. Thus, the integration
function will exhibit a red like spectrum forβ < 5, i.e.,
the integration function∝ fa with a < 0. Therefore,
for β < 5 and fixed integration limits, the integration
implied in Equation (14) will be bigger than its true value
if the integration step is set to be too large in the process
of numerical calculation. Then, the sensitivity curve will
be overestimated in turn. In Thrane’s result,df was set
to be 1/T , which can be seen in their public code. So,
we think the power-law integrated sensitivity curve in
Thrane & Romano(2013) overestimated the sensitivity.
There is another difference in that, the upper integration
limit fmax hiding in Equation (14) was set to befmax =

10−7 Hz, while fmax = 1/(2∆t) in our results. It is
clear from Equation (14) that, a larger value offmax will
improve the detection sensitivity. This is the reason why
Thrane’s result is different from our result with the case
of df = 1/T . In addition, the unintegrated sensitivity
curve,Ωeff(f), was plotted in FigureA.1 for comparison. It
can be seen that, even though the un-integrated sensitivity
curve is lower than the integrated case at the lowest
sensitivity region, the integrated sensitivity curve enhances
the detectability at other regions. Moreover, it is interesting
to find that, the most sensitive region is localized atfmin

for the case of unintegrated sensitivity curve, while in the
integrated case the most sensitive region will be localized
around a frequency which is slightly larger thanfmin.
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