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Abstract Targeting the problem of high real-time requirements in astronomical data processing, this paper

proposes a real-time early warning model for light curves based on a Gated Recurrent Unit (GRU) network.

Using the memory function of the GRU network, a prediction model of the light curve is established, and

the model is trained using the collected light curve data, so that the model can predict a star magnitude

value for the next moment based on historical star magnitude data. In this paper,we calculate the difference

between the model prediction value and the actual observation value and set a threshold. If the difference

exceeds the set threshold, the observation value at the next moment is considered to be an abnormal value,

and a warning is given. Astronomers can carry out further certification based on the early warning and in

combination with other means of observation. The method proposed in this paper can be applied to real-time

observations in time domain astronomy.
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1 INTRODUCTION

In the development of astronomy, time domain astronomy

has become an important development direction (Graham

et al. 2012). It is based on high-resolution observations

to anticipate, discover and study of extreme, rare astro-

nomical phenomena in the universe that are related to

cutting-edge astrophysics, such as extreme physical pro-

cesses, dark energy, and the origin of life. In addition,

these anomalous astronomical phenomena can also help

scientists detect unusual, rare or unknown astronomical ob-

jects and phenomena (such as high redshift quasars, brown

dwarfs, pulsars, etc.) (Dalcanton et al. 1994). However, this

astronomical phenomenon of time domain variation is not

easily detected with traditional observing equipment, and

it requires a sky survey with high time domain resolution

(Condon et al. 1998). GWAC (the Ground-based Wide-

angle Camera array) is part of the SVOM (Space Variable

Objects Monitor) of Sino-French cooperation. GWAC is

exposed every 15 seconds and can get millions of light

curves throughout the day. However, the analysis and pro-

cessing of GWAC observation data faces many challenges,

mainly including: (1) A large amount of data. For exam-

ple, the amount of data reaches the level of TB, and it will

grow rapidly in the later stages. At the same time, the real-

time requirements are higher, that is, the processing effi-

ciency of the data has higher requirements. (2) The data

is diverse. Since the varying periods and brightness of dif-

ferent variable stars are different, the form of anomalies

is different, making the data diverse. In the time domain

signal processing tasks (Battistelli et al. 2008), one of the

important tasks is the real-time early warning task of the

variable sources. The scientific goal is to detect the ab-

normal light curves. Real-time warnings not only have a

wide range of applications in the field of time domain as-

tronomy, but also in other fields such as geological disas-

ters (Zhang et al. 2005), financial crises in the economic

field, and crisis events in the field of power grid secu-

rity. At present, abnormal light curves are detected from

massive datasets, which creates fatigue for astronomers,

thus increasing the probability of misjudgment. However,

GWAC puts higher demands on the efficiency and accu-

racy of light curve anomaly detection. Therefore, it is im-

perative to study faster and more effective abnormal light
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curve detection. How to detect abnormal celestial signals

(such as transient sources) from the massive light curve and

give real-time warning is an important technical problem in

real-time monitoring. An example is the US LSST (Large

Synoptic Survey Telescope), whose scientific goal is to

search for optical transient sources (Sguera et al. 2006).

At present, the main idea of the identification of the vari-

able source is to continuously collect the data from the

telescope for the same sky area within a specified period

of time, and then to find the source of the change and the

source of the transient according to the obtained data. The

specific methods mainly include star table matching and

image subtraction. The star table matching method mainly

matches the observed star table with a template star table

(Bhatti et al. 2010; Telezhinsky et al. 2010). If a star ap-

pears in the observed star table and there is no relevant

record in the template star table, then this new emerging

star is further studied to determine if it is the source of the

transients being sought. Another method of detecting tran-

sient sources is where the image is poor and the candidate

for the transient source is looked up based on the image

residual map (Alard 2000; Bramich 2008). The methods

of star table matching and image difference are simple and

easy, but the two methods are relatively ineffective, and

are particularly sensitive to noise in the observations. The

most important thing is that they do not meet the real-time

requirements of current time domain astronomy.

Recently, machine learning has made significant

progress in the fields of computer vision (Lecun et al. 2015;

Zhao & Du 2016; Zhang et al. 2015), natural language pro-

cessing (Young et al. 2018; Sarikaya et al. 2014), speech

recognition (Hinton et al. 2012; Abdel-Hamid et al. 2014),

etc. Machine learning has also been widely used in as-

tronomical data processing (Liu et al. 2019; Jones et al.

2017; Hon et al. 2017 ). However, recurrent neural net-

works (Zaremba et al. 2014) have shown strong advantages

in many machine learning tasks, especially when the in-

put or output has variable length characteristics. Although

the regression problem is a hot topic in the field of com-

puter research, there are few studies on the characteristics

of data in astronomy and the regression prediction for spe-

cific scientific needs. In order to meet the real-time require-

ments for variable source detection, the main idea for a

real-time early warning system is based on the prediction

of time series signals. For example, using the prediction

model of the Autoregressive Integrated Moving Average

(ARIMA) (Dickey 1984), the light curve in a future pe-

riod is predicted. If the actual observation exceeds a cer-

tain range of the predicted value, it is considered to be an

abnormality. This method is sensitive to the length depen-

dence of the window. Later, some scholars proposed a light

curve anomaly detection algorithm based on the Recurrent
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Fig. 1 GRU Structure. zt and rt represent the update gate and

reset gate respectively.

Neural Network (RNN) model (Naul et al. 2018). The idea

in this paper is similar to ARIMA. It also learns the data

in a known period of time, and then predicts the data in

the subsequent period based on the known data. However,

RNN will produce a gradient disappearance during the

training process, resulting in many parameters not being

effectively returned.

Based on the above analysis, the most important point

about real-time anomaly warning is establishing a predic-

tion model that represents normal or abnormal samples.

However, due to the limited amount of abnormal data, this

paper starts from the establishment of a model that can ef-

fectively learn the characteristics of normal samples, and

proposes an anomalous light curve early warning model

based on a Gated Recurrent Unit (GRU). The model learns

the characteristics of the normal light curve by means of

neuron connections and predicts the trend of the normal

light curve.

Our paper is structured as follows. The basis algo-

rithm is described in Section 2. In Section 3, we describe

data preprocessing and the structure and algorithm of the

real-time early warning model. Section 4 discusses exper-

imental results obtained from the model proposed from

Section 3. Finally, conclusions are presented in Section 5.

2 BASIS ALGORITHM

GRU (Cho et al. 2014) is an abbreviation for Gated

Recurrent Unit, which is in fact a variant of Long Short-

Term Memory (LSTM) (Hochreiter & Schmidhuber 1997).

The LSTM consists of three gates: the forget gate, the in-

put gate, and the output gate. The GRU consists of only

two gates, the update gate and the reset gate, as shown in

Figure 1.

zt and rt in Figure 1 represent the update gate and re-

set gate of the GRU, respectively, where the update gate is

used to control how much of the previous state information

is involved in the current state. The larger the value of zt,
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the more information from the previous state is included in

the current state operation. The smaller the value of the re-

set gate rt, the more the information of the previous state is

ignored. From the GRU graph, we can find the relationship

between the variables in the graph. The expression for the

network forward propagation is as follows:

rt = σ(Wr · [ht−1, xt]),

zt = σ(Wz · [ht−1, xt]),

h̃t = tanh(Wh̃ · [rt ∗ ht−1, xt]),

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t,

yt = σ(Wo · ht).

(1)

The [ ] in the expression represents the vector connec-

tion, and ∗ represents the multiplication of the elements in

the matrix. According to Equation (1), in the GRU train-

ing phase, the parameters that need to be optimized and

learned in the backward propagation are Wr, Wz and Wh̃,

i.e.:
Wr = Wrx + Wrh,

Wz = Wzx + Wzh,

Wh̃ = Wh̃x + Wh̃h.

(2)

Suppose that the input of one of the output layers is

yi
t = Woh, and the output is yo

t = σ(yi
t), then the loss

function at time t is Et = 1

2
(yd − yo

t )2. Then the over-

all loss function for a single sample is E =
∑T

t=1
Et.

According to the chain derivation rule, we optimize the

parameters in the network, and the derivation process is

as follows:

∂E

∂Wo

= δy,tht,
∂E

∂Wzx
= δz,txt,

∂E

∂Wzh
= δz,tht−1,

∂E

∂Wh̃x

= δtxt,

∂E

∂Wh̃h

= δt(rt · ht−1),

∂E

∂Wrx

= δr,txt,
∂E

∂Wrh

= δr,tht−1,

δy,t = (yd − yo
t ) · σ′,

δh,t = δy,tWo + δz,t+1Wzh + δt+1Wh̃h · rt+1

+ δh,t+1Wrh + δh,t+1 · (1 − zt+1),

δz,t = δt,h · (h̃t − ht−1) · σ
′,

δt = δh,t · zt · φ
′,

δr,t = ht−1 · [(δh,t · zt · φ
′)Wh̃h] · σ′.

(3)

3 PROCESS OF ABNORMAL WARNING

ALGORITHM

The GRU model is a common regression prediction model.

In the process of modeling the normal light curve, the

GRU-based network model is robust to normal light curve

prediction. However, we need to give real-time warning for

an abnormal light curve in the actual problem, so the idea

adopted in this paper is to use the GRU model to predict

the light curve in the future. Then, according to the model,

the threshold of the historical light curve learning result

is given. The threshold is completely driven by data. If an

observation from the telescope for a period of time in the

future exceeds the set threshold, the signal is considered to

be an anomaly signal and an early warning is given.

3.1 Data Preprocessing

The original light curve observation signal is easily pol-

luted by light, so sometimes the overall trend of the signal

we observe is rising or falling, that is, the range of observa-

tions in the normal light curve is relatively large. In order to

speed up the model training, we first normalize the original

observation data and scale the range of the original obser-

vations to [0,1]. Figure 2 shows the raw observation data

and the results of the data processing, where Figure 2(a) is

the raw observation light curve data, and Figure 2(b) is the

normalized light curve data.

3.2 Real-time Early Warning Model Structure and

Algorithm Description

This section mainly introduces the GRU for the Warning

of Abnormal Light Curve (GRUWALC) model of abnor-

mal light curves based on a GRU algorithm and gives a

detailed description of the algorithm. The network struc-

ture is based on the GRU model design, and the structure

of GRUWALC is shown in Figure 3. The network structure

includes an input layer, two GRU layers, a fully connected

layer, and an output layer. The input data is the acquired

light curve, and the output is the model to predict the out-

put value of the light curve at the next moment. The spe-

cific parameter settings in the model are shown in Table 1.

Among them, the first layer and the second layer represent

GRU units, wherein the output dimension of the GRU of

the first layer is 50, and the dimension of the GRU output

of the second layer is 30. Then, the data output from the

second layer is connected to the fully connected layer, the

output dimension is 40, and the final output layer has a di-

mension of 1. In addition, other specific parameters are de-

scribed as follows: the activation function uses tanh, and its

function is to give the neural network model a nonlinear fit-

ting ability. There are many activation functions, and tanh

is used here; the proportional parameter dropout=0 for

random killing of neuronal connections; and bias parame-

ter b=0. Details of the algorithm are given in Algorithm 1.

The model input proposed in this paper is an 800-

dimensional time series signal, which means that the first

800 data points are used as training samples. After the net-
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Fig. 2 Raw observation light curve data and normalized light curve data. (a) Raw observation light curve data. (b) Normalized light

curve data.

Fig. 3 GRUWALC network structure. Include input layer, two GRU layers, full connection layer and output layer.

Algorithm 1 The training process of GRUWALC
Input:
The number of training set, Ntrain;
The number of test set, Ntest;
The number of samples taken from the training set for each training, batchsize;
The number of training times in the full sample of the training set, epoch;
Output:
prediction value, ypre;
1: for The loop count < epoch do
2: Choose batchsize samples from training set.
3: Save GRUWALC model.
4: Save weights and parameters.
5: Test trained GRUWALC.
6: return ypre.

Table 1 The Structure and Setting Parameters for GRUWALC
Networks

No. Layer Output

1 GRU 50

2 GRU 30

3 Fully connected 40

4 Output 1

work model is trained, the model parameters are saved, and

then the predicted values for the future period are given ac-

cording to the trained model. Then the difference is calcu-

lated between the predicted value and the actual observed

value, τ . If τ is greater than the set threshold ǫ, then we

consider the observed value at this moment to be an abnor-

mal value, where the threshold ǫ is defined as follows:

ǫ = Φ(|yt − ŷt|) . (4)

Here, yt and ŷt respectively represent the actual ob-

servations and prediction values of the model proposed in

the training phase. When the model training converges, the

stabilized function loss value is selected as the threshold,

and the threshold is automatically driven by the data. In

the process of model training, this paper uses Root Mean

Square Error (RMSE) (Willmott & Matsuura 2005) as the

loss function.

LossRMSE =

√

√

√

√

1

m

m
∑

i=1

(yi − ŷi)2 . (5)
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Here, yi is the real value, and ŷi is the output of the

GRUWALC model proposed in this paper. In this paper, we

use the loss value that the model outputs when the training

is stable as the threshold of the abnormal warning ǫ, and if

this value is exceeded, an early warning is given.

4 EXPERIMENTAL ANALYSIS

This section mainly introduces the experimental results of

the proposed algorithm and the comparison with the cur-

rent anomaly detection algorithm, according to the descrip-

tion process of the Section 3 exception warning algorithm.

First, the paper normalized the actual observation data, and

then selected one of the collected samples as training data

with a total dimension of 968. The first 800 data points

are used as training samples, and the remaining observa-

tion data is used as test samples. Figure 4 presents the pre-

diction results of the GRUWALC model proposed in this

paper. The abscissa indicates the time of data acquisition,

and the ordinate represents the result of normalization of

the observed data. The blue line is the real data, and the or-

ange line is the prediction result obtained by GRUWALC

according to the training data. The number of data in the

test data set is 168, and the gray area is the fluctuation

range of the normal light curve. If the actual observation

falls within the gray value range, it means that the obser-

vation data at this time are normal data, and if the actual

observation is outside the gray range, the observation at

this moment is considered to be an abnormal value and an

abnormal warning is given. The results of partial amplifi-

cation of the prediction data are shown in Figure 5. It can

be seen from the experimental results that the algorithm

proposed in this paper has a good prediction effect at most

moments, but for times when the change is relatively se-

vere, the prediction effect is not good, and a false alarm

phenomenon occurs.

In this paper, because the number of samples is lim-

ited, we use a training set with a sample size of 800. In

order to know whether different numbers of training sam-

ples will affect the prediction results, we set the number of

training samples at 500, 600, 700 and 800 under a certain

number of test sets, and then compared different RMSE

values. The experimental results are shown in Figure 6.

The experimental results show that the number of training

sets is different and the RMSE values on the test set are

also different. The reason for this difference is mainly due

to the volatility of the observed data. For example, at 600

and 700 as the training set, the subsequent 168 test points

are more volatile, so the calculated RMSE value is larger.

In order to compare the prediction performance of

different algorithms on the light curve, the proposed

GRUWALC algorithm is compared with other predic-

tion algorithms, ARIMA, LSTM, LSTMCNN (Bartz et al.

Fig. 4 GRUWALC model prediction results. The blue line is the

real data, and the orange line shows the prediction results ob-

tained by GRUWALC according to the training data. The gray

area is the fluctuation range of the normal light curve data.

Fig. 5 Comparison of GRUWALC model predictions and real

observations. The blue line is the real data, and the orange line

shows the prediction results obtained by GRUWALC according

to the training data.

2017), RNN and SimpleRNN (Elman 1990). In this sec-

tion, the same number of training sets as GRUWALC are

selected as training samples, and 168 data points are also

selected as test sets. The prediction results of different al-

gorithms are shown in Figure 7. The abscissa indicates the

time at which the data was acquired, the ordinate indicates

the normalized observation value. True indicates the actual

observation. From the experimental results in Figure 7, the

LSTM, LSMMCNN, RNN, SimpleRNN algorithms and

the algorithm proposed in this paper can learn the nonlinear

relationship of the data itself, so these algorithms have bet-

ter prediction effects at most moments. However, for times

when the change is relatively large, the prediction perfor-

mance is not good. Since the ARIMA algorithm requires

that the experimental data changes be stable or stable after

the difference operation, it means that the relationship be-

tween the data is linear, and nonlinear data do not perform

well, so the overall prediction effect is poor.
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Fig. 6 Comparison of RMSE of different numbers of training

samples. The abscissa indicates the different number of training

samples. The ordinate indicates the RMSE value of the test set

under different numbers of training samples.

Fig. 7 Comparison of the prediction results of different algo-

rithms. The abscissa indicates the time of data acquisition. The

ordinate represents the normalized predicted value of different

algorithms. True represents the actual observations.

This paper measures the predictive performance of dif-

ferent models by calculating the RMSE between the pre-

dicted and actual values of the model. This section uses

RMSE as an indicator of whether a model fits the true

data. If the RMSE value is smaller, the better the predic-

tion performance of the model is. The RMSE compari-

son experiment results of different algorithms are shown

in Figure 8. Figure 8 shows the prediction performance of

different algorithms from the perspective of quantization.

Among them, the algorithm based on a neural network is

obviously superior to the traditional method of ARMIA.

The GRUWALC algorithm proposed in this paper is more

robust than other algorithms.

In practical applications, astronomers are also con-

cerned about false alarms, that is, false alarm rate indica-

tors (Scargle 1982). Traditionally defined anomaly meth-

ods use 3σ and 5σ criteria, where σ is the standard devia-

Fig. 8 RMSE comparison results of different algorithms. The ab-

scissa represents different algorithms. The ordinate represents the

RMSE of different algorithms.

Fig. 9 Comparison of network training loss values. The abscissa

represents the number of iterations. The ordinate indicates the

loss value of the training phase.

tion. The formula is defined as follows:

σ (r) =

√

√

√

√

1

N

N
∑

i=1

(xi − r)2 . (6)

Here, r is the mean of the training data set and xi is the

observed value of each sample point. We first calculated

the standard deviation for the training set with a sample

size of 800, then calculated 3σ and 5σ, and set 3σ and 5σ

as thresholds respectively to get the false alarm rate for dif-

ferent algorithms. The final experimental results are shown

in the last two rows of Table 2. From the experimental re-

sults, we know that in this experimental data, all the data

of the test set exceeds 3σ and 5σ. Therefore, the anomaly

detection method based on 3σ and 5σ as thresholds is very

ineffective. The false alarm rate is within a certain time

range, and the observed signal is not an abnormal signal.

Due to the limitation of the automatic detection algorithm,

the result is an abnormal signal. The false alarm rate for
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Table 2 Comparison of False Alarm Rates of Different Algorithms

Threshold GRUWALC LSTM LSTMCNN SimpleRNN RNN ARIMA 0.6557 1.0928

0.0988 0 0 0.0007 0 0 0.0257 - -

0.0368 0.0019 0.0519 0.0051 0.0396 0.0027 0.0488 - -

0.0345 0.0027 0.0531 0.0055 0.0440 0.0079 0.0503 - -

0.0307 0.0035 0.0551 0.0059 0.0500 0.0142 0.0523 - -

0.0304 0.0043 0.0551 0.0063 0.0500 0.0146 0.0531 - -

0.0279 0.0051 0.0567 0.0075 0.0535 0.0218 0.0551 - -

0.6557 0 0 0 0 0 0 0.066667 -

1.0928 0 0 0 0 0 0 - 0.066667

Fig. 10 Network training time comparison. The abscissa rep-

resents different algorithms. The ordinate represents the time it

takes to iterate 100 times, in seconds.

the data used in this paper is defined as follows:

E =
N

nT
. (7)

Here, E means the false alarm rate, n means the num-

ber of observation points, and T means the time interval

between adjacent observation data points. According to

Equation (4), we can find the number of false alarm ex-

ceptions in 168 observation points, and then calculate the

false alarm rate according to Equation (7). The false alarm

rates we get on the same test set according to different al-

gorithms are shown in Table 2.

According to the false alarm rate results, the thresh-

olds for anomaly detection we selected are different, and

the false alarm rate is different. Generally, the larger the

threshold, the lower the false alarm rate obtained on the

normal light curve data set. Therefore, if the algorithm

fits better, that is, the smaller the difference between the

predicted value and the true value of the model, the false

alarm rate is lower under the same abnormal threshold.

According to the experimental results in Table 2, when the

threshold is set to a small value, for example, the thresh-

old is 0.0279, the experimental results show that the false

alarm rate of the ARIMA algorithm is even smaller than

that of the LSTM, but the prediction results of different al-

gorithms (Fig. 7) and RMSE results (Fig. 8) show that the

ARIMA prediction performance is far from the other algo-

rithms. The reason for this phenomenon is that when the

threshold is small, the absolute difference between the pre-

dicted value of the algorithm and the true value is greater

than 0.0279 at most of the data points of the test set. So,

at this time, the false alarm rate of most algorithms is very

small. However, when the threshold increases, for exam-

ple, when the threshold is 0.0988, the false alarm rate of

the GRUWALC, LSTM, SimpleRNN and RNN algorithms

is 0, while the false positive rate of ARIMA is large. The

results of this experiment show that, if the threshold is

0.0988, the stronger the prediction ability of the model, the

lower the false alarm rate.

In practical applications, the algorithm proposed in

this paper does not require human intervention through-

out the process, or requires only a small amount of hu-

man involvement. This frees astronomers from very time-

consuming manual monitoring (Prabhu 2000) and allows

them to concentrate more on the physical mechanisms in-

volved. In addition, as the observed data is continuously

updated, network parameters are adjusted based on new

observations to ensure that they adapt to new data changes.

Therefore, according to newly observed data, it is neces-

sary to adjust the model parameters in time. For scenarios

with high real-time requirements, the network convergence

speed needs to be as fast as possible. This paper judges the

network update speed by comparing the changes of the loss

values of different algorithms during the training phase.

The loss function value of different algorithms in the train-

ing phase is shown in Figure 9. The abscissa represents the

number of iterations and the ordinate represents the loss

value of the training phase. According to the change of

the loss value in the training phase of the model, we find

that the proposed GRUWALC and SimpleRNN algorithms

converge faster, followed by LSTM and RNN. Since the

LSTMCNN algorithm needs to learn more network param-

eters, its convergence speed is slower. In addition, the pa-

per also records the time taken by different algorithms to

reach stability during the training phase. The training time

is compared as shown in Figure 10. The abscissa repre-

sents the different algorithms, and the ordinate represents

the time required to iterate 100 times, in seconds. As men-

tioned in the real-time requirements discussed above, com-

bined with the model prediction performance, this paper
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suggests GRUWALC as the prediction model, as it not only

has a faster convergence speed (although the speed is not

as fast as SimpleRNN) but can also meet the real-time re-

quirements. Moreover, it has a lower RMSE, that is, model

prediction is more robust.

5 CONCLUSIONS

In view of the high real-time light curve demands in time

domain astronomy, this paper proposes a GRU-based real-

time early warning model GRUWALC. This paper first es-

tablishes a prediction model for the time series data, and

uses the historical data for the light curve to train the pre-

diction model, saving the trained model and predicting the

data of the next moment based on the trained model. When

the RMSE of the actual observed value and the predicted

value at the next moment exceed the set threshold, the ob-

served value at this moment is considered to be an ab-

normal value and a real-time warning is given. It can be

seen from the experimental results that the selection of the

threshold has an important influence on the false alarm

rate. Therefore, establishing a good predictive model can

reduce the false alarm rate. The innovations of this paper

mainly include two points. First, the GRU is introduced

as a fitting model in the light curve prediction process for

the first time; second, according to the established fitting

model, the threshold for abnormal warning is set. By com-

paring the actual observation value and the model predic-

tion value at the next moment, it is judged whether the ob-

servation value at the next moment is an abnormal value.
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