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Abstract We build a conceptual coupled model of the climate and tidal evolution of the Earth-Moon system

to find the influence of the former on the latter. An energy balance model is applied to calculate steady-state

temperature field from the mean annual insolation as a function of varying astronomical parameters. A

harmonic oscillator model is applied to integrate the lunar orbit and Earth’s rotation with the tidal torque

dependent on the dominant natural frequency of ocean. An ocean geometry acts as a bridge between temper-

ature and oceanic frequency. On assumptions of a fixed hemispherical continent and an equatorial circular

lunar orbit, considering only the 41 kyr periodicity of Earth’s obliquity ε and the M2 tide, simulations are

performed near tidal resonance for 106 yr. It is verified that the climate can influence the tidal evolution via

ocean. Compared with the tidal evolution with constant ε, that with varying ε is slowed down; the Earth-

Moon distance oscillates in phase with ε before the resonance maximum but exactly out of phase after that;

the displacement of the oscillation is in positive correlation with the difference between oceanic frequency

and tidal frequency.

Key words: Moon — planets and satellites: dynamical evolution and stability — planets and satellites:

oceans

1 INTRODUCTION

The tidal evolution of the Earth-Moon system is a classic

problem, but has not yet been fully solved. The general

trend of the tidal evolution has long been confirmed: since

the Moon was born 4.5 Gyr ago (Halliday 2008), it has

been receding from the Earth with tidal energy dissipated

as heat, and Earth’s rotation has been slowing down with

angular momentum transferred to the lunar orbit (Murray

& Dermott 1999). When one natural frequency (also called

a normal mode) of the ocean and one tidal forcing fre-

quency, both varying over geologic time, come close to

each other, the ocean tide gets excited and the dissipation

is largely enhanced. This phenomenon of “tidal resonance”

speeds up tidal evolution. Currently, the M2 (semidiur-

nal tide) resonance in the ocean contributes a dissipation

of 2.4 TW (Munk 1997) to the total of 3.7 TW (Munk &

Wunsch 1998), which is so abnormally high that extrap-

olating into the past unrealistically puts the Moon where

it was born as recently as ∼ 2 Gyr ago (e.g., Touma &

⋆ A contributed paper of the International Symposium on Lunar and

Planetary Science (ISLPS) on 2018 June 12–15 at Macau University of

Science and Technology.

Wisdom 1994; Bills & Ray 1999). Because of the uncer-

tainty that tidal resonance brings, to quantitatively recon-

struct the lunar orbit, the history of oceanic natural fre-

quencies has to be acquired.

The natural frequencies of the ocean are determined

by its geometry (position, shape and depth), which is asso-

ciated with climate change and continental drift. In order

to simulate tidal evolution driven by ocean tide, Hansen

(1982) used Laplace’s tidal equations to determine the

oceanic tidal torque for two ocean/land geographies, but

not only the geography but also the ocean depth remained

unchanged in simulations. Webb (1980, 1982a,b) devel-

oped a model of average ocean, a statistical average over

many hemispherical oceans centered at various positions

relative to Earth’s axis, to take the change in ocean geome-

try due to continental drift into account, whereas the ocean

shape and depth were constant. Kagan & Maslova (1994)

built a stochastic model, which considered the effect of

continental drift as explicit fluctuations in oceanic natu-

ral frequencies. By solving the timescale problem (e.g.,

Goldreich 1966), those ocean modelers demonstrated the

importance of the ocean to tidal evolution of the Earth-

Moon system, but their results are still qualitative with-
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out further improvement for decades, and none has in-

volved climate. The timescale of continental drift is 108 yr

(Murray & Dermott 1999), and that of orbital-scale climate

change is ∼ 105 yr (Berger 2012). Considering only con-

tinental drift means the secular effect of climate influence

can be neglected, which is based on insufficient evidence.

Hence, we simulate the tidal evolution for 106 yr, so that

the influence of climate can be investigated and continen-

tal drift can be reasonably neglected.

Natural quasi-periodicities of the climate over

timescales in a vast range have been discovered through

geological records. On the orbital-scale of ∼ 105 yr, the

glacial-interglacial cycle dominates (Berger 2012). During

a glacial, the ice sheets extend towards the equator and

the sea level drops; whereas during an interglacial, the ice

sheets shrink towards the poles and the sea level rises.

According to the Milankovitch theory, that results from

the secularly varying orbit and rotation of the Earth per-

turbed by the Sun and other planets, and the subsequent

variation of insolation distribution on the terrestrial surface

(e.g., Berger 1988). This effect on climate of the astronom-

ical parameters (Earth’s eccentricity, obliquity and climatic

precession) is called astronomical forcing. The change in

sea level, which the glacial-interglacial cycle is accompa-

nied by, alters the natural frequencies of the ocean and then

the state of tidal resonance. For instance, in the last glacial

maximum ∼19–26 kyr ago, the sea level drop of about

130 m (Yokoyama et al. 2000; Clark et al. 2009; Lambeck

et al. 2014) lead to considerably higher dissipation than at

present (Thomas & Sündermann 1999; Egbert et al. 2004;

Griffiths & Peltier 2009; Green et al. 2009). Therefore, it is

the ocean that acts as the bridge between climate and tidal

evolution.

In this work, a coupled model of climate and tidal

evolution is proposed. An energy balance model (Sellers

1969; Budyko 1969) is applied to simulate the climate in

response to astronomical forcing. It is a kind of conceptual

model focusing on major climate components and interac-

tions. Though very simplified, it is capable of reproduc-

ing the glacial variability with ice sheet involved (Huybers

& Tziperman 2008; McGehee & Lehman 2012) and fre-

quently used to study the climate stability (see review in

North (1984) for early studies; Lin & North 1990; Wagner

& Eisenman 2015). A harmonic oscillator model (Munk

1968; Murray & Dermott 1999) is applied to integrate the

lunar orbit and Earth’s rotation with the oceanic natural fre-

quency given. It is also a conceptual model, where the re-

sponse of the ocean to the tidal forcing is compared to that

of a harmonic oscillator, and is capable of providing a re-

alistic timescale of tidal evolution (Hansen 1982; Kagan &

Maslova 1994). It suits the case when there is one dominant

oceanic natural frequency and one dominant tidal forcing

frequency. In addition, a simplified ocean geometry is as-

sumed to obtain the natural frequency from temperature

field.

As a preliminary effort to study the influence of cli-

mate on tidal evolution, we aim at verifying the existence

of the influence and qualitatively observing its nature and

mechanism. Therefore, our idealized model and simula-

tion time (106 yr) are appropriate. The period of interest

is when the ocean and tidal forcing are near resonance (but

not at the resonance maximum), so that the influence can

be amplified. Section 2 describes the coupled model and

the numerical method, and Section 3 exhibits the results of

two sets of simulations in pre- and post-resonance times. A

discussion about simulation results and potential improve-

ments is in Section 4.

2 MODEL AND METHOD

2.1 Climate Model

2.1.1 Steady-state temperature field

The climate can be altered by ocean/land geography. To

study climate change resulting from astronomical forcing,

a simple geography is used and taken to be invariant. It is

assumed that a single spherical-cap continent is centered

at the North Pole, extending to latitude ϕl, and the rest of

Earth’s surface is covered by ocean. Such a geography is

similar to what Mengel et al. (1988) used. Neglecting the

vertical structure of the atmosphere for this zonally sym-

metric planet, a one-dimensional climate model can be ap-

plied.

Considering horizontal thermal diffusion, outgoing in-

frared radiation as well as the solar heating being the only

external forcing, an energy balance model leads to this

governing equation (North & Kim 2017)

C(ϕ)
∂T (ϕ, t)

∂t
− 1

cosϕ

∂

∂ϕ
[
D

cosϕ

∂T (ϕ, t)

∂ϕ
]

− [A+BT (ϕ, t)] = W (ϕ)α̃(ϕ) .

(1)

The climate at time t is just characterized by the tempera-

ture field T (ϕ) on the surface. In the first term on the left

side, C is the effective heat capacity and controls the cli-

mate response to perturbations (relaxation time τ = C/B).

The capacity over the ocean Cw is larger than that over the

land Cl, and so is the relaxation time for ocean τw (a few

years) than that for land τl (a month). According to the ge-

ography assumed,

C(ϕ) =

{

Cl (ϕ > ϕl),

Cw (ϕ < ϕl).
(2)

The second term involving the thermal diffusion coefficient

D allows the heat transport from warm areas to cool ones.
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Table 1 Values of Model Constants

Constant Value Reference

A 218 W m−2 North & Kim (2017)

B 1.90 W m−2 K−1 North & Kim (2017)

D 0.67 W m−2 K−1 North & Kim (2017)

Cl 0.08 yr·B Lin & North (1990)

Cw 4.80 yr·B Lin & North (1990)

α̃0 0.68 North & Kim (2017)

α̃2 −0.20 North & Kim (2017)

ē 0.028707 Berger (1978)

ε̄ 23.333410◦ Berger & Loutre (1991)

∆ε −1969.00′′ Berger & Loutre (1991)

γ 31.54068′′ yr−1 Berger & Loutre (1991)

ϕl 0◦ present work

Tf −10◦C North & Coakley (1979)

ρis 0.917 g cm−3 Haynes (2017)

ρsw 1.037 g cm−3 Hansen (1982)

his 2 km

h̄sw 4 km

l 4000 km

δ 0.092 present work

Values given with no reference are typical in reality.

The third term allows the infrared radiation to space and

A and B are empirical coefficients from satellite obser-

vations. The term on the right side determines the solar

radiation absorbed. The insolation function W (ϕ) gives

the latitudinal distribution of the solar radiation flux deliv-

ered to the surface. It is dependent on Earth’s orbital status

(Sect. 2.1.2). The coalbedo α̃(ϕ) gives the fraction of radi-

ation absorbed by the surface. Its mean annual form is well

represented by

α̃(ϕ) = α̃0 + α̃2P2(sinϕ), (3)

where constants α̃0 and α̃2 are from satellite observations,

and the second-order Legendre polynomial P2(sinϕ) =

(3 sin2 ϕ − 1)/2. The values of the constants mentioned

above and the references that provide them are listed in

Table 1. Solving Equation (1) also needs the boundary con-

dition
∂T

∂ϕ
= 0 (ϕ = ±90◦), (4)

implying that there is no net heat flux into the poles.

On the assumption of energy balance (the energy ab-

sorbed is equal to the energy lost), for every given insola-

tion function W (ϕ), there exists a corresponding steady-

state solution T s(ϕ), which any temperature field T (ϕ)

of a different profile relaxes to after a time comparable to

τ . The relaxation time τ of the climate system is much

smaller than the astronomically driven period of mean an-

nual W (ϕ). Therefore, W (ϕ) can be taken as invariant

while T (ϕ) is evolving towards the steady state T s(ϕ).

For a steady-state temperature field T s(ϕ), the iceline

ϕf , the edge of the permanent ice cap, is determined by

T s(ϕf) = Tf , (5)

where the mean annual isotherm Tf = −10◦C (North &

Coakley 1979). We note that although the iceline is de-

fined, expressions of the capacityC(ϕ) and coalbedo ᾱ(ϕ)

are not influenced by it, that is, the ice-albedo feedback is

not included in the present work. The iceline position only

influences the sea level (Sect. 2.2).

2.1.2 Insolation distribution

Given the timescale of interest, the mean annual version

of the insolation function W (ϕ) is used, with seasonal

variation averaged. It is dependent on Earth’s semimajor

axis a, eccentricity e and obliquity ε (Loutre et al. 2004).

Assuming the Sun is a point source, Berger et al. (2010)

deduced with elliptical integrals the total energy available

during any time interval of one year on a given unit sur-

face. Based on their result, we deduce the expression of

the mean annual insolation function as

W (ϕ, a, e, ε) =



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



L⊙ cosϕ

2π3a2
√

1 − e2
[E(

sin ε

cosϕ
) + tan2 ϕK(

sin ε

cosϕ
)

− tan2 ϕ cos2 εΠ(sin2 ε,
sin ε

cosϕ
)]

(|ϕ| ∈ [0◦, 90◦ − ε)) ,
L⊙ sin ε

2π3a2
√

1 − e2
[E(

cosϕ

sin ε
) + cot2 εK(

cosϕ

sin ε
)

− sin2 ϕ cot2 εΠ(cos2 ϕ,
cosϕ

sin ε
)]

(|ϕ| ∈ (90◦ − ε, 90◦)) ,
L⊙

2π3a2
√

1 − e2
[sin ε+

cos2 ε

2
ln(

1 + sin ε

1 − sin ε
)]

(|ϕ| = 90◦ − ε) ,
L⊙

4π2a2
√

1−e2
sin ε (|ϕ| = 90◦) .

(6)

The solar luminosity L⊙ is a constant, and K , E and Π

are the first, second and third complete elliptical integrals,

respectively. This expression is valid for 0◦ < ε < 90◦ and

0 < e < 1.

Variation of W (ϕ) results from those of the

astronomical parameters e and ε (mainly over a

timescale of ∼ 105 yr). Based on the numeri-

cal solution for Earth’s orbit (e.g., Laskar 1988),

e and ε can be expressed in trigonometric form

as quasi-periodic functions of t: approximation +
∑

{(amplitude)i cos [(frequency)it+ (phase)
i
]} (Berger

2012). In this work, we only consider the most important

term of ε, whose period is 41 kyr, in order to avoid

the compound influence of its multiple terms and the

complicated effect of e and ε simultaneously varying.

Thus, e = ē and

ε(t) = ε̄+ ∆ε cos(γt+ ψ), (7)

where values of the approximation ε̄, the amplitude ∆ε and

the frequency γ given by Berger & Loutre (1991) are used,
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which are valid over 1–3 Myr (Berger & Loutre 1992).

However, the phase ψ acts as a controllable parameter in

our simulations to manifest the influence of itself.

2.2 Ocean Geometry Model

An ocean geometry model is needed to connect climate and

tidal evolution. An ocean function with a value of 1 over

ocean and 0 over land can be defined to characterize the

geography modeled in Section 2.1

h(ϕ) =

{

1 (ϕ ≤ ϕl),

0 (ϕ > ϕl).
(8)

The iceline ϕf divides the water on Earth’s surface into

two reservoirs, i.e., sea water in the ocean basin and ice

sheet on the part of continent north of the iceline. It is fur-

ther assumed that the depth of the ocean basin hb, the depth

of the sea water hsw and the thickness of the ice sheet his

are all uniform. Sea ice is not considered. By simply taking

the volume of sea water as its depth times the area of the

ocean basin and the volume of the ice sheet as its thickness

times the area of ice cover, conservation of mass gives rise

to

hsw = hb − ρishis(1 − sinϕf)

ρsw(1 + sinϕl)
, (9)

where ρis and ρsw are densities of ice sheet and sea water,

respectively, and hb is equal to the maximum of hsw which

corresponds to the condition ϕf = 90◦.

The oceanic natural frequency σ is determined by

the geometry of the ocean. On the assumption of half-

wavelength resonance, the ocean basin is simplified as a

closed square and σ can be estimated to be

σ =
π
√
ghsw

l
, (10)

where l is the ocean width and g is the gravitational accel-

eration. Typical values of his, h̄sw (mean of hsw) and l are

set (Table 1). The advantage in setting l to a typical value

instead of deriving it from the modeled geography is that a

realistic σ value can be obtained. Because the geography is

invariant, the oceanic frequency is only dependent on cli-

mate, i.e., σ only varies with hsw. On the other hand, σ

is yet needed in the calculation of tidal torque coefficient

Z (Sect. 2.3.2). The climate and tidal evolution are thus

connected.

2.3 Tidal Evolution Model

2.3.1 Orbital parameters

A two-body system consisting of the Earth and Moon with

a circular orbit in the Earth’s equatorial plane is consid-

ered. With the Moon’s rotational angular momentum ne-

glected, conservation of angular momentum leads to

IΩ +Mrnr
2 = H. (11)

The first term on the left side is Earth’s rotational angu-

lar momentum, where I is Earth’s rotational inertia and

Ω is Earth’s rotational speed. The second term is the lu-

nar orbital angular momentum, where n is the lunar an-

gular orbital speed, r is the Earth-Moon distance, and the

reduced mass Mr = M⊕MM/(M⊕ +MM) (M⊕ andMM

are masses of Earth and Moon, respectively). The total an-

gular momentumH is constant.

There are three orbital parameters, r, n and Ω, charac-

terizing the state of tidal evolution. Besides Equation (11),

n and r are also linked by Kepler’s third law,

n2r3 = G(M⊕ +MM), (12)

where G is the gravitational constant. Therefore, knowl-

edge of one of r, n and Ω is equivalent to that of them all.

The evolution of Ω is determined by tidal torque L

(Sect. 2.3.2), which arises because the Earth, carrying its

tidal bulge, rotates faster than the Moon orbiting it (Ω > n)

I
dΩ

dt
= −L. (13)

The tidal torque acts to decrease Ω, resulting in a transfer

of angular momentum from Earth’s rotation to lunar orbital

motion and a dissipation of energy in Earth.

2.3.2 Tidal torque

A tide is raised on an elastic body when this body is dis-

torted in the gravity field of another. In our model, the solid

Earth and Moon are taken as rigid spheres, while the ocean

is a thin deformable layer partially covering the solid Earth.

Therefore, only the tidal torque exerted on the Moon by the

distorted ocean is present. Furthermore, only the semidiur-

nal tide M2, the dominant tidal constituent at present, is

considered in this work for simplification.

Hansen (1982) derived an approximate expression of

the secular variation of the tidal constituent torque after

averaging on a short timescale (monthly and yearly) and

neglecting terms higher than (R⊕/r)
8. For the assumed

equatorial lunar orbit, that expression becomes

L(σ, ω, r) = −L∗ · (rp/r)6 · Im(Z(σ, ω)), (14)

where the constantL∗, which carries the dimensionality of

the torque, is

L∗ =
6

5
πρswR

2
⊕ ·GM⊕ · (MM/M⊕)2 · (R⊕/rp)6, (15)

rp is the present Earth-Moon distance andR⊕ is the radius

of Earth.
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Additionally, the torque coefficient Z in Equation (14)

is a second-degree spherical harmonic expansion coeffi-

cient of the complex tidal elevation response function. For

a static ocean tide whose shape is the same as that of the

tide potential,Z degenerates into a static torque coefficient

Zstatic = [〈|Y |2h〉 − |〈Y h〉|2/〈h〉]/〈|Y |2〉, (16)

where the complex spherical harmonic Y = P 2
2 (cos θ)ei2λ

for M2 tide (the unnormalized associated Legendre func-

tion P 2
2 (cos θ) = 3 sin2 θ, θ is colatitude and λ is lon-

gitude), the ocean function h is defined in Equation (8),

and the angled brackets imply an areal integration over the

global surface.

For a dynamic ocean tide, following Hansen (1982),

the harmonic oscillator model is adopted to derive Z . A

driven harmonic oscillator can be described as

d2ζ

dt2
+ δσ

dζ

dt
+ σ2ζ = σ2ζ∗meiωt, (17)

where ζ is the displacement from equilibrium, δ is the fric-

tional resistance coefficient, σ is the natural frequency of

the oscillator, ω is the frequency of the external force and

ζ∗m is the limit of maximal displacement as ω approaches

0. Its steady-state solution is ζ = ζmeiωt, where the dis-

placement amplitude is

ζm =
ζ∗m

1 − (ω/σ)2 + iδ(ω/σ)
. (18)

In an analogy with ocean tides, ζ is taken as the tidal ele-

vation in the ocean, σ is the oceanic natural frequency, ω

is the tidal forcing frequency, ζ∗m = Zstatic and ζm = Z .

The tidal torque coefficient is thus derived

Z(σ, ω) =
Zstatic

1 − (ω/σ)2 + iδ(ω/σ)
. (19)

This tidal torque coefficient Z varies with σ and ω, for

Zstatic absolutely determined by geography is constant in

our model. The oceanic natural frequency σ is dependent

on the state of ocean (Sect. 2.2), while the tidal forcing

frequency for M2 tide is

ω(Ω, n) = 2(Ω − n). (20)

If σ andω are close enough (not strictly equal for a nonzero

δ), Im(Z) will be largely enhanced and so will L. Tidal

evolution then speeds up, and that is when a tidal resonance

is considered to occur.

2.4 Method of Solution

The values of constants involved in our model are listed

in Table 1. Because of the simplification of our model,

whether their values are precise or not does not affect our

Fig. 1 Procedure for calculating model variables. The thick ar-

rows represent numerical methods, while the thin arrows signify

substitution into analytical expressions.

qualitative conclusions. Numerical simulations are exe-

cuted for different initial Earth-Moon distances and phases

of Earth’s obliquity. The initialization of simulations will

be presented in Section 3. The following is the procedure

carried out for any instant after the initial time as shown in

Figure 1.

In every calculation loop characterized by t, obliquity

ε is the first to be obtained. The term with the biggest am-

plitude 0.547◦(Berger & Loutre 1991) in its trigonometric

expansion is used to get ε (Eq. (7)). The corresponding pe-

riod is 41 090 yr. Then, the insolation functionW (ϕ) is de-

rived from ε using Equation (6), with a fixed at its present

value and e fixed at its approximation over the last few mil-

lion years ē.

A numerical method is applied to derive the steady-

state temperature field T s(ϕ) from W (ϕ). Specifically,

the differential equation of T (Eq. (1)) is discretized by

the centered finite difference method. The latitude is dis-

cretized in intervals of ∆ϕ = π/180, while the time

step is given by ∆t/2, where the propagation time ∆t =

(∆ϕ2/2)(Cl/D). Stepping forward in time from the ini-

tial condition T (ϕ) = 10◦C, the iteration does not cease

until the relative error of temperature is less than 10−6,

which happens after no more than 3.5τw = 17 yr in our

simulations. Thus, a steady-state solution is considered to

be reached. Because it is instantly reached compared to

the time step in integration for tidal evolution (∼ 103 yr),

the steady-state solution T s(ϕ) solved withW (ϕ) given at
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time t is just taken as the temperature field at that instant.

We note that the topography adopted is a hemispherical

continent (ϕl = 0◦), and the nonlinearity in C(ϕ) does not

introduce any convergence problems in our procedure.

Defining Tf = −10◦C, the iceline ϕf (Eq. (5)) is

then quickly located by linearly interpolating the adjoined

latitudes where temperatures are found to just enclose

Tf . The sea water depth hsw is calculated from ϕf using

Equation (9), where the maximal depth hb is set (in the

first loop) to what ensures that the mean depth h̄sw = 4 km

(equal to hsw in the first loop given ψ = ±90◦) during

simulations. The oceanic natural frequency σ is calculated

from hsw using Equation (10), where the ocean width is

set to l = 4000 km so that the mean natural frequency

σ̄ = 1.555 × 10−4 rad s−1 is near the present M2 reso-

nance.

After σ is obtained, a Runge-Kutta-Fehlberg method is

applied to integrate the differential equation of Earth’s ro-

tational speed Ω (Eq. (13)). As pointed out in Section 2.3.1,

the lunar orbital parameters Ω, n and r are related by

Equations (11) and (12), so n and r can be known with

Ω given. In Equation (11), the total angular momentum

H = 3.442× 1034 kg m2 s−1 which is determined by sub-

stituting Ω, n and r with present values. The tidal fre-

quency ω is then also known because of its dependence on

Ω and n (Eq. (20)). Therefore, within each time step of the

Runge-Kutta-Fehlberg integrator, while σ is held constant,

L can be obtained with r and ω by using Equations (16),

(19) and (14) in turn, following the calculation of r and ω

from the coinstantaneous Ω. In these equations, the static

torque coefficient Zstatic = 0.5 for a hemispherical con-

tinent, the frictional coefficient δ is set to 0.092 in order

to ensure a realistic timescale of tidal evolution based on

some test simulations and the dimensionality is calculated

to be L∗ = 1.998 × 1017 N m.

Given Ω at t, what the Runge-Kutta-Fehlberg integra-

tor finds is Ω at the next instant t′. Updating n, r and ω

using Ω at t′ immediately follows. Updating the climate

and ocean status at t′ starts in the next loop. The above

procedure is repeated for every instant until the final time.

3 RESULTS

3.1 Pre-analysis of Tidal Evolution

We first present a pre-analysis of the general trend of tidal

evolution based on our model, for that helps in explaining

the initialization of the numerical simulations. According

to our tidal evolution model, Earth’s rotational speed Ω and

the lunar orbital speed n can be expressed as functions of

the Earth-Moon distance r, and so can the tidal frequency

ω (Sect. 2.3). If the oceanic natural frequency σ is constant,

the resonance distance rres, where the tidal resonance oc-

Fig. 2 Variations of tidal frequency ω (solid red curve), Earth’s

rotational speed Ω (dash-dotted red curve) and lunar orbital speed

n (dashed red curve) as functions of Earth-Moon distance r. The

mean oceanic natural frequency σ̄ = 1.555× 10−4 rad s−1 (hor-

izontal solid line) is illustrated for reference. The resonance dis-

tance rres = 57.7 R⊕ where ω = σ and the synchronous dis-

tance rsyn = 86.9 R⊕ where Ω = n (left and right vertical dot-

ted lines) are indicated (Color version is online).

curs as ω ≈ σ (for a nonzero dissipation), can be then

predicted without simulations.

Figure 2 shows that as r increases from 10R⊕, both

Ω and n decrease, which means both one day 2π/Ω and

one month 2π/n lengthens. Their difference diminishes

until Ω = n, where Earth begins to synchronously rotate

(one day is as long as one month) just like the Moon has

been doing in reality (though Moon’s rotation is neglected

in our model) and the tidal evolution ends. According to

the constants we set, that happens at rsyn = 86.9R⊕.

In addition, as r increases, ω also keeps decreasing un-

til ω = 0, when the resulting tidal torque and dissipa-

tion become zero. If the oceanic frequency is fixed at

σ̄ = 1.555 × 10−4 rad s−1, the tidal resonance is found to

occur at rres ≈ 57.7R⊕, slightly smaller than the present

Earth-Moon distance rp = 60.3R⊕. This prediction is in

accordance with the reality that the oceanic response has

been near M2 resonance currently.

Near rres, the tidal evolution should greatly speed up

with dissipation of the total energy enhanced largely. The

rapid decrease in ω at that time gives rise to the rapid pass

through resonance. However, if σ is varying, conditions be-

come complicated. Before rres, a decreasing σ delays the

resonance while an increasing σ hastens it; after rres, the

former extends it while the latter curtails it. Even multiple

passes can arise. Those conditions are beyond the scope

of the present work. Therefore, although we focus on the

near resonance condition, we will simulate periods a while

before and after rres, instead of simulating the maximum

period.
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3.2 Numerical Simulations

The initialization for our numerical simulations is shown

in Table 2. Two sets of simulations, Cases B and Cases A

(“before” and “after” resonance maximum respectively),

are performed with initial Earth-Moon distance ri = 57.43

and 57.80R⊕, respectively, which are slightly smaller

and larger than the resonance distance rres ≈ 57.7R⊕

(Sect. 3.1). The initial values of the other two orbital pa-

rameters Ωi and ni are derived from ri (Sect. 2.3.1). The

corresponding initial tidal frequency ωi = 1.571 × 10−4

and 1.549× 10−4 rad s−1 for Cases B and A, respectively,

just enclosing σ̄ = 1.555 × 10−4 rad s−1, i.e., the oceanic

frequency in the case of invariant ε. Each set includes three

cases: Case 0 acts as a control group with constant obliq-

uity ε̄ = 23.33◦; for Cases + and −, ε periodically varies

with ψ = +90◦ and −90◦, respectively. The influence of

the existence of climate change can thus be examined. All

the other parameters are set as described in Section 2.4.

We note that our aim in this work is to study the

mechanism of climate influence but not the realistic his-

tory of lunar orbit. Therefore, although not comparable to

the timescale of tidal evolution 109 yr, the simulation time

106 yr fits this aim, and it is not a problem that the cases

with varying ε are initialized at the same ri as the case with

constant ε. Furthermore, it is therefore reasonable to ran-

domly set the phase of obliquity ψ at any r. We choose

+90 and −90◦ in order to maximize the difference be-

tween Cases + and −.

Cases B start and end before the resonance maximum

(Table 2). As shown in Figure 3(a), ε increases and de-

creases from ε̄ at the beginning for Case B+ and Case B−,

respectively, and periodically varies till the end. According

to Loutre et al. (2004), the mean annual insolation W ,

being symmetrical between northern and southern hemi-

spheres, varies in phase with ε in the high latitudes but

exactly out of phase in the low latitudes. These proper-

ties are completely exhibited in Figure 3(c) and 3(d). The

steady-state temperature T s, as a response to insolation,

has the same properties as W . As shown in Figure 3(e)

and 3(f), located in the high latitudes, the iceline ϕf varies

in phase with ε for both Cases B+ and B−. Its mean

ϕ̄f = 65.44◦ and the amplitude defined as the maximal

deviation from the mean is 0.23◦. Because the sea water

depth hsw ∝ sinϕf (Eq. (9)) and the oceanic frequency

σ ∝
√
hsw (Eq. (10)), they are in phase with ε as well. For

either Case B+ or Case B−, hsw oscillates about h̄sw with

an amplitude of 2.98 m (Fig. 3(b)), and σ oscillates about

σ̄ with an amplitude of 0.001 × 10−4 rad s−1 (Fig. 4(a)).

The general trend of tidal evolution with constant σ

has been interpreted in Section 3.1. We now list the initial

and final values of the lunar orbital parameters in Table 2

and illustrate only the divergence of Earth-Moon distance

∆r for Cases B+ and B− from Case B0 in Figure 4(b)

in order to focus on the climate influence. Three features

are commonly observed for Cases B+ and B−. First, ∆r

varies in phase with σ and thus in phase with ε. The reason

is that during the pre-resonance time when ω > σ, greater

σ means greater tidal dissipation, resulting in a leading

evolution characterized by a larger r. Second, the equilib-

rium point of the ∆r oscillation is not constant but seems to

decrease at least on the near side of resonance maximum.

Third, the displacement of ∆r from the gradually decreas-

ing equilibrium point expresses a positive correlation with

the difference between ω and σ. One distinction between

Cases B+ and B− is that the mean of ∆r for the former is

larger than the latter. We attribute this distinction to ψ and

the beginning behavior of ∆r it determines: the beginning

increase/decrease in ∆r for Case B+/B− contributes to a

lead/drop lasting for the whole simulation time.

Cases A start later than the resonance maximum

(Table 2). The evolutions of climate and ocean state (ε,

W , T s, ϕf , hsw and σ) for Cases A are totally the same

as those for Cases B. However, because ω < σ during

the post-resonance time (Fig. 5(a)), contrary to Cases B,

greater σ means smaller dissipation and thus a smaller r.

As shown in Figure 5(b), ∆r for either Case A+ or A−
is therefore exactly out of phase with σ. The second and

third features for Cases B, i.e., the general decreasing trend

and positive correlation between ∆r displacement and the

difference between ω and σ, also match Cases A. In addi-

tion, ψ again results in a larger mean of ∆r for the case

where ∆r increases at the beginning (A−) than where it

decreases (A+). It is worth mentioning that both as the

case with the larger mean ∆r, B+ holds a positive ∆r for

the whole time, whereas A− holds for only about 105 yr.

Considering the general decreasing trend, the fact that B+

holds a lead over B0 is probably a temporary effect.

In summary, the features of our climate-influenced

tidal evolution (characterized by ∆r whose positive value

means a lead over the evolution with climate unchanged

and negative value means a lag) are

1. Given that iceline ϕf is in high latitudes (so that σ is

in phase with ε), ∆r varies in phase with ε during the

pre-resonance time but exactly out of phase during the

post-resonance time.

2. Despite oscillation, the general trend of ∆r is decreas-

ing.

3. The displacement of ∆r oscillation is in positive cor-

relation with the difference between ω and σ.

4. As a whole, ∆r oscillation is shifted upwards or down-

wards as ∆r increases or decreases at the beginning.
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Fig. 3 Temporal variations of Earth’s obliquity ε (a), sea water depth hsw (b), mean annual insolation function W (ϕ) ((c) and (d)) and

steady-state temperature field T s(ϕ) ((e) and (f)) for both Cases B and A. In panels (a) and (b), the black lines, red curves and blue

curves indicate Cases 0, + and −, respectively. In panels (c) and (e), contours are red to indicate Case +, while in (d) and (f), those are

blue to indicate Case −.

Fig. 4 Temporal variations of oceanic natural frequency σ, tidal forcing frequency ω (solid and dashed curves in panel (a)), and

divergence in Earth-Moon distance ∆r (b) for Cases B. In both panels, the colors black, red and blue indicate Cases B0, B+ and B−,

respectively. (In panel (a), ω for Cases B+ and B− are indistinguishable from B0.)
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Table 2 Initialization and Results of Numerical Simulations

Case ψ ri rf 2π/Ωi 2π/Ωf 2π/ni 2π/nf ωi ωf

(◦) (R⊕) (R⊕) (h) (h) (d) (d) (10−4 rad s−1) (10−4 rad s−1)

B0 57.43 57.61 21.44 21.59 25.39 25.51 1.571 1.560

B+ +90 . . . +4 × 10−6 . . . +3 × 10−6 . . . +3 × 10−6 . . . −2 × 10−7

B− −90 . . . −6 × 10−6 . . . −5 × 10−6 . . . −4 × 10−6 . . . +4 × 10−7

A0 57.80 57.98 21.74 21.89 25.63 25.75 1.549 1.538

A+ +90 . . . −12 × 10−6 . . . −9 × 10−6 . . . −8 × 10−6 . . . +7 × 10−7

A− −90 . . . −5 × 10−6 . . . −4 × 10−6 . . . −3 × 10−6 . . . +2 × 10−7

For Cases B0 and A0, ψ is not needed, because ε is fixed at ε̄. Initial values substituted by dots are the same as above. Final values for

Cases B+ and B− (A+ and A−) are presented as the divergences from those for Case B0 (A0).

Fig. 5 Temporal variations of oceanic natural frequency σ, tidal forcing frequency ω (solid and dashed curves in panel (a)), and

divergence in Earth-Moon distance ∆r (b) for Cases A. In both panels, the colors black, red and blue indicate Cases A0, A+ and A−,

respectively. (In panel (a), ω for Cases A+ and A− are indistinguishable from A0.)

4 DISCUSSION

Based on our conceptual coupled model of climate and

tidal evolution (Sect. 2), we carried out numerical simu-

lations of the near-resonance tidal evolution for an equa-

torial circular lunar orbit with Earth’s obliquity ε period-

ically varying (Sect. 3.2). Thus, the climate influence on

the tidal evolution via ocean is verified. Our conclusions

in terms of the influence mechanism are qualitative. The

main conclusion is that compared to the case that the cli-

mate is invariant, varying climate slows down the evolution

accompanied by oscillations. Furthermore, the oscillation

is in phase and exactly out of phase with ε before and after

the resonance maximum, respectively; and can be enlarged

as the difference between the oceanic frequency σ and the

tidal frequency ω increases.

The above conclusions should be applied with caution.

This is not only because of the idealization and the exis-

tence of multiple parameters of the model, but also because

the simulations are only done for a short instant near the

resonance maximum of the whole lunar tidal evolution.

Though we focus on the mechanism of climate influ-

ence in this work, it should be pointed out that the abso-

lute differences in final orbital parameters found between

the cases with varying and invariant climates (Table 2) are

insignificant indeed. However, it is still hasty to conclude

that the influence of climate change can be neglected. On

one hand, the timescale studied here, 106 yr, is very short

compared with the timescale of tidal evolution, 109 yr. If

the evolution keeps slowing down with climate varying,

the secular accumulation may make a difference. On the

other hand, the variations of the climate and ocean state

produced here are not as big as in reality. The maximal

drop of the sea water depth in simulations is 6 m, whereas

the sea level drop during the last glacial maximum relative

to the present is about 130 m (Clark et al. 2009). If a more

realistic model is used, the influence will be enhanced.

One important effect that can enhance the climate in-

fluence is the “ice-albedo feedback.” In the current model,

though the ice sheet on the continent is considered, the

coalbedo α̃ has no dependence on iceline ϕf . A more re-

alistic way, for example, is to multiply α̃ by 1/2 in lat-

itudes higher than ϕf (Mengel et al. 1988). In this case,

as the ice cover spreads, the planetary coalbedo and thus

the absorbed solar radiation diminishes, leading to a fur-

ther drop in temperature accompanied by the spread of ice

cover. In other words, a slight change in solar radiation can

cause an abrupt climate transition (North 1984). This non-

linear feedback mechanism will be introduced in our future

model.

Potential subjects of future works include improving

the model, determining the quantitative correlation be-

tween climate variation and the rate of tidal evolution, and

generalizing the model to other planet-satellite systems. In
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addition, considering that it is the normal modes of the

liquid part of the Earth that can largely be excited when

tidal resonance occurs, the tidal evolutions of terrestrial

planets perturbed by companions in exosolar systems (e.g.,

Dong & Ji 2013) may also need further investigations when

oceans or liquid cores (Liu & Li 2018) are present.
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