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Abstract This work uses a combination of a variational auto-encoder and generative adversarial network

to compare different dark energy models in light of observations, e.g., the distance modulus from type Ia

supernovae. The network finds an analytical variational approximation to the true posterior of the latent

parameters in the models, yielding consistent model comparison results with those derived by the stan-

dard Bayesian method, which suffers from a computationally expensive integral over the parameters in the

product of the likelihood and the prior. The parallel computational nature of the network together with the

stochastic gradient descent optimization technique leads to an efficient way to compare the physical models

given a set of observations. The converged network also provides interpolation for a dataset, which is useful

for data reconstruction.

Key words: cosmology: dark energy — methods: statistical — methods: data analysis

1 INTRODUCTION

It is well known that predictions about the universe from

ΛCDM are in perfect concordance with observations of

the Cosmic Microwave Background (CMB) (Aghanim

et al. 2018), type Ia supernovae (SNeIa) (Betoule et al.

2014), and Baryon Acoustic Oscillations (BAO) (Alam

et al. 2017), making ΛCDM the standard paradigm in cos-

mology. Such a successful model, however, still has its

own theoretical problems, which are known as fine tun-

ing and cosmic coincidence (Sahni 2002; Peebles & Ratra

2003). Moreover, a few observations such as the Hubble

parameter at high redshift (Delubac et al. 2015) and the

linear redshift-space distortions (Macaulay et al. 2013)

have shown tensions with ΛCDM. All of these motivate

research on the universe that allows time-evolving dark

energy. People have developed different evolving scalar

fields to describe the evolution of dark energy, such as the

canonical scalar fields (Caldwell et al. 1998) and phan-

tom fields (Caldwell et al. 2003; Elizalde et al. 2004;

Scherrer & Sen 2008). Various parametrizations of evolv-

ing dark energy that broadly describe a large number of

scalar field dark energy models have also been proposed,

such as the Chevallier-Polarski-Linder (CPL) (Chevallier

& Polarski 2001) and generalized Chaplygin gas (GCG)

models (Thakur et al. 2012). Given a specific model and

a set of cosmological data, one can study the evolution of

dark energy conveniently.

Then a question of model choice naturally arises with

the development of various dark energy models. A variety

of methods such as the F -test, Akaike information crite-

rion (AIC) (Penny et al. 2006), Mallows Cp, Bayesian in-

formation criterion (BIC) (Penny et al. 2006), minimum

description length (MDL) (Rissanen 1978) and Bayesian

model averaging have been proposed to select a good

or useful model in light of observations. MacKay (1992)

strongly recommends using Bayesian evidence to assign

preferences to alternative models since the evidence is the

Bayesian’s transportable quantity between models, and the

popular easy-to-use AIC and BIC as well as MDL methods

are all approximations to the Bayesian evidence (Penny

et al. 2006). The Bayesian evidence for model selection

has been applied to the study of cosmology for a long time

(Trotta 2008; Martin et al. 2011; Lonappan et al. 2018;

Basilakos et al. 2018), and recently a detailed study of

Bayesian evidence for a large class of cosmological models

taking into account around 21 different dark energy models

has been performed by Lonappan et al. (2018). Although

Bayesian evidence remains the preferred method compared

with information criterions, a full Bayesian inference for

model selection is very computationally expensive and of-

ten suffers from multi-modal posteriors and parameter de-

generacies, which lead to a large time consumption to ob-

tain the final result.
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The variational auto-encoder (VAE) and generative

adversarial network (GAN) which build upon the vari-

ational Bayes theory provide an efficient way to tackle

the model selection problem. VAE (Kingma & Welling

2014) has the ability to approximate the generative pro-

cess (generate the observed data given the model param-

eters) and the inference process (infer the model param-

eters given the observations) which allow one to interpo-

late between the observed values, thus it is useful in the

reconstruction problem. GAN with semi-supervised learn-

ing (Goodfellow et al. 2014; Salimans et al. 2016) has the

ability to effectively learn the distribution of the data, and

assign probabilities to different models from where the

data may come. Thus the combination of VAE and GAN

brings us a novel and convenient way to do data recon-

struction and model selection at the same time. Since the

variational method provides an analytical approximation

of the posterior, it is possible to use the fast gradient de-

scent method to find constraints for the parameters rather

than using the Monte Carlo Markov Chain approach which

may suffer from a low acceptance ratio if the posterior is

ill-posed. Moreover, the variational method benefits from

natural parallelization of the network computation which

can be accelerated by GPU cards.

In this article, we use the VAE-GAN network to learn

the distribution of the distance moduli in the ΛCDM,

ωCDM and CPL universe models, then feed the observa-

tions of SNeIa to the network to reconstruct dark energy

and discriminate the most probable model. The statistical

background of the VAE and GAN is briefly reviewed in

Section 2, and the model structure is described at the end

of this section. In Section 3, two toy models are created to

test the reconstruction and model discrimination ability of

the network. Section 4 describes the observables used in

this work, and generation of the training set is introduced.

Section 5 reports and discusses the results of the data re-

construction and model comparison given by the network,

and some prospects that extend the current work follow the

discussion.

2 THE VAE-GAN NETWORK

The VAE-GAN network proposed by Larsen et al. (2016)

combines a VAE with a GAN, aiming to use the learned

feature representations in the GAN discriminator as the ba-

sis for the VAE reconstruction, which results in better cap-

turing the data distribution, improving the quality of the in-

ference and the generative process of the network in light

of the data. This section briefly reviews the background of

the VAE and GAN, and then introduces the method to do

model selection and data reconstruction using VAE-GAN.

2.1 The Variational Autoencoder

A VAE (Kingma & Welling 2014) consists of an encoder I
and a decoder G. The decoder mimics the generative pro-

cess of a model or a natural phenomenon once given the

model parameters or latent variables ξ, yielding the likeli-

hood distribution of the data x̃ ∼ G (x | ξ). The encoder

approximates the inverse process that given a set of obser-

vations x it infers the posterior distribution of the model

parameters or latent variables ξ ∼ I (ξ | x).

The optimal I and G are obtained by maximizing the

lower bound of the marginal likelihood of the observa-

tions via variational Bayes (Penny et al. 2006; Kingma &

Welling 2014),

L(x) ≥−DKL [I (ξ | x) ‖p(ξ)]

+ EI(ξ|x) [logG (x | ξ)] .
(1)

Here, the first item DKL [·‖·] is the Kullback-Leibler (KL)

divergence which measures the difference between two

distributions. p(ξ) is the prior distribution of the latent

variables. logG(x | ξ) is the likelihood of the data. The

marginal likelihood L(x) equals its lower bound if and

only if the approximate posterior I(ξ | x) is the same as

the true posterior G(ξ | x). Equation (1) implies that the

variational optimal encoder and decoder should constrain

the posterior close to the prior while keeping the likelihood

as large as possible.

2.2 The Generative Adversarial Network

A GAN (Goodfellow et al. 2014) consists of a generator

G and a discriminatorD. The generator functions similarly

to the decoder in that it maps the latent variables ξ ∼ p(ξ)

to the data space x = G(ξ) ∈ pG(x), but the difference is

that the mapping is determinant and the sampling process

happens only at the latent space. The discriminator assigns

probabilityD(x) ∈ [0, 1] to x to tell how probable the real

data are (not produced by the generator). The optimal G
and D are obtained by searching the Nash equilibrium of

the minmax game with the value function

min
G

max
D

V (G,D) =Ep(x) [logD(x)]

+ EpG(x) [log(1−D(x))] ,
(2)

where p(x) is the distribution of the real data. A small

modification of the game (Salimans et al. 2016) allows D
to classify x into one of K + 1 possible classes, for ex-

ample, to tell which one of the K classes of dark energy

models is the most probable that x is generated from, or x

is just the output of the generator which thus belongs to the
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Fig. 1 The structure of the VAE-GAN network (reproduced from Larsen et al. (2016) with an additional classifier described in Salimans

et al. (2016)).

(K + 1)-th class.

min
G

max
D

V̂ (G,D) =Ep(x) [logD(c 6= K + 1 | x)]

+ EpG(x) [log(1−D(c 6= K + 1 | x))]

+ Ep(x,c) [logD(c | x, c < K + 1)] .

(3)

Here c is the label of the model. D(c 6= K + 1 | x) corre-

sponds to D(x) in Equation (2), giving the probability that

x is classified as real. p(x, c) is the joint distribution of the

real data and the model class. D(c | x, c < K + 1) is the

probability that x is classified to the right model c.

2.3 Training Algorithm

The combination of VAE and GAN provides a convenient

way to do data interpolation and model selection at the

same time, once a set of optimal {I,G,D} is obtained by

optimizing Equation (1) and Equation (3). The basic logic

of the VAE-GAN network is shown in Figure 1. The ob-

served data x are fed to the encoder I to find the poste-

rior. Then ξ is sampled from the posterior and fed to the

decoder/generator G to derive the reconstruction (or in-

terpolation) of the input data x̂. Finally, the discrimina-

tor/classifier extracts the useful features from the recon-

struction to derive the probability that x̂ belongs to a cer-

tain model.

Now the remaining question is that given a set of ob-

servations {xi}Ni=1 and their covariance Σobs as well as a

set of model candidates {Mj}Kj=1, how to find the opti-

mal I,G,D. Since Equation (1) and Equation (3) set con-

straints on functions, any flexible functions that have learn-

ing abilities can fit in this work. A possible choice is the

convolutional neural network (CNN) which is good at rep-

resentation learning and shift-invariant feature extraction.

Suppose I,G,D are CNNs whose parameters are θ,φ,ψ

respectively. One can generate a batch of training samples

from the model candidates and train the networks on these

fixed data using stochastic gradient descent

1. Select {xi, ci} from the training samples and re-

trieve the observed part xi,obs, cj ∈ {1, 2, · · · , K} is

the class label. Adding multivariate Gaussian random

noise σobs ∼ N (0, Σobs) to xi,obs yields x∗
i,obs =

xi,obs + σobs;

2. Feed x∗
i,obs to the encoder to get the posterior

Iθ(ξ | x∗
i,obs), then calculate the KL divergence

DKL

[

Iθ(ξ | x∗
i,obs)‖p(ξ)

]

(corresponding to the first

item in Eq. (1)). Suppose the posterior is a mul-

tivariate Gaussian distribution with diagonal covari-

ance, Iθ(ξ | x
∗
i,obs) = N (µi, Iσ

2
i ), and the prior

is the standard normal distribution, p(ξ) = N (0, I),

then the KL divergence can be analytically written as

− 1
2

∑

(1 + logσ2
i − µ

2
i − σ

2
i ), where the square and

sum operations are element-wise (Kingma & Welling

2014). Find the gradient of the KL divergence with re-

spect to the parameter of the encoder,

∆θKL,i = −∇θDKL

[

Iθ(ξ | x
∗
i,obs)‖p(ξ)

]

. (4)

3. Sample ξi from the posterior and feed it to the gener-

ator to obtain the reconstruction x̃i = Gφ(ξi). The

observed part of the reconstruction x̃i,obs together

with x∗
i,obs and Σobs gives the negative log likelihood

− logGφ(x∗
i,obs | ξi) = 1

2χ2 + const. (corresponding

to the second item in Eq. (1)), where χ2 = (x∗
i,obs −

x̃i,obs)
TΣ−1

obs(x
∗
i,obs − x̃i,obs) is the goodness of fit

that is broadly used in model regression problems. The

const. is the normalization constant of the likelihood,

having the value of Nobs

2 log(2π) + 1
2 log detΣobs,

where Nobs is the dimension of the covariance Σobs.

Because likelihood depends on both the encoder and

generator, its gradient provides an update to Iθ,Gφ,

∆θL,i = ∇θ logGφ(x∗
i,obs | ξi),

∆φL,i = ∇φ logGφ(x∗
i,obs | ξi).

(5)

4. Sample ξj from the prior p(ξ) and feed to Gφ to

generate a new sample x̃j . Feed xi, x̃i,xj to the

discriminator Dψ to obtain the logits li, l̃i, lj which

can be interpreted as probabilities, e.g., Dψ(k |
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Fig. 2 The distribution of the outputs of the toy models.

xi) = exp(lik)/
∑

k exp(lik) and lik is the k-th ele-

ment of the logit li. Substituting the probabilities into

Equation (3) yields,

V̂ (Gφ,Dψ) = logDψ(c = ci | xi)

+ logDψ(c = K + 1 | x̃i)

+ logDψ(c = K + 1 | x̃j).

(6)

The gradient of V̂ (Gφ,Dψ) provides a modification to

Gφ,Dψ ,

∆φ
V̂ ,ij

= −∇φV̂ (Gφ,Dψ),

∆ψ
V̂ ,ij

= +∇ψV̂ (Gφ,Dψ).
(7)

5. Update the parameters of the encoder, the generator

and the discriminator using a learning rate of α,

θ ← θ + α(∆θKL,i + ∆θL,i),

φ← φ+ α(∆φL,i + ∆φ
V̂ ,ij

),

ψ ← ψ + α∆ψ
V̂ ,ij

.

(8)

The training process can be easily generalized to mini-

batch training to obtain a faster convergence rate. Several

training techniques that stabilize or accelerate the train-

ing process are also applicable in this problem (Radford

et al. 2015; Salimans et al. 2016; Sønderby et al. 2017;

Mescheder et al. 2018).

The encoder consists of four 1-D convolutional lay-

ers and two dense layers. Each layer is followed by a

batch renormalization layer (Ioffe 2017) and an activa-

tion layer with Leaky Rectified Linear Unit (a simple vari-

ant of ReLU, Nair & Hinton 2010), except the last layer

which acts as the output. The input of the encoder has a
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Fig. 3 Reconstruction of the data. The red dots represent the ob-

served data with noise characterized by Σobs. The blue line shows

the true model from where the observations are generated. The

black line is the reconstruction of the data by the network given

the observations.

size of 580 which is the number of distance moduli in the

Union2.1 dataset, a compilation of SNeIa, later introduced

in Section 4. The dimension of the latent variable should be

no less than the number of parameters in the physical mod-

els used in the problem, and we set it 20. The size of the

convolutional kernel is fixed to 7 and the stride is 4 except

for the input layer whose convolutional kernel and stride

are of size 69 and 1 respectively. The generator consists of

one dense layer and four 1-D fractional convolutional lay-

ers. The sizes of the convolutional kernel and stride are the

same as the encoder (because it is the inverse process of

the encoder), except that the output of the last layer has a

dimension of 2048. The discriminator consists of four 1-D

convolutional layers and one dense layer. The configura-

tion is similar to the encoder, except that the sizes of the

input and output are 2048 and K + 1 respectively.

3 TESTS ON TOY MODELS

This section creates two toy models to test the data recon-

struction and model comparison ability of the network.

Model 1,

y = Az2 + (−A + B)z + C,

where A ∼ N (−4, 0.1), B ∼ N (0, 0.01), C ∼ N (0, 0.1).

(9)
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Fig. 4 Reconstruction of the distance modulus by the network.

Model 2,

y = A sin(ωz) + C,

where A ∼ N (1, 0.1), ω ∼ N (π, 0.01), C ∼ N (0, 0.1).

(10)

Model 1 and Model 2 have similar distributions as

shown in Figure 2. Given the observations xobs,real which

are generated by the underlying model ytrue = −3.5z2 +

3.6z − 0.1 on zobs = {z1, z2, · · · , z580} with an error

matrix Σobs, we would like to fit the two toy models to

the observations to tell which one is most probable to be

the true model, and interpolate the data with the model at

z∗ = {z∗1 , · · · , z∗M}, for example, z∗ even staying in the

interval [0, 1] with M = 1468.

First we concatenate and sort z and z∗, and call the

new one z. Then sample {Ai, Bi, Ci, ωi} from the pri-

ors of the toy models and generate the training samples

xi = Mk(z | Ai, Bi, Ci, ωi). (Note that which set of pa-

rameters should be used depends on the toy model.) Here

12 800 samples for each model are generated as the train-

ing dataset. Finally, the training set {x}25 600
i=1 together with

the observation error Σobs is fed into the network. Once the

training converges, one can put the observations xobs,real

into the network to tell which toy model is most proba-

ble and get the interpolation, see Figure 3. In this task, the

discriminator has a classification accuracy of almost 1. It

assigns a probability of 97% to the parabolic model (Model

1), which is indeed the case.

4 THE DATASET

4.1 The Observations

The observations are from the Union2.1 compilation

(Suzuki et al. 2012) which contains 580 SNeIa. Union2.1

provides the distance moduli with their covariance matrix.

Let zobs denote the redshift of the 580 SNeIa and xobs,real

signify the measured distance moduli. Σobs represents the

covariance of the distance moduli with systematics.

4.2 The Training Set

We study the model comparison problem among three dark

energy models: (1) ω(z) = −1 (Λ CDM); (2) ω(z) = ωDE

(ωCDM); (3) ω(z) = ω0 + ωa
z

1+z (CPL), given a set of

observations of distance moduli at different redshifts. The

expansion rate of a spatially flat FRW universe is deter-

mined by the matter and dark energy,

H2(z) =H2
0

{

Ωm0(1 + z)3

+(1− Ωm0) exp

[

3

∫

1 + ω(z′)

1 + z′
dz′

]}

.

(11)

The luminosity distance is closely related to the Hubble ex-

pansion rate (Eq. (12)), and the distance modulus is given

by Equation (13).

DL(z) = c(1 + z)

∫ z

0

dz′
1

H(z′)
. (12)

µ(z) = 5 log10 DL(z) + 25 . (13)

For each dark energy model, 12 800 samples are generated

at the redshift z = sort{zobs, z
∗}, given the priors of the
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(a) (b)

(c) (d)

Fig. 5 Normalized distributions of the projections of training data onto the 1st and 4th PCs. The red dashed line represents the projection

of the Union2.1 data set onto the PCs. (a) The distribution of projection onto the 1st PC with no observation errors; (b) The distribution

of the projection onto the 1st PC with the covariance matrix from the Union2.1; (c) The distribution of projection onto the 4th PC with

no observation errors; (d) The distribution of the projection onto the 4th PC with the covariance matrix from Union2.1. (a) and (c) share

the same set of PCs, while (b) and (d) share another set of PCs.

parameters as,

Ωm0 ∼ U(0.1, 0.9) ,

H0 ∼ U(50, 90) ,

ωDE ∼ U(−1.8,−0.4) ,

ω0 ∼ U(−1.9,−0.4) ,

ωa ∼ U(−4.0, 4.0) .

(14)

z∗ has 1468 elements evenly located in the interval,

[0.8 min(zobs), 1.2 max(zobs)]. The 12 800×3 samples

are fixed as the training set.

5 RESULTS AND DISCUSSIONS

Figure 4 shows the reconstruction of the distance modu-

lus produced by the network. Given the observed distance

modulus µobs, the discriminator D assigns probability to

each model with,

D(ΛCDM | µobs) = 56.2%,

D(ωCDM | µobs) = 28.6%,

D(CPL | µobs) = 15.1%.

(15)

We conclude that ΛCDM is slightly more favored than the

other two models while CPL is the least favored in light
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of the observations. This result is consistent with the one

derived by the Bayesian evidence method in Lonappan

et al. (2018) that finds the log evidence of each model

to be logZΛCDM = −68.11, logZωCDM = −69.27

and logZCPL = −69.73. These evidences can be in-

terpreted into probabilities 66.2%, 20.7% and 13.1%, re-

spectively, given the non-informative prior p(ΛCDM) =

p(ωCDM) = p(CPL).

The classification accuracy of the three models with

the associated observation error is reported as 47.9%. The

accuracy is subjectively low, but it is not unexpected. The

integration operations in Equations (11) and (12) which act

as low-pass filters smooth out the local high frequency fea-

tures that are useful for model comparison. Thus, the con-

volutional kernel in the network needs to search for use-

ful low frequency features which are less informative once

the output distributions of the models overlap each other.

This is the case that we meet in this problem. If one uses

p(x | Mi) to represent the model’s prediction of the dis-

tribution of the data (it is the evidence of the model), then

the theoretical optimal discriminator assigns each model

Mi with a probability of p(x |Mi)/
∑

i p(x |Mi). Once

xobs drops in the overlapped region where p(xobs |Mi) ≈
p(xobs |Mj), ∀i, j, the discriminator loses its ability to

discriminate the models confidently.

Note that ΛCDM is a special case of ωCDM while the

latter is a special case of the CPL model, which means

there is always a region overlapped among the data dis-

tributions of the three models. If the measurements of the

distance moduli are accurate enough, the region covered by

p(x | ΛCDM) is negligible compared to p(x | ωCDM),

and the latter is negligible compared to p(x | CPL). Thus

x randomly generated by ωCDM has an extremely low

probability to drop in the region of p(x | ΛCDM) and

conversely a high probability is assigned to x that it comes

from ΛCDM if it falls in the region of p(x | ΛCDM).

This situation is also applicable to the comparison between

ωCDM and CPL. Then the discriminator has great confi-

dence to tell from which model x comes.

Figure 5 is an illustration of the discussion above. The

left column shows the normalized histograms of projec-

tions of the training samples to their 1st and 4th principal

components (PCs) with no observation errors. The upper

left panel reveals that the low frequency part (1st PC) of

the model contributes little to the model discrimination,

because the projection of the Union2.1 data to the 1st PC

drops in the region where all the models have similar prob-

abilities. The lower left panel demonstrates that the high

frequency part (4th PC) of the model is useful for model

discrimination, because the projection of the Union2.1 data

on the 4th PC is located in the region where the model has

obviously different probabilities.

The discriminator degrades, however, if a non-zero ob-

servation error Σobs is involved in the problem. The over-

lapped region expands due to the errors so that it is not

negligible anymore. An extreme limit is that the errors be-

come infinity, thus the distribution of the three models be-

comes the same so that the discriminator can only make

a random guess about which model is true. In this situa-

tion, the accuracy degrades to 1/3. Finite observation er-

rors lead to a non-negligible intersection where the dis-

criminator loses the ability to tell confidently from which

model the data come. This is illustrated in the bottom row

of Figure 5. The lower right panel shows the distribution

of 4th PC scores of the training samples with the covari-

ance matrix of Union2.1. The projection of the Union2.1

data onto the 4th PC is now located in the region where the

different models have similar probabilities. This explains

why the network yields a result that is in good concordance

with the standard Bayesian analysis but has a subjectively

low classification accuracy – the model classification accu-

racy is intrinsically determined by the nested structure of

the three models as well as the observation noise. The vari-

ational network successfully learns the posterior distribu-

tion and the likelihood distribution to produce a consistent

result.

Although this work uses the distance modulus for

model comparison and data reconstruction, it is easy to ex-

tend the scenario to Hubble parameters or another dataset.

The framework should be further considered to include not

only xobs but also its n-th derivatives x
(n)
obs, e.g., both the

angular diameter distance and the Hubble parameter mea-

sured by BAO, to let the encoder and discriminator ben-

efit from different datasets. Another improvement of the

framework is to allow the reconstruction of the data to

implicitly include a model averaging process which will

enhance the generalization of the reconstruction, for ex-

ample, extend the VAE-GAN to its more powerful vari-

ant CVAE-GAN (Bao et al. 2017). These are left to future

works.
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