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Abstract The angle between planetary spin and the normal direction of an orbital plane is supposed to reveal

a range of information about the associated planetary formation and evolution. Since the orbit’s eccentricity

and inclination oscillate periodically in a hierarchical triple body and tidal friction makes the spin parallel

to the normal orientation of the orbital plane with a short timescale in an isolated binary system, we focus

on the comprehensive effect of third body perturbation and tidal mechanism on the angle. Firstly, we extend

the Hut tidal model (1981) to the general spatial case, adopting the equilibrium tide and weak friction

hypothesis with constant delay time, which is suitable for arbitrary eccentricity and any angle ϑ between

the planetary spin and normal orientation of the orbital plane. Furthermore, under the constraint of angular

momentum conservation, the equations of orbital and ratational motion are given. Secondly, considering the

coupled effects of tidal dissipation and third body perturbation, and adopting the quadrupole approximation

as the third body perturbation effect, a comprehensive model is established by this work. Finally, we find that

the ultimate evolution depends on the timescales of the third body and tidal friction. When the timescale

of the third body is much shorter than that of tidal friction, the angle ϑ will oscillate for a long time,

even over the whole evolution; when the timescale of the third body is observably larger than that of the

tidal friction, the system may enter stable states, with the angle ϑ decaying to zero ultimately, and some

cases may have a stable inclination beyond the critical value of Lidov-Kozai resonance. In addition, these

dynamical evolutions depend on the initial values of the orbital elements and may aid in understanding the

characteristics of the orbits of exoplanets.

Key words: astrometry and celestial mechanics: celestial mechanics — planet-star interactions — planets

and satellites: dynamical evolution and stability

1 INTRODUCTION

In recent years, the discovery of a large population of exo-

planets has greatly enriched our current theories of plan-

etary formation and evolution. The statistical character-

istics of exoplanets also suggest that exoplanets can be

very different from planets in our solar system, with ec-

centricities ranging from nearly zero to one (Hugh et al.

2006; Barge et al. 2008; Keivan et al. 2018). Although the

McLaughlin effect is taken into account, not all of the in-

clination angles are small, and there are both prograde and

retrograde orbits with large inclination angles of these exo-

planets (Welsh et al. 2012; Kostov et al. 2016). Meanwhile,

their semi-major axes (SMAs) also vary from a few as-

tronomical units, which are very close to the central ob-

ject, to hundreds of astronomical units (Kalas et al. 2008;

Beust et al. 2014). In particular, there are gas giant planets

close to the host star, some of which have anomalous radii

(Mayor & Queloz 1995; Marcy et al. 2005). The above sta-

tistical features also demonstrate the fact that planets close

to their host stars would be affected by stellar tidal dissipa-

tion (Mardling 2007; Wu 2018).

Tides are a widespread natural phenomenon in the

universe, as is well known, from the Earth-Moon system

(Peale & Cassen 1978) to other planets and their moons

in the solar system (Yoder & Peale 1981; Showman &

Malhotra 1997; Peale & Lee 2002), exoplanets and their

host stars (Rasio et al. 1996; Jackson et al. 2008b), binary
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star systems and galaxies (Zahn 1977; Mazeh 2008). Tidal

dissipation can not only change the configuration of the

system, but also alter the geological structure of celestial

bodies. In detail firstly, tides reduce the energy of a sys-

tem, causing the orbits of celestial bodies to decay into

an equilibrium or collision occurs (Jackson et al. 2008a;

Dong & Ji 2012; Husnoo et al. 2012; Lai 2012; Guillot

et al. 2014) and also affect the rotational evolution (e.g.,

Bodenheimer et al. 2001; Pont 2009; Lanza 2010; Ibgui

et al. 2011; Poppenhaeger & Wolk 2014; Ceillier et al.

2016). Secondly, the heat caused by tidal friction keeps

heating the celestial body constantly, causing radial expan-

sion or volcanic eruptions. For instance, in the Earth-Moon

system, under the influence of terrestrial tides, the Moon

has entered into the co-rotation state, and its orbital eccen-

tricity has also been circularized (Auclair-Desrotour et al.

2018b). Under the influence of tidal dissipation, volcanic

eruptions occur on Jupiter’s moon Io (Yoder & Peale 1981;

Aksnes & Franklin 2001), where tides are raised on one by

the other, due to the effect of the gravitational gradient or

variation of gravitational force across the body.

Research shows that the intensity of tidal dissipation

is mainly determined by the distance and internal qual-

ity factor of celestial bodies: the closer the distance, the

stronger the tidal dissipation and vice versa. The internal

quality factor is related to the internal structure of a planet

(Goldreich & Soter 1966; Socrates et al. 2012), and the

quality factors of different layers are different in a hier-

archical model (Storch & Lai 2014; André et al. 2017).

Meanwhile, since a celestial body is not completely elas-

tic and is viscous, the response of tidal deformation will

be delayed. In addition, rotation and revolution will cause

tidal bulge deviation along the line between the celestial

body centers. In general, the dynamic tide and equilibrium

tide are the main mechanisms in the tidal model. Currently,

the analytical theories of tidal action in extrasolar planets

are mostly based on equilibrium tide and weak friction ap-

proximations, which originate from the classical tidal the-

ory of Darwin (1879, 1880), and Darwin’s theory was ex-

tended in the process of studying close binaries and ex-

oplanets (Goldreich 1963; Kaula 1964; Alexander 1973;

Zahn 1977; Hut 1981; Eggleton et al. 1998). The equilib-

rium tide assumes that the deformation of celestial bodies

could happen instantaneously under tidal force. As an im-

provement to the equilibrium tide model, the weak friction

approximation postulates that there is some delay in the

tidal bulge, mainly because of the non-ideal elasticity of

natural bodies. In the processes of dissipative parameteri-

zation, the most common prescriptions are either a constant

phase lag (constant-Q) model (Goldreich & Soter 1966)

or a constant time lag (constant-τ ) model (Wisdom 2008;

Leconte et al. 2010b). Although the sources of variability

in the two tidal models are fundamentally different, they

are often mistakenly mixed together (Ferraz-Mello et al.

2008). Indeed, in the constant-τ model, the phase delay is

linearly dependent on the time delay. Calculations could be

carried out in terms of a closed formula for any eccentric-

ity with the constant-τ model (Leconte et al. 2010a). High

order computation based on eccentricity is very cumber-

some and troublesome in the framework of the constant-Q

model. Leconte et al. (2010b) pointed out that if the pertur-

bation function in the constant-Q model was expanded to

a lower eccentricity order, it would inevitably produce in-

correct results when the eccentricity exceeded 0.2. Taking

the above into account, the constant-τ model is selected in

our research, with the case of high eccentricity and high

inclination angle.

Hut (1980, 1981) systematically studied tidal dissipa-

tion in close binary star systems. In his model, variations

of the SMA, orbital eccentricity and rotation rate were con-

sidered, but only when the normal direction of the orbital

plane was nearly parallel to the rotation direction, and he

also neglected the effects of longitude of the ascending

node, pericenter and rotation direction (Hut 1981). The re-

sults showed that when the system angular momentum was

not less than the critical angular momentum corresponding

to the minimum energy of the system, the system would

evolve into an equilibrium state. When no less than three-

quarters of the system angular momentum existed in the

form of orbital angular momentum, the equilibrium state

was stable (Hut 1980). In this paper, a spatial tidal dissipa-

tion model is established based on the Hut model, and the

motion equation of tidal dissipation is given. This model

also adopts the hypothesis of weak friction, and can be ap-

plied to arbitrary eccentricity and angle ϑ, where ϑ refers to

the spatial angle between the direction of rotation and the

normal direction of the orbital plane. When ϑ is zero, it will

degenerate into a trivial situation. Meanwhile, this model

is suitable for the evolution of tidal dissipation under high

eccentricity, but also reveals the state of system evolution

before and after ϑ approaches zero. It is notable that this

paper considers the planets’ deformation due to the tidal

effects of stars in the spatial tidal dissipation model, which

is different from the case of considering the tidal effect of

planets on stars and the rotation of stars adopted in other

tidal dissipation models (Naoz et al. 2012; Anderson et al.

2016; Xue et al. 2014). In order to simplify the problem,

we only consider the rotation of planets and ignore the ro-

tation of stars.

The tidal force is very large when a planet moves to

the pericenter of a large elliptical orbit, which could cause

intense tidal dissipation, significant orbital migration of the

planet, and makes the planet evolve to a position close to

the star (Heller et al. 2011; Anderson et al. 2016). The

major factor in producing a large ellipse is the third body

perturbation and, therefore, this paper simultaneously con-
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siders the effects of external-type three-body perturbation

and tidal dissipation, to establish a comprehensive model

(CPM). Specifically, the quadrupole moment approxima-

tion of the third body perturbation is adopted in this model

(Clifford 2017; Wang et al. 2018). When the orbital eccen-

tricity is large, the tidal effect is relatively large near the

pericenter in the CPM, which would cause the system en-

ergy to reduce and the orbit to become gradually smaller

and rounder. Since the orbit’s eccentricity and inclination

oscillate periodically in a hierarchical triple body and tidal

friction makes the spin parallel to the normal orientation of

the orbital plane with a short timescale in an isolated binary

system, the evolution of the angle ϑ may be more compli-

cated and interesting in the CPM. In detail, the timescale

of the third body exciting the inclination and the timescale

of the tide affecting the spin parallel to the orbital normal

direction will decide the evolution path of the dynamic sys-

tem differently from the single mechanism. Based on the

above conjecture, this paper tries to reveal some unique

mechanisms for the evolution of orbit and rotation under

the coupled effect of tidal dissipation and third body per-

turbation.

In Section 2, a spatial tidal dissipation model is es-

tablished according to the time-delay model. In order to

study the long-term effect, the tidal perturbation function

is averaged over the orbital period. Then based on the

constraint of angular momentum conservation, the corre-

sponding motion equations of the planet rotation direction

and rotation rate can be obtained. Finally, the quadrupole

moment approximation effect of the third body perturba-

tion is added on the basis of the tidal dissipation model,

and the CPM considering the third body perturbation and

the tidal dissipation is obtained. In Section 3, since the

third body excites eccentricity and inclination oscillation

periodically, the angle between the rotation orientation and

the normal direction of the orbital plane will oscillate for a

long time during the evolution process. In Section 4, we fo-

cus on those systems which eventually tend to stable states,

and find that the tidal dissipation has an inhibiting effect on

the long-term perturbation of the third body, and in these

states the periodic oscillations of orbital inclination angle

no longer occur in the system, even if the orbital inclination

is in the Lidov-Kozai (LK) resonance region. In Section 5,

the main conclusions are given, and the rationality of the

hypothesis and future work are discussed.

2 THE MODELS

In a star-planet system, the energy of the planet’s orbit as

well as exchanges between orbital and rotational angular

momentum would be changed by stellar tidal dissipation.

The famous tidal models can be divided into two types:

equilibrium tide and dynamic tide. For dynamic tides, vis-

coelastic coefficients and the thickness of different layers

Μ
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Θ
Ω − Θ

′

′′

′

′′

Fig. 1 The tidal deformation of a binary system in the Oxyz
coordinate system.

in the interior of the planet should be considered, such as

stratification theory (Storch et al. 2014). If the planet is

within its Roche limit, mass may be stripped from it to

the star under tidal dissipation (Faber et al. 2005). Tidal

heating will also change the radius and radiation from

the star will cause a thermal tide, which may result in a

larger radius and coupling with the gravitational tide (Gold

& Soter 1969; Arras & Socrates 2010; Auclair-Desrotour

et al. 2015, 2017, 2018a). If the planet is Earth-like, multi-

ple layers in its internal structure will enhance the dissipa-

tion and influence the climate and habitability (Tobie et al.

2005; Henning & Hurford 2014; Breton et al. 2018; Turbet

et al. 2018). For the equilibrium tide model, the planets are

assumed to be perfectly elastic rigid bodies. Tidal defor-

mation will arise and form an instantaneous equipotential

shape, when a planet is in the gravitational field of a star.

The planetary radius will be stretched along the line join-

ing the two mass centers. Furthermore, the weak friction

model assumes that the planet is a rigid body with vis-

coelasticity, and the tidal bulge of the planet will be some-

what delayed under the tidal forces (Alexander 1973). The

delay determined by the planetary internal quality factor

can be described by phase delay or time delay. Leconte

et al. (2010b) discussed the difference between phase delay

and time delay, and pointed out that the phase delay model

would be wrong when used for large elliptical orbits. The

time delay of gas planets is usually obtained by the rela-

tive relationship between Jupiter and one of its moons, and

the magnitude is about 0.062–0.66s (Goldreich & Soter

1966; Socrates et al. 2012). Since the planet’s rotation rate
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is inconsistent with its revolution rate, the tidal bulge will

further deviate from the two centroid lines.

Kozai (1965) established the general tidal model based

on the equilibrium tidal model and the weak friction ap-

proximation, to study the influence of terrestrial tidal de-

formation on satellites of the Earth. This model assumes

that tidal deformations on Earth are mainly caused by the

Sun and Moon, not by satellites. The Hut tidal model (Hut

1981) was mainly used to examine the evolution of close

binaries under tidal effects. Hut firstly considered the case

where angle ϑ = 0, and then extended to the linear or-

der case. Wisdom (2004, 2008) presented a general model,

which contained a planet and its synchronously rotating

satellite, mainly taking into account the existence of ar-

bitrary angle and eccentricity. To understand the coupling

effects between tides and the third body perturbation, this

work extends the Hut tidal model (Hut 1981) to a general

spatial tidal model, which would be applicable to arbitrary

eccentricity and angle ϑ. We obtain the equation of plane-

tary rotation with conservation of total angular momentum,

and the models are described below.

2.1 General Spatial Tide Model

To simplify the problem, we only consider the tidal deformation of a planet by a star, and ignore the tidal effect of the

planet on the star. In addition, we will not be concerned about whether the angle ϑ is zero or not, or whether the eccentricity

of the planet is small or large. Because natural planets are not perfectly elastic but rather viscoelastic, the tidal deformation

is not instantaneous and there will be a lag angle ψ between the tidal bulge and the line joining the centers of the star and

planet, which can be expressed by the time delay τ . Assuming that r is the distance between the planetary center and the

center of the star at time t, the planetary deformation is caused by the star at time (t− τ), which corresponds to r′ as the

distance between the centers of the two bodies.

While the spin of the planet is parallel to the orbital angular momentum, namely ϑ = 0, if the planetary rotation

speed Ωp is greater than the instantaneous orbital angular velocity θ̇, then the tidal bulge is in front of the line joining the

centroid of the planet and star, and vice versa, and the included angle ψ = (Ωp − θ̇)τ . Since the angle ϑ = 0, the tidal

perturbation forces only have two components in the orbital plane radial direction r̂ and the transverse direction θ̂, and

the part is zero in the orbital plane normal direction ŵ, in which r̂, θ̂ and ŵ are the unit vectors of the three directions

respectively. Following the Hut model (Hut 1981), only the leading order (quadrupole) of the angle ψ and the terms linear

in τ will be treated, and then the tidal perturbation forces can be represented by

Ftr = −3k2
GM2

r2

(R

r

)5

(1 + 3
ṙ

r
τ)r̂ , (1)

Ftθ = 3k2
GM2

r2

(R

r

)5

(Ωp − θ̇)τ θ̂ . (2)

Here, G is the universal gravitation constant and R is the radius of the spherical planet. M and m are the stellar mass

and planetary mass respectively, and k2 is the main-order Love number. Different types of planets have different Love

numbers, which are related to the composition of the planet, such as being a solid or gas planet, and the internal structures

of the planet. For a gas giant planet, k2 is between 0.1 − 0.01 (Xue et al. 2014).

When the tidal model is extended to the general spatial case, the rotation and revolution of the planets are out of

sync, and the orbital plane of the planet does not coincide with the equatorial plane of the star. Considering the above two

points, a central coordinate system is chosen with the central star as the originO, and theOXY plane coinciding with the

equatorial plane of the star. As the planet spins and revolves at the same time, the effect of revolution is firstly considered.

The tidal bulge will lag θ̇τ behind the line joining the centers of the star and planet with the effect of revolution, and the

position is A (see Fig. 1). Then the effect of rotation is taken into account and, for simplicity, assuming that the rotation

and revolution are in the same direction, the tidal bulge will move from A to B.

ÂB is an arc on a small circle, which can be approximated as an arc on a great circle, then ÂB is approximately equal

to Ωpτ cosϕ. It is notable that STW is the coordinate system based on radial, transverse and orbital plane normal unit

vectors r̂, θ̂ and ŵ respectively. So, arc ÂB in STW can be expressed by orbital elements. The projection of ÂB in the

orbital plane radial direction r̂ is 0, which means that the radial component force of the general spatial model stays the

same as in Equation (1), and the projection of ÂB in the orbital plane transverse direction θ̂ is

Ωpτ cosϕ cosβ
△
= ΩpτA . (3)
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The projection of ÂB in the orbital plane normal direction ŵ is

Ωpτ cosϕ sinβ
△
= Ωpτ(cos(u)B + sin(u)C) , (4)

in which, A, B, C and D are














A = cos I cos i+ sin I sin i cos (Ω −Θ),

B = cos I sin i− sin I cos i cos (Ω −Θ),

C = sin I sin (Ω −Θ),

D = sin i sin (Ω − Θ).

(5)

Here, u = f + ω, f is the true anomaly, ω is the argument of pericenter, Ω is the orbital longitude of the ascending node

and i is the orbital inclination. I represents the inclination of the equatorial plane of the planet and Θ is the longitude of

the ascending node of the planet’s equatorial plane if the direction of rotation is positive. Considering the force between

two point masses, the perturbing force between two celestial bodies is decomposed into

F = −GMm

r2

{

r̂ + 3
M

m

(R

r

)5

k2[(1 + 3
ṙ

r
τ)r̂ − (Ωp − θ̇)τ)θ̂ + Ωpτ(B cos(u) + C sin(u))ŵ]

}

. (6)

The first term is the universal gravitation between the two point masses, while the others represent a tidal perturbing force.

The corresponding acceleration can be expressed as

r̈ = −GMm

r2
r̂ + Sr̂ + T θ̂+Wŵ (7)

where S, T and W are the components of perturbed acceleration in three directions, which are respectively






























S = −3 µ
r2

M
m

(

R
r

)5

k2(1 + 3 ṙ
r τ),

T = 3 µ
r2

M
m

(

R
r

)5

k2(Ωp − θ̇)τ),

W = −3 µ
r2

M
m

(

R
r

)5

k2Ωpτ [B cos(u) + C sin(u)].

(8)

Here µ = G(M+m) = n2a3, n is the mean orbital angular velocity and a is the orbital SMA. When the rotation direction

is parallel to the normal direction of the orbital plane, namely ϑ = 0, then Ω = ϕ, i = I , A = 1, B = 0, C = 0 and

then Equation (8) is consistent with equation (8) in Hut (1981). For any isolated binary system, the tidal effect makes the

total mechanical energy dissipate gradually, while the total angular momentum is conserved. Three quantities are required

to describe the rotational angular momentum in space: the magnitude of rotational velocity Ωp and two direction angles

I and Θ. The motion equations can be obtained from conservation of angular momentum. The planet’s orbital angular

momentum is J = Mm/(M + m)
√
µp, where p = a(1 − e2) is the semilatus rectum. The angular momentum of the

system is Jŵ+IpΩpN̂ = C, C is a constant vector and the square of the radius of gyration r2g is defined as Ip = mR2
pr

2
g ,

where Ip is the moment of inertia of the primary (for a homogeneous gas giant, r2g = 0.4, and for a real gas giant, r2g is

between about 0.01 and 0.1) (Hut 1981). N̂ is the unit vector for the planetary rotation speed. By taking the derivative of

both sides of the conservation equation with respect to time, the equation of spin angular momentum motion can be given

by

dIpΩpN̂

dt
= −rFθω̂ + rFw θ̂ (9)

where Fθ and Fw are the components of F in θ̂ and ŵ, respectively. There is a three dimensional vector in the right-

hand side of Equation (9), which depends on the orbital elements and can be represented by (Nx, Ny, Nz)
T . Through

simplification and naturalization, the resulting equations of rotational motion are














dΩp

dt =
(Nx sin Θ−Ny cos Θ) sin I+Nz cos I

Ip
,

dI
dt =

(Nx sin Θ−Ny cos Θ) cos I+Nz sin I
IpΩp

,

dΘ
dt =

Nx cos Θ+Ny sin Θ
IpΩp

.

(10)

Based on the tidal equilibrium model and weak friction approximation, this part establishes the equation of motion

for the general tidal model in space, which is suitable for arbitrary eccentricity, arbitrary orbital inclination and arbitrary

included angle Θ. In order to improve operation efficiency and save calculation time, if the eccentricity is less than 10−5,

then the eccentricity will be considered to be zero in the process of numerical calculation; and to study the long-term

effects of tidal dissipation, the equations of motion are usually averaged.
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2.2 Averaged Tide Model

To investigate secular effects of the tide, short-period terms should be eliminated by averaging the orbit over the orbital

period P . Generally, the averaging method is F̄ = 1
P

∫ P

0 F (t)dt. Here, the function does not only directly contain time t,

but also contains quantities that vary with time, such as r, ṙ, θ̇, f andE. By using the basic formulas of celestial mechanics,

those quantities can be transformed into a suitable anomaly which contains true anomaly f or eccentric anomaly E.

Specifically, by averaging the equations of orbital motion and rotation under the tidal perturbation in Section 2.1, we can

obtain the equations of orbital motion as










































da
dt = −6k2

Tt

M
m q(R

a )8a(1 − e2)−
15

2 [f1(e
2) − f2(e

2)(1 − e2)
3

2
ΩpA

n ] ,

de
dt = −27k2

Tt

M
m q(R

a )8e(1 − e2)−
13

2 [f3(e
2) − 11

18f4(e
2)(1 − e2)

3

2
ΩpA

n ] ,

di
dt = − 3

2
k2

Tt

M
m q(R

a )8
Ωp

n (1 − e2)−5[32e
2f6(e

2)(B cos 2ω + C sin 2ω) +Bf5(e
2)] ,

dΩ
dt = − 3

2
k2

Tt

M
m q(R

a )8
Ωp

n sin i(1 − e2)−5[32e
2f6(e

2)(B sin 2ω − C cos 2ω) + Cf5(e
2)] ,

dω
dt = 15

2 k2
M
m (R

a )5nf4(e
2)(1 − e2)−5 − cos idΩ

dt .

(11)

Correspondingly, the equations of rotational variation have the following concrete forms

dΩp

dt = KT Ωp(1 − e2)−
9

2

[

2
(

n
Ωp
A(1 − e2)−

3

2 )f2(e
2) −A2f5(e

2)
)

− f4(e
2)(B sinω − C cosω)2 − f7(e

2)(B cosω + C sinω)2
]

,
(12)

dI
dt = KT (1 − e2)−

9

2

[

2
(

AB′f5(e
2) − n

Ωp
B′(1 − e2)−

3

2 )f2(e
2)

)

+ f4(e
2)(B sinω − C cosω)(A′ sinω + C′ cosω)

+ f7(e
2)(B cosω + C sinω)(A′ cosω − C′ sinω)

]

,

(13)

dΘ
dt = KT

sin I (1 − e2)−
9

2

[

2
(

n
Ωp
D(1 − e2)−

3

2 f2(e
2
)

−ADf5(e
2)

)

+ f4(e
2)(B sinω − C cosω)(D′ sinω − cosω cos(Ω −Θ))

+ f7(e
2)(B cosω + C sinω)(D′ cosω + sinω cos(Ω −Θ))

]

,

(14)

where

f1(e
2) = (1 +

31

2
e2 +

255

8
e4 +

185

16
e6 +

25

64
e8) , f2(e

2) = (1 +
15

2
e2 +

45

8
e4 +

5

16
e6) ,

f3(e
2) = (1 +

5

4
e2 +

15

8
e4 +

5

64
e6) , f4(e

2) = (1 +
3

2
e2 +

1

8
e4) ,

f5(e
2) = (1 + 3e2 +

3

8
e4) , f6(e

2) = (1 +
1

6
e2) ,

f7(e
2) = (1 +

9

2
e2 +

5

8
e4) ,

and,

Tt =
R3

Gmτ
, (15)

is a typical timescale of tidal dissipation. It is inversely proportional to the tide delay factor τ . In the constant time delay

model, Tt is constant. The timescale factor of rotation can be regarded as KT

KT =
1

Ip

[3

2

k2

Tt

M2

m

R8

a6

]

. (16)

q = (M
m + 1) signifies the mass ratio between stars and planets. FurthermoreA′, B′, C′ and D′ are















A′ = sin I sin i+ cos I cos i cos (Ω −Θ),

B′ = sin I cos i− cos I sin i cos (Ω −Θ),

C′ = cos I sin (Ω −Θ),

D′ = cos i sin (Ω −Θ).

(17)

In the process of evolution, if the system eventually enters the state where the normal direction of the orbital plane is

parallel to the direction of rotation, namely i = I and Ω = Θ, then Equations (8) and (17) can be abbreviated as A = 1,
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B = C = D = 0, A′ = 1 and B′ = C′ = D′ = 0, and then di/dt = dI/dt = 0 and dΩ/dt = dΘ/dt = 0. In this

case, the orbital motion equations given in Equation (11) are reduced to Hut’s equations (9) and (10). Meanwhile, the

rotation equations, Equations (12)−(14), will be reduced to Hut’s equation (11), and therefore, that is to say, the model in

this paper covers Hut’s tidal model. In addition, if the system will eventually reach a round state, namely the eccentricity

e = 0, dω
dt will degenerate into dω

dt = 15
2 k2

M
m (R

a )
5
n. So, ω only increases linearly with time when the system enters a

stable state. That is why Hut neglected the motion of ω for isolated binary systems.

2.3 Model Comparison

For convenience of calculation, mass and distance are nor-

malized with the mass of the Sun M⊙ as the basic unit

of mass and the average distance between the Sun and the

Earth (1 AU) as the basic unit of length. Also to make the

gravitational constant G = 1, the corresponding time unit

is Tnormal =
√

AU3/GM⊙. In this paper, the mass of the

central celestial body is assumed to be equal to the mass

of the Sun, M = M⊙, and the planet is considered to be

a Jupiter-like gas planet, m = 10−3M⊙, whose planetary

radius is R = 8.0 × 10−4 AU, the 2nd-order Love number

is k2 = 10−1, the square of radius of gyration r2g = 0.01

and the tidal lag time τ is 0.6 s (Xue et al. 2014). In addi-

tion, the Runge-Kutta 7th(8th) order integrator is adopted

in the numerical calculation.

In order to verify the validity of the averaged model,

Figure 2 compares the averaged model and the numerical

model under the general spatial tidal model. Specifically,

the orbital initial parameters are a = 10−1 AU, e = 0.8,

i = 70◦, Ω = 40◦, ω = 5◦ and M = 0. The initial rota-

tion period is Tp = 10 h, and I = 60◦, Θ = 30◦, where

the relation between rotation period and rotation speed is

Tp = 2π/Ωp. Note that the ordinate Ωp/n takes the log-

arithm of log10, in the same way as in the following fig-

ures. Also, the mean orbital angular velocity n refers to

the instantaneous angular velocity of revolution for the nu-

merical model. Results in Figure 2 show that the SMA a

eventually decays to a certain degree, and then to a stable

state. Meanwhile, the eccentricity would also decay to zero

(circular) slowly. In addition, the rotation and revolution

would enter into a 1:1 resonance (co-rotation) case. In the

general model, the equatorial tilt angle I and orbital incli-

nation i tend to converge very quickly (co-planar, ϑ = 0)

within a short time. Furthermore, since the timescale of ϑ

decay is so short, whether the orbital inclination and ro-

tation direction are consistent or not would weakly affect

the overall relative evolution of an isolated binary system.

Generally, since the general numerical model contains the

short-period term, the ratio of the rotational rate and in-

stantaneous orbital angular velocity has short-period os-

cillations during the evolution process, which means that

Ωp and n are oscillating towards resonance. The initial or-

bital parameters in Figure 2 are the high eccentricity and

high inclination. This is a typical example for the general

tidal dissipation model, and indicates that the general tidal

model is suitable for the case of high eccentricity and high

orbital inclination.

2.4 The Third-body Perturbation

The third-body perturbation has useful applications for dif-

ferent systems from planetary to stellar scales. In Jacobi

coordinates, the perturbed functions have been expanded

up to the hexadecapole order with the SMA ratio, which

has a unified form of internal and external perturbation

(Wang et al. 2018). Further, preliminary studies were made

under restrictive conditions. Results show that the influ-

ence of hexadecimal moment approximation cannot be

neglected in some configurations. The third-body model

would be added to other comprehensive effects (e.g., tidal

effects, post-Newtonian effects, etc.). When considering

the coupling effect of the spatial tidal dissipation and third-

body perturbation, in particular, the planet is not only de-

formed by the stellar tide, but also affected by the perturba-

tion of the third body m′, which is called the CPM. In this

paper, to clarify problems, some new basic assumptions in

the CPM are adopted. The mass of the perturbed body m

is much smaller than that of the central body M and third

body m′. Additionally, only the rotation of the body m is

considered, and the rotation of the central body and third

body are ignored in the CPM. Those assumptions simplify

the CPM as much as possible, and these factors can also be

taken into account in subsequent studies.

In the numerical calculations, we adopt the orbital sur-

face of the perturbing body as the reference plane and as-

sume that it orbits circularly, namely i′ = 0◦ and e′ = 0.

Since only the quadrupole approximation is considered,

the longitude of the ascending node and the argument of

the perturbing body pericenter are ordinary. The third body

perturbation function can be obtained in the central coor-

dinate system to be suitable for the tidal model.

Utb = − Gm′

16

a3

a′3

[

(3sin2i− 2)(2 + 3e2)

− 15e2sin2i cos 2ω
]

,

(18)
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Fig. 2 Comparisons between the numerical tidal model and average tidal model.

where a′ is the SMA of the perturbing body. The resulting

third-body perturbation equations are































da
dt = 0 ,

de
dt = 15Gm′

8

√
1−e2e

na′3
sin2i sin 2ω ,

di
dt = − 15Gm′

8

e2

na′3
sin i cos i sin 2ω ,

dΩ

dt == − 3

8

Gm′

na′3
√

1−e2
[cos i(2 + 3e2) − 5e2 cos i cos 2ω] ,

dω
dt = − 3

8

Gm′
√

1−e2

na′3
[(1 − e2)(1 − 5 cos 2ω) − 5(1 − cos 2ω)cos2i] .

(19)

We note that the system of external quadrupole moment

approximation is a relatively mature field of study (Lidov

1962; Kozai 1962; Yokoyama et al. 2003; Kozai 2004;

Naoz et al. 2011; Clifford 2017; Wang et al. 2018).

Because there is no mean anomaly M or longitude of

ascending node Ω, the canonical conjugate variables L

and H = L
√

1 − e2 cos i are constant, and the ratio

C = H/L is constant. For a given C, e increases as

i decreases and vice versa. The system has a resonance

about the argument of the pericenter, if dω/dt = 0,

which is also known as LK-resonance (Lidov 1962; Kozai

1962). The condition is satisfied at ω = ±90◦ and

cos i =
√

3/5(1 − e2). Thus, the equilibrium point is

situated at ω = ±90◦, e = [1 −
√

5/3C]
1/2

and i =

arccos (
√

3/5C)
1/2

. This stationary solution exists if the

initial condition
√

(1 − e2) cos i <
√

5/3 is satisfied, and

accordingly, the critical inclination, above which the LK-

resonance exists, is given by icrit > 39.2◦ and the am-

plitude of eccentricity and inclination is determined by C.

The orbit of the initially high eccentricity will excite the

high inclination, and for the orbit of the initially high in-

clination, it will excite the high eccentricity. This property

is also used to explain the formation and migration mech-

anism of hot Jupiter exoplanets.

Since Equation (11) and Equation (19) are expressed

in a uniform form – the orbital element form – we can com-

bine the two sets of equations. When the tidal perturbation

and third body perturbation are taken into account, what is

the new evolution mechanism of the system? Will the sys-

tem no longer generate resonance even if the inclination

meets the condition of LK angular resonance? In this pa-

per, we will try to find answers. After perturbation of the

third body is considered, the orbital angular momentum of

the third body should also be taken into account in angu-

lar momentum conservation. In the calculation process, the

angular momentum of the system is basically constant at

the previous moment and the later moment, so the above

rotation equations are still applicable to the CPM.

2.5 Timescale

There are several timescales in the special tidal model, for

instance, the evolution timescale of the orbital elements

and those of the rotational rate and direction. Because the

equations of tidal perturbation contain high terms of ec-

centricity, we should expand Equations (11)−(14) about e

at e = 0 by using Taylor series, and then we can deduce

the four timescales which characterize the tidal evolution

of an isolated binary system. These are: i) the synchroniza-

tion time tsync is defined as

1

tsync
=

1

n− Ωp

dΩp

dt
= 3KT

=
3

Ip

[3

2

k2

Tt

M2

m

R8

a6

]

,

(20)

where the nonlinear terms of the eccentricity have been ne-

glected and ϑ = 0; ii) the circularization time tcirc is de-

fined as

1

tcirc
= −1

e

de

dt
=

21

2

k2

Tt

QM

m
(
R

a
)8 , (21)
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assuming that co-rotation has already been achieved (Ωp =

n; ϑ = 0); iii) the equations of motion for orbital incli-

nation and longitude of the ascending node have similar

forms, and their evolutionary timescale ti is given by

1

ti
=

3

2

k2

Tt

QM

m

(R

a

)8 Ωp

n
; (22)

iv) the equations of motion for inclination and longitude of

the ascending node of the planetary equatorial plane have

similar forms, and their evolutionary timescale tI is ex-

pressed by

1

tI
= KT (1 − e2)−

9

2

=
3

2

k2

IpTp

M2

m

R8

a6
(1 − e2)−

9

2 .

(23)

From those timescales, we can get ti/tI = M [a(1−e2)]1/2

√
m+MR2r2

gΩp
.

We expect that ti/tI ≫ 1, since the SMA a is much larger

than the radius R of the planet and the mass M of the cen-

tral object is much larger than the mass m of the planet.

This is why the angle I changes quickly and then tends to

the inclination i in Figure 2. Notably, while the inner SMA

is larger or the eccentricity is smaller, the timescale tI will

be longer, and it will take more time for the angle ϑ to tend

to zero. Accordingly, the timescale of oscillations for ec-

centricity and inclination of LK-resonance tlk is given by

Holman et al. (1997) and Antognini (2015)

tlk ∼=
32πMa′

15(G(M +m))1/2m′a3/2
(1 − e′

2
)3/2 . (24)

Because the perturbing body is in a circular orbit, e′ = 0

and the timescale tlk is mainly determined by the masses

of the central body, the planet, the perturbing body, and the

inner and outer SMA. Equation (23) shows that the larger

the initial inner SMA and the smaller the eccentricity, the

larger the value of timescale tI . Meanwhile Equation (24)

implies that the larger the initial inner SMA, the smaller

the value of timescale tlk .

3 THE EFFECT OF THIRD BODY

PERTURBATION ON TIDAL DISSIPATION

In this and the below section, the coupling effects of tidal

dissipation and third body perturbation are investigated,

and the coupling results of changing the initial orbital el-

ements are analyzed. This section will describe studies on

the coupling effects of the third body perturbation and tidal

dissipation, with more attention on the effect of the third

body perturbation to the tidal mechanism. Anderson et al.

(2016) focused on the effects of a planet’s tide on a star,

and the star’s rotation and flattening caused by stellar rota-

tion when the ratio of the initial SMA of the inner and outer

orbits is between 0.015 and 0.035. Naoz et al. (2012) se-

lected the initial ratio of the SMA between 0.005 and 0.05,

and considered the third body perturbation as an elliptic ex-

ternal octagonal moment approximation (i.e., the eccentric

LK mechanism, EKL). By changing the constant phase Q

of tidal dissipation and using the Monte Carlo method for

the associated statistics, they found that the EKL mech-

anism contributed 30% to the observations relative to all

the hot Jupiters. In this paper, we take into account more

effects, such as the rotation of the planet, the star’s tidal

effect on the planet and the effect of the third body, and

the SMA ratio of the initial inner and outer orbits being

between 0.005 and 0.1.

For conciseness, the third body mass and orbital pa-

rameters selected in this section are suitable for the fol-

lowing numerical calculation, unless specified otherwise.

The third body mass M ′ = 10−1M⊙, orbital SMA a′ =

20 AU, eccentricity is zero and the orbital inclination, lon-

gitude of the ascending node and argument of pericenter

are provided in Section 2.4. Since the system evolution un-

der CPM is still related to many other parameters, the dif-

ferences in system evolution could be analyzed separately

by changing the initial values of the SMA, eccentricity and

orbital inclination. Firstly, we compare the timescales tI
and tlk, since Equation (23) and Equation (24) are given

in Section 2.5 and the relevant parameters are given in the

previous parts. To improve the efficiency of the tidal mech-

anism, the eccentricity is assumed to be 0.8 and the rota-

tion period is set to be 1 h in Figure 3. When the SMA in-

creases, the timescale tI will increase and the timescale tlk
will decrease, and vice versa. Furthermore, while the SMA

a is about 0.25 AU, tI is equal to tlk. We have performed

a number of calculations. When the initial timescale tI is

less than tlk, the system will quickly enter the stable state.

To reveal the coupling effect of the CMP, we chose three

groups of SMA from them as the initial values in Figure 4,

namely 0.3 AU, 0.5 AU and 1 AU.

Results of numerical calculations from changing the

half-length diameter of orbit are shown in Figure 4. In par-

ticular, the initial orbital parameters are set to e = 0.8,

i = I = 60◦, Ω = Θ = 40◦, ω = 5◦ and Tp = 1 h.

From the analysis in Section 2.2, we know that when the

rotational direction of the planet is parallel to the normal

direction of the orbital plane, then di/dt = dI/dt = 0 and

dΩ/dt = dΘ/dt = 0. In other words, in an isolated binary

system, the above equations will not change, and the ori-

entation of rotation is consistent with the normal direction

of the orbital plane. Investigating how the system would

evolve as the third body perturbs to change the orbital in-

clination, we set i = I and Ω = Θ initially.

In Figure 4(a), initially, a = 0.3 AU, and the timescale

tI is 1.1 × 106 and tlk is 3.2 × 105, which are the same

order of magnitude. In detail, tI is slightly larger than tlk.
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Fig. 4 System evolutions from different initial orbital SMAs under the CPM. From left to right: a, b, c.

As the SMA decays, tlk becomes larger and tI becomes

smaller and, as a result, the included angle ϑ quickly in-

creases from 0 to nearly 40◦, and then gradually decays to

a steady state. Meanwhile, the eccentricity oscillates ini-

tially and then decreases to zero. In Figure 4(b), initially,

a = 0.5 AU, and the timescale tI is 2.4 × 107 and tlk is

1.5×105, in which the former is about 102 times the latter,

which means that the third body perturbation is dominant.

Firstly, the eccentricity oscillates, meanwhile the included

angle ϑ rises quickly to more than 60◦ from initial value 0,

but as the SMA decreases continuously, then tlk becomes

bigger and tI becomes smaller. As a result, the included an-

gle ϑ declines and oscillates until back to nearly zero, and

the eccentricity decays continuously to zero. Furthermore,

the initial value of the SMA is enlarged continually as

a = 1.0 AU (see Fig. 4(c)), and the timescale tI is 1.6×109

and tlk is 5.4×104, in which the former is about 105 times

the latter. Results in Figure 4(c) show that over nearly the

whole evolution, the SMA seemingly does not decay, and

the eccentricity is still oscillating. Due to the obvious dif-

ferences in the timescales tI and tlk, the included angle ϑ

rises quickly to more than 90◦ from initial value 0, and the

angle then quickly recedes and finally oscillates between

20◦ and 60◦. The ratio of rotation rate and mean motion

rate in Figure 4(c) also experiences a process of rapid de-

cay, and then slowly decays.

Figure 4 demonstrates that the smaller the initial value

of SMA, the smaller the timescale tI and the greater the

timescale tlk, and then the system will more quickly enter

the stable state (circular, co-rotation and co-planar), which

means that the normal direction of the orbital plane and

the direction of rotation would rapidly enter into a consis-

tent state. In contrast, when the SMA increases, the tidal

force weakens, the third body perturbation is strong, and it

will take a relatively long time to reach the same consistent

state for the normal direction of the orbital plane and the

orientation of rotation. While the SMA exceeds a certain

range, the timescale tI is much greater than tlk, and the

third body perturbation is dominant; then the orbital incli-

nation and eccentricity are still in an oscillating state, but

the SMA has only weak attenuation. Moreover, there is a

significant inconsistency between the normal direction of

the orbital plane and the rotation direction, namely ϑ 6= 0.

Also, ϑ is oscillating and not zero, which suggests that

there are mutual constraints between the direction of ro-

tation and the normal direction of the orbital plane under

the CPM, indicating that the third body perturbation has an

influence on tidal dissipation.
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From the above section, we know that in an isolated bi-

nary system, the rate of change of the rotational direction,

orbital inclination and longitude of ascending node will

quickly go to zero in the general tidal model, and then the

rotational direction is parallel to the normal direction of the

orbital plane with a very short timescale. Only under third

body perturbation can the orbital inclination change peri-

odically. In the CPM, the third body perturbation mecha-

nism exciting the orbital inclination, and tidal dissipation

mechanism making θ zero, have different phase and ampli-

tude, which causes the included angle to oscillate continu-

ously.

In Figure 5, the coupling effect is analyzed by chang-

ing the initial eccentricity. The initial orbital parameters

are a = 0.1 AU, i = I = 70, Ω = Θ = 10◦, ω = 90◦

and Tp = 1 h. Since a = 0.1 AU, no matter what value

the eccentricity is, the timescale tI is smaller than tlk. In

Figure 5(a), the initial value of eccentricity is e = 0.8, and

the timescale tI is 1.6× 103 and tlk is 1.7× 106, in which

the former is about 10−3 times the later, which means that

the tidal effect is dominating. Then the attenuation of the

orbital elements is dramatic, until a decays to near stability

and the eccentricity rapidly decays to the circular state fi-

nally. The included angle ϑ instantaneously increases and

then returns to zero again. In Figure 5(b) the initial ec-

centricity is e = 0.5 and the timescale tI is a quarter of

tlk. However, attenuation of the SMA is gentle, and the

eccentricity oscillates and decays gradually; as time goes

on, it only decreases to about 0.3 finally. Meanwhile, the

included angle ϑ rapidly grows more than 2◦ and damps

slowly. Figure 5(c) corresponds to the case of the initial

eccentricity e = 0.1 and the timescale tI is approximatily

equal to tlk. Since the initial eccentricity is small, the tidal

effect at periapsis is relatively weak, which would not ap-

pear the moment that the timescale tI is smaller than tlk
in the beginning. Due to the timescale tI being equal to

tlk, the third body will not excite a more eccentric orbit.

As a result, the rotational direction and normal direction of

the orbital plane will remain inconsistent for a longer time.

When the initial eccentricity is high, the same as the tidal

force, the system would enter a stable state quickly. By

comparing the three sub-figures in Figure 5, some findings

could be presented: (1) when e = 0.8, the system reaches

stability after 108[T ]; (2) when e = 0.1 and e = 0.5, the

tidal force weakens relatively at the periapsis and the third

body perturbation also weakens, but ϑ 6= 0 for a longer

time, which also demonstrates the complicated coupling

effect of the two mechanisms in the system.

Figure 6 depicts the results of changing the initial or-

bital inclination. The initial orbital parameters are: a =

0.5 AU, e = 0.8, i = I , Ω = Θ = 40◦, ω = 5◦ and

Tp = 1 h, and tI is about 103 times tlk. In Figure 6(a), the

initial inclination is i = 70◦, and the SMA a quickly de-

cays to a steady state; the eccentricity e firstly rises for a

very short time, and then damps to the final stable case; the

included angle ϑ quickly rises to nearly 70◦ at the begin-

ning and rapidly reduces to zero. In Figure 6(b), the initial

inclination is i = 60◦, and the angle ϑ quickly rises to

nearly 60◦, then oscillates and decays to 0◦. In Figure 6(c),

the initial inclination is i = 30◦, which is smaller than

the previous two. On the scale of a billion years, a only

decays weakly, and the orbital eccentricity remains oscil-

lating; the angle ϑ fleetingly rises to more than 80◦, and

then quickly falls back to and oscillates around 20◦. The

results of Figure 6(c) illustrate that while the system has a

low initial orbital inclination, the rotational direction and

the normal direction of the orbital plane quickly become

inconsistent from the initial consistent state, and an angle

of about 20◦ between the two directions would exist con-

tinually in the end. In fact, when third body perturbation is

taken into account, although the initial orientation of rota-

tion and normal orientation of the orbital plane are artifi-

cially set to be consistent, there will still be inconsistency

in the evolution process.

Figure 6 demonstrates that where the other parameters

are the same, the smaller the initial orbital inclination, the

longer the rotation direction is inconsistent with the nor-

mal direction of the orbital plane, in other words, the longer

ϑ 6= 0 lasts, which is the “bifurcation” phenomenon. In ad-

dition, the ratio of the rotational rate and the mean motion

rate experiences a rapid decline at the beginning of evolu-

tion, regardless of whether or not it eventually evolves into

a stable state or not.

In the above research, in order to simplify the variables

and investigate the coupling effect of third body perturba-

tion and tidal dissipation, the mass and SMA of the third

body are set to be invariant and fixed. In fact, the influence

of the mass and SMA of the third body on the system evo-

lution can be analyzed from the expression timescale tlk,

Equation (24). The effect on tlk when the SMA a′ is re-

duced by one tenth is equivalent to the effect on tlk when

the mass of the third body is increased by one thousand

times. When the mass of the third body increases or the

SMA a′ decreases, the effect on tlk is similar to that of the

increased SMA a, and then the tlk will become smaller,

and vice versa. If the tlk is smaller than tI , the angle ϑ will

keep oscillating for a longer time. The initial orientation

of rotation is set to be consistent with the initial value of

the normal direction of the orbital plane, and ϑ = 0. Then

what if ϑ 6= 0? Firstly a set of initial orbital parameters is

selected: a = 0.3 AU, e = 0.8, i = 60◦, Ω = Θ = 30◦,

ω = 5◦ and Tp = 1 h, and the angle θ is changed by al-

tering the rotational direction tilt I . The tilt I is separately

set as I = 5◦, 10◦, 30◦, 60◦, 70◦ and 85◦, so there would

be different cases: (1) I = 60◦, ϑ = 0; (2) I ≤ 60◦, the

smaller the value of I , the greater the angle ϑ; (3) I ≥ 60◦,
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Fig. 5 System evolutions of different initial orbital eccentricities under the CPM. From left to right: a, b, c.
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Fig. 6 System evolutions of different initial orbital inclinations under the CPM. From left to right: a, b, c.

the greater the value of I , the greater the angle θ. Among

the six groups of data, the angle ϑ is largest in the case

where I = 5◦. However, it can be seen from Figure 7 that,

despite the initial value of ϑ 6= 0, the angle ϑ rapidly goes

to zero during evolution. In addition, the orbital inclina-

tions of different initial values are stable around the same

value, which means that whether the initial rotational ori-

entation is consistent with the normal orientation of orbital

plane has little influence on system evolution.

In general, the system enters a stable state of circu-

larized coplanar corotation in billions of years, when the

initial orbit has a smaller SMA, a larger eccentricity or a

larger initial orbital inclination. In the process of entering

a stable state, the rotational orientation and normal direc-

tion of the orbital plane firstly tend to be consistent, prior

to the other parameters, and then the amplitude of ϑ gradu-

ally decreases until stable. When the initial SMA is greater,

the initial eccentricity is smaller, and the initial orbital in-

clination is smaller. The inconsistency between rotational

orientation and normal orientation of the orbital plane will

continue for a longer time, and it is no longer like the case

where the isolated binary system is only affected by tidal

perturbation. The excitation effect of the third body pertur-

bation on the orbital inclination and eccentricity makes the

system in the CPM more likely to show a longer duration

of ϑ 6= 0 (‘bifurcation’). From Equations (12) and (21),

it can be seen that when the SMA decreases and the ec-

centricity becomes bigger, the tidal effect increases, mean-

while, the influence of third body perturbation becomes

weaker, and vice versa. In the case where the tide is ab-
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Fig. 7 Evolutions of included angle for different initial included angles.

solutely dominant, which means that the timescale tI is

much smaller than tlk, the system will evolve into a sta-

ble state; and when the third body is absolutely dominant,

which means that the timescale tI is much greater than tlk,

there will be ‘bifurcation’ between the rotational orienta-

tion and the normal direction of the orbital plane during

the evolution process, which will last for a long time and

even accompany the whole evolution process. When the

timescale tI is about the same as tlk, the evolutionary path

depends on whether the eccentricity is great or small. If the

eccentricity is greater, then the tide will become stronger

than that of the small eccentricity at periapsis, and as a re-

sult, the orbital radius will decay, which causes tI to be

smaller and tlk to be greater. Then, the angle ϑ will tend to

zero.

4 THE EFFECT OF THIRD BODY

PERTURBATION ON TIDAL DISSIPATION

When the systems are eventually in a stable state, the in-

cluded angle between the normal direction of the orbital

plane and the rotational direction is no longer changed,

namely ϑ remains zero, but the orbital plane of the planet

is not consistent with the reference plane – the third body

orbital plane. For a more intuitive observation of the evolu-

tion, the angle ϑ is replaced by the tilt I(i) in the pictures

below. Furthermore, the systems that eventually enter a sta-

ble state are selected. Specifically, three sets of initial pa-

rameters are selected, as shown in Table 1. Here, the first

row of data displays the initial parameters of Figure 8(a),

the second row of data features the initial parameter of

Figure 8(b) and the third row of data lists the initial pa-

rameters of Figure 8(c).

Table 1 The Initial Orbital Elements and Parameters of Rotation

a(AU) e i(◦) Ω(◦) ω(◦) Tp(h) I(◦) Θ(◦)

0.5 0.8 60 25 5 1 60 25

2 0.01 85 25 90 1 85 25
1 0.6 85 25 90 1 85 25

In Figure 8(a), due to the effects of the third body

perturbation, the eccentricity oscillates firstly with the de-

caying SMA caused by tidal dissipation. Meanwhile, the

timescale tI is much greater than tlk, the tilt I and the or-

bital inclination i have different amplitude and phase, and

the tilt I instantaneously falls from 60◦ to about 0◦. When

the SMA becomes sufficiently small, which means that the

tide is dominant, the tilt I and orbital inclination i enter

a state of phase and amplitude consistency after a stage

of inconsistency, and the eccentricity has not completely

decayed to zero at this time. Thus the SMA continually

decreases and the eccentricity rapidly enters the circular

state after the initial oscillation attenuation. While the an-

gles I and i are in a state of amplitude stability, the orbital

inclination is 27.0◦, which is below the minimum inclina-

tion of 39.2◦ required for LK resonance. In Figure 8(b),

the initial value is in the LK resonance region, and the

tidal dissipation effect is also weak. At first, the eccentric-

ity oscillates with a receding amplitude, meanwhile, the

SMA slowly recedes, which causes the timescale tI to be

smaller than the initial moment and the timescale tlk to be

larger than the initial moment. As a result, the tilt I quickly

approaches the orbit inclination and then the attenuation

speed of the SMA and eccentricity become more appar-

ent until the system reaches a stable state, and finally en-

ters the quasi-synchronous state. After synchronous atten-

uation, they have a stable orbital inclination of i = 44.4◦,
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which is only slightly larger than the minimum vibration

inclination of LK. Therefore, the orbital inclination and ec-

centricity would oscillate periodically with a small ampli-

tude, when only the third body perturbation action is taken

into consideration for the stable state. However, when the

system is stable in the CPM, although the inclination is sat-

isfied, the precessional motion of the argument of periapsis

does not appear.

In Figure 8(c), compared with Figure 8(b), the tidal

force is stronger due to the decrease of SMA, and mean-

while the effect of the third body perturbation becomes

weaker. Therefore, it takes a shorter time for the rotational

direction and normal direction of the orbital plane to be

consistent in phase and amplitude. In the beginning, the tilt

I falls quickly to around 30◦, and then quickly approaches

the orbital inclination, while the inclination is damping and

oscillating, until they become quasi-consistent. As the third

body has just made the inclination have a tiny change, the

tide immediately makes the included angle ϑ become zero,

and as a result, the amplitude of the tilt I and inclination

i continue to attenuate until the final stable state. In other

words, neither the tilt I nor the inclination i will change

and ϑ stays zero. Finally, i = 63.1◦, which is obviously

greater than the minimum inclination of LK resonance.

Therefore, when only the third body perturbation is taken

into account, the orbital inclination and eccentricity would

oscillate periodically with large amplitude. However, when

the system is stable in the CPM, although the inclination is

satisfied, the precessional motion of the argument of pe-

riapsis does not appear. For a short summary, compared

with a quickly consistent case in an isolated binary system,

the rotational direction and normal direction of the orbital

plane have to experience a long or short time of inconsis-

tent amplitude and phase before a quasi-consistent state,

because of the existence of the third body perturbation in

the CPM. Then the two directions will undergo a process of

gradual attenuation of amplitude, and finally stabilize at a

certain angle. While the last stable orbital inclination has a

considerable deviation from the initial value, the planetary

orbital plane does not coincide with the reference plane. In

addition, the ratio of the rotation rate and the mean motion

rapidly decays in the initial evolution stage, then under-

goes a relatively gradual decay, and finally enters into the

corotation state. In Figure 8(b) and (c), the stable inclina-

tions are greater than 39.2◦, which is the minimum value

for LK resonance. However, the precessional motion of the

argument of periapsis does not appear, although the incli-

nation is greater than the critical inclination. When only

the third body perturbation effect is taken into account, the

orbital eccentricity and inclination should show periodic

oscillation, but they do not appear and the motion of the

argument of periapsis is featureless and not in precession

in the CPM. Results indicate that the tidal dissipation will

inhibit the LK effect of the third body perturbation in the

CPM, so that the system may have long-term resonance

under the third body perturbation, but no longer have long-

term resonance in the CPM, and the orbital inclination will

be stable around a certain value.

Furthermore, the next part will investigate the distri-

bution of orbital inclination after stabilization by chang-

ing the initial orbital elements. Firstly, the initial SMA and

other initial parameters are selected: a = 0.1, 0.3, 0.5, 1,

1.5, 2 AU, e = 0.8, i = I = 80′, Ω = Θ = 25Ω = Θ,

ω = 5′ and Tp = 1 h. As the initial SMA increases, the ef-

fect of third body perturbation becomes more important, tI
becomes greater than tlk, and then the inclination will ex-

perience oscillation for a longer time. Results are shown in

Figure 9; when a = 0.1 AU, the stable inclination is about

80′; when a = 0.3 AU, the stable inclination is about 75′.

The inclination of the stable orbit decreases gradually as

the value of the initial SMA increases; for a = 2 AU, the

stable inclination is slightly greater than 35′. In addition, in

those configurations which finally enter into a stable state,

the included angle ϑ may be even greater than 90′ during

the evolution (see the case where a ≥ 1 AU in Fig. 9).

At the top of Figure 10 the following initial orbit con-

figuration is adopted: a = 0.5 AU, e = 0.8, i = I ,

Ω = Θ = 25′, ω = 5′ and Tp = 1 h, and the initial or-

bital inclination I is set as 60′, 70′ and 80′ respectively.

The results at the top of Figure 10 demonstrate that the

higher the initial orbital inclination, the higher the stable

orbital inclination; and the larger the initial inclination, the

shorter the time taken to achieve stability.

At the bottom of Figure 10, the following initial or-

bit configuration is adopted: a = 0.5 AU, i = I = 70′,

Ω = Θ = 35′, ω = 5′ and Tp = 1 h, and the initial ec-

centricity e is taken as 0.6, 0.7 and 0.8, from left to right

respectively. The distribution of stable orbital inclinations

indicates that the larger the eccentricity, the smaller the or-

bital inclination after stabilization; and as the eccentricity

increases, the smaller the timescale tI , and the shorter the

time it takes for the angle ϑ to reduce to zero. Note that

the constraint between the eccentricity and inclination is

C =
√

1 − e2 cos i in the LK effect, which is constant

for a given system. For different systems, higher eccen-

tricity and higher orbital inclination will make the initial

C smaller. From this perspective the smaller the initial ec-

centricity and orbital inclination are, the greater the initial

C and the longer time it takes for the system to enter the

stable state. Furthermore, in Figure 11, the following ini-

tial orbital configuration is selected: a = 1.5 AU, e = 0.2,

i = I = 85′, Ω = Θ = 25′, and Tp = 1 h, and the ar-

gument of pericenter is taken as 5′, 30′, 40′, 50′, 70′ and

90′ in the different panels respectively. With the increase

of the argument of pericenter, the closer the system is to

the LK resonance region, the more obvious the third body
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Fig. 8 The inhibitory effects of tidal dissipation on the secular effect of the third body perturbation. From left to right: a, b, c.
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Fig. 9 Evolutions of angles under different initial SMAs.

perturbation effect is. Although the other initial values are

the same, it takes longer for the system to reach a stable

state as the argument of pericenter increases. In addition,

the argument of pericenter in Figure 11 can be roughly di-

vided into two categories, one is close to the equilibrium

point ±90′, and the other is far from the equilibrium point

±90′, and the orbital inclination of the former is obviously

greater than that of the latter after stabilization, while the

orbital inclinations are not very different from each other.

In general, for those stable systems, the larger the initial

SMA is, the larger the eccentricity and the orbital inclina-

tion, then the larger the orbital inclination after stabiliza-

tion. The influence of the initial argument of pericenter on

the orbital inclination of the final stability is different: if

the initial argument of pericenter is in the region close to

the equilibrium point, the stabilized orbital inclination is

significantly larger than that in another case, where the ini-

tial argument of pericenter is far away from the equilibrium

point region.

5 CONCLUSIONS AND DISCUSSION

Tidal dissipation is the process of energy attenuation and

system transformation. By tidal friction, the mechanical

energy of the system is transformed into thermal energy,

which gradually circulates the orbit to a stable or collision

state. To reveal the evolution of a system before the sta-

ble state, this work extends the Hut model (Hut 1981) to

a more general spatial case in corresponding coordinates,

which could be applied to any eccentricity, inclination or

included angle ϑ. Then the motion equations of orbit and

rotation could be obtained under the constraint of conser-

vation of angular momentum. Moreover, the general spa-

tial tidal model provides a model framework for analyz-

ing the ϑ and specific calculation formula. When the ro-
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Fig. 10 Evolutions of angles under different initial inclinations and eccentricities.
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Fig. 11 Evolutions of angles under different initial arguments of periapsis.

tational orientation is consistent with the normal orienta-

tion of the orbital plane, the general spatial model will de-

grade to the Hut model. In an isolated binary system, the

above two directions will tend to consistency rapidly with

a shorter timescale tI relative to the whole evolution pro-

cess, as shown in Figure 2.

In fact, another effect such as the third body perturba-

tion would make the eccentricity and inclination oscillate

significantly with a timescale tlk, and then make the rota-

tional direction and normal direction of the orbital plane

inconsistent instantaneously, and even lead to significant

qualitative change in the system if only tidal dissipation

is considered. To study the coupling effect between tidal

friction and third body perturbation, we adopt a circular ex-

ternal quadrupole approximation as the third body pertur-

bation, and then obtain the CPM. The difference between

the timescale tI and tlk will influence the evolution path,

in which the timescale depends on the orbital elements,

namely the SMA, eccentricity and even the inclination.

Compared with the widely stratified structure (Naoz

et al. 2012; Anderson et al. 2016), the initial SMA ratio

of the inner and outer orbits in this paper is between 0.005

and 0.1, which is more similar to the close system. We have

found that if tI is much larger than tlk, which means the

tidal mechanism plays a supporting role, the system will

experience sustained oscillations of eccentricity and in-

cluded angle ϑ over the whole evolution, and even the rota-

tional direction would be perpendicular to the orbital plane

of the third body in the evolution process. Meanwhile, the

decay of the SMA would make tI small, even smaller than

tlk, and then the included angle ϑ would also decay. If tI
is much smaller than tlk, namely, the tidal mechanism is

dominant, the oscillation time of ϑ is short, and the eccen-

tricity will decay rapidly with a slight oscillation until it

reaches zero, and the system ultimately enters the stable

circular coplanar corotation state. Before entering a stable

state, ϑ decays to nearly zero firstly, in other words, the

rotation direction tends to be the same as the normal di-

rection of the orbital plane. After that process, the ampli-

tude of the tilt (I , i) decays gradually until the tilt is stable

around a certain value, as shown in Figures 9−11. All the

above conclusions are based on the initial included angle

ϑ = 0, and even if ϑ 6= 0 at the initial setup, there is no sig-
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nificant effect on the evolution of the system, as depicted

in Figure 7.

Since the system is dissipative in the CPM, dissipa-

tion will always exist if stability or collision is not reached.

Those systems with an oscillating angle ϑ are unstable gen-

erally during the evolution, and they will either reach a

stable state or collide eventually. However, the long-term

existence of the included angle indicates that it is nec-

essary to consider the spatial tidal model when studying

the coupling effect of the tidal dissipation and the third

body. In the CPM, systems that enter into the circular

coplanar corotation state can be roughly divided into two

categories: (1) the stable inclination is below 39.2◦, see

Figure 8(a); (2) the stable inclination is greater than 39.2◦,

see Figures 8(b) and (c). The higher the initial argument

of pericenter is (consider 0◦ ∼ 90◦), the higher the initial

orbital inclination, the higher the initial eccentricity, the

bigger the initial SMA and then the higher the orbital in-

clination of the stable state. After entering the stable state,

if only the third body perturbation effect is considered,

for the former category, the system will remain unchanged

for a long time, while the latter will have periodic reso-

nance, and the eccentricity and tilt will oscillate periodi-

cally. The above description indicates that tidal dissipation

inhibits the secular resonance of the third body perturba-

tion. In other words, for those planets that entered the in-

ner orbit through the LK effect in a multi-body system, if

tidal dissipation is considered, high orbital inclination may

be maintained after stabilization. This provides a possible

mechanism for explaining orbital migration in multi-body

systems.

There is a wide variety of exoplanets found at present,

and a certain number are located in binary or multi-star

systems with large eccentricities and higher orbital incli-

nations. This paper mainly focuses on the possible evolu-

tion process of a system under the comprehensive mecha-

nism of tidal dissipation and third body perturbation, with-

out the evolution of a specific exoplanet. Research into the

coupling effect of tide and third body perturbation helps

in understanding the formation of exoplanets and different

orbital migration mechanisms. If the rotation of exoplanets

can be detected in the future, the inconsistency found in

this paper and the suppression of secular effect by tidal dis-

sipation may also aid the understanding of those exoplan-

ets whose direction of rotation is not perpendicular to their

orbital plane and these exoplanets which have a stable high

inclination with no resonance caused by the third body.

There are still so many questions about determining the

related parameters while applying the tidal model to exo-

planet evolution. Factors such as thermal tide, inertial wave

tide and rotation deformation should be taken into account.

Furthermore, as for the constant-τ delay model, the time

delay τ = 0.6 s adopted in this paper is based on the value

of tidal dissipation of gas giant planets in the solar system.

τ is related to the inner composition and structure of the

object, which is difficult to measure. In addition, the or-

bital inclination and rotation direction parameters adopted

in this paper are artificially set up; these parameters are dif-

ficult to obtain when the CPM is applied to the evolution

of exoplanets. Due to the limitations of observing technol-

ogy, the orbital inclination of only some exoplanets can be

measured at present, which is also a predicament for many

studies of their associated orbital evolution.

In addition, the above research is aimed at planetary

tidal deformation, and it can be generalized to stellar tidal

deformation or to cases of tidal dissipation of both planet

and star. The spatial tidal model can be applied to any bi-

nary system with high eccentricity and high inclination,

and can be directly added to other perturbations due to

the perturbation function and Lagrange motion equation.

While the third body is in a circular orbit, the octupole

order vanishes and the hexadecapole order plays a weak

role in the external perturbation. When the hexadecapole

order is considered, the conclusion is similar to that of the

quadrupole, which is the reason why the quadrupole has

just been considered in this paper. Further, the elliptic ap-

proximation of higher order will be considered in the CPM

due to the fact that the octupole can do an orbit flip.
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