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Abstract With the availability of multi-object spectrometers and the design and operation of some large

scale sky surveys, the issue of how to deal with enormous quantities of spectral data efficiently and accu-

rately is becoming more and more important. This work investigates the classification problem of stellar

spectra under the assumption that there is no perfect absolute flux calibration, for example, when consid-

ering spectra from the Guo Shou Jing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic

Telescope, LAMOST). The proposed scheme consists of the following two procedures: Firstly, a spectrum

is normalized based on a 17th order polynomial fitting; secondly, a random forest (RF) is utilized to classify

the stellar spectra. Experiments on four stellar spectral libraries show that the RF has good classification

performance. This work also studied the spectral feature evaluation problem based on RF. The evaluation is

helpful in understanding the results of the proposed stellar classification scheme and exploring its potential

improvements in the future.
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1 INTRODUCTION

With the development of modern telescopes, large quanti-

ties of spectra have been and are being obtained. In this

massive spectrum scenario, traditional manual data pro-

cessing methods and schemes with many human interven-

tions cannot satisfy the requirements. Therefore, automatic

classification is an imperative in large sky surveys and has

attracted much attention (Gulati et al. 1994; von Hippel

et al. 1994; Gray et al. 2009; Crowther & Walborn 2011).

Therefore, a series of schemes has been investigated

for automatic classification of spectra in the last thirty

years. The two most widely used schemes are template

matching and artificial neural networks (ANNs). The tem-

plate matching method is implemented by minimizing

some metric distances or maximizing some kinds of sim-

ilarity between a reference spectrum and a spectrum to

be classified (Kurtz 1984; LaSala 1994; Malyuto 2002;

Giridhar et al. 2006; Lee et al. 2008; Duan et al. 2009;

Gray et al. 2016), for example, χ2 minimization. The

ANN method classifies a spectrum by establishing a map-

ping from a spectrum to its spectral type or subtype

(Bailer-Jones 1997; Bailer-Jones et al. 1998; Singh et al.

1998; Weaver 2000; Bai et al. 2005; Bazarghan & Gupta

2008; Mahdi 2008; Navarro et al. 2012; Kheirdastan &

Bazarghan 2016). Expert systems (Manteiga et al. 2009;

Gray & Corbally 2014), support vector machines (Liu et al.

2015; Kheirdastan & Bazarghan 2016) and K-means (Qin

et al. 2001; Kheirdastan & Bazarghan 2016) are also being

investigated for the classification of stellar spectra.

In automatic classification of stellar spectra, a key

problem is how to represent the information in a spec-

trum. This information representation problem is referred

to as feature extraction in the machine learning commu-

nity. This information representation not only affects the

accuracy of a spectral classification system, its robustness

to noise and calibration distortion, but also its interpretabil-

ity/understandability. The interpretability means the diffi-

culty to evaluate or identify the contribution of a specific

wavelength range or spectral line in spectral classification.

Good interpretability helps us understand our automatic

classification scheme and its physical indications, and de-

sign an improved method by taking some physical knowl-

edge into account.

Two typical information representation methods for a

spectrum are spectral index (Malyuto et al. 1997; Lee et al.

2008; Manteiga et al. 2009; Liu et al. 2015) and principal

component analysis (PCA) (Qin et al. 2001; Mahdi 2008;

Kheirdastan & Bazarghan 2016). A spectral index can be

an integration of spectral fluxes within a preset wavelength

range, or some kind of description of a spectral line, for

example, the full width at half maximum (FWHM). The

greatest advantage of the spectral index methodology is its
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interpretability. PCA is a kind of data compression method,

and is used to obtain a compact representation by statisti-

cally minimizing the difference between some spectra and

their representations. Actually, the PCA representation is a

linear sum of spectral fluxes. Therefore, one typical limi-

tation of the PCA approach is that it is difficult to evalu-

ate/trace back the contribution of a local wavelength range

of a spectrum, which is closely related to the interpretabil-

ity of the computed results.

This work studies the automatic classification of stel-

lar spectra using a random forest (RF). An RF consists

of a series of decision trees. A decision tree makes spec-

tral classification using a small subset of fluxes on auto-

matically selected wavelength positions. This results in the

RF sometimes having the potential for superiority of in-

terpretability. In applications, furthermore, the effects of

noise and calibration imperfections can vary from spec-

trum to spectrum, and from wavelength to wavelength.

Fortunately, the choices of effective wavelength positions

are different from tree to tree in an RF. This diversity in

wavelength selection makes an RF achieve good classi-

fication performance by adaptively selecting appropriate

combinations of wavelength positions in the competition

between the decision trees of an RF. Therefore, this work

investigates the stellar spectral classification problem using

the RF approach.

2 ARCHITECTURE OF THE PROPOSED

SCHEME AND DATA PREPROCESSING

To reduce some negative effects arising from the incom-

pleteness of flux calibration, we first do some preprocess-

ing of observed spectra. Then, the stellar spectra are clas-

sified using the RF. A flowchart of the proposed scheme is

presented in Figure 1.

2.1 Flux Normalization

In spectral data, the observed radiant energies from some

celestial bodies with the same spectral type may vary

greatly in magnitude due to detector sensitivity, brightness

of the celestial body or its distance from the Earth. Some

negative effects from magnitude uncertainty can be elimi-

nated or reduced by normalizing the flux. Suppose x is a

spectrum, denoted as: x = (x1, x2, ..., xn)T, which is a

vector in an n-dimensional space. The spectral flux can be

normalized using the following formula (Xu et al. 2006)

y =
x

√

∑n

i=1 x2
i

. (1)

2.2 Continuum Normalization based on Polynomial

Fitting

This paper assumes that there is no perfect absolute flux

calibration. Therefore, the classification algorithms cannot

be used to classify spectra firstly, but rather, the contin-

uum normalization is. In this paper, a 17-th order polyno-

mial fitting method is used to approximate the continuum

spectrum in a stellar spectrum. Then, the continuum com-

ponents computed from the spectra are removed, leaving

the spectral lines. Finally, a classification algorithm, RF, is

utilized for the processed spectrum.

Figures 2 and 3 show some continuum normalization

results for some spectra from O, B, A, F, G, K and M

spectral types. Their continua are fitted using a polynomial

with order 17. The results demonstrate that the spectral line

characteristics are preserved well.

3 CLASSIFYING A STELLAR SPECTRUM USING

A RANDOM FOREST

An RF algorithm is an extension of the traditional deci-

sion tree. RF is implemented by combining multiple deci-

sion trees. A series of research works have verified that this

combination clearly improves classification performances

and increases the robustness to outliers and noise (Ho

1998; Breiman 2001). This section gives a brief introduc-

tion to the procedures involved in building an RF.

Because an RF is established by assembling a series

of decision trees, the decision tree will be introduced fol-

lowed by the assembly scheme.

3.1 Decision Tree

A decision tree classifier is a tree-like model. In a deci-

sion tree, there are three types of nodes: a root node, some

branch nodes and some leaf nodes. If a node ‘S’ accepts

signals from node ‘T’, ‘T’ is called the parent node of ‘S’

and ‘S’ is one child node of ‘T’. A root node does not have

any parent node and there is a unique root node in a de-

cision tree. Each leaf node has a parent node but does not

have any child node. A branch node has one parent node

and one or more child nodes. Signals can only move di-

rectly from a parent node to one of its child nodes.

A spectrum is classified by moving from root node to

one leaf node. Suppose there are K leaf nodes {leafi, i =

1, · · · , K} and a training set S. Based on the leaf node that

a training sample can reach, the training set can be split

into K subsets S1, S2, · · · , SK . A subset Sk is labeled with

the most frequent class in it, and is denoted by labelk.

If a spectrum to be dealt with moves from root to node

leafk∗ , this spectrum is classified into type labelk∗ .
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a spectrum → flux normalization → continuum normalization → random forest →

classification result

Fig. 1 A flowchart of the proposed classification scheme for stellar spectra.

To construct a decision tree, one fundamental problem

is to determine which data property should be used in one

parent node. For interested readers, further introduction to

decision trees can be found in Quinlan (1986); Rokach &

Maimon (2008).

3.2 Random Forest

An RF does the classification of a stellar spectrum by es-

tablishing a series of decision trees and fusing their re-

sults. Suppose Str is a training set consisting of N spec-

tra. A novel spectral set can be generated by randomly se-

lecting N samples from Str with replacement, and can be

referred to as a bootstrap set. ‘With replacement’ means

that in case of a spectrum being sampled into a bootstrap

set, there is still a probability that this spectrum is sam-

pled in the future for this bootstrap set. Therefore, some

spectra in the training set may appear more than once

in a bootstrap set and some other spectra probably are

not present in this bootstrap set. By doing this, we can

generate a number of bootstrap sets from a training set.

From every bootstrap set, a decision tree is learned, and

a number of decision trees is learned from these boot-

strap sets, which form an RF. More about the RF can

be found in Ho (1998); Breiman (2001); Hastie et al.

(2008). An algorithm for building an RF is as follows:

Algorithm 3.1 RF Classifier

Input: Training set Str, test set Ste, number, M , of

trees

Output: Estimated class label for every test sample

Steps:

1 Let i = 1.

2 Generate a bootstrap set from Str and denote the

set with Sbs
tr .

3 Construct a decision tree from Sbs
tr and denote this

decision tree with treei.

4 Let i = i + 1.

5 Repeat steps 2, 3 and 4 M times.

6 Estimate the class label for every test sample in

Ste using {treei, i = 1, · · · , M} and fuse the

estimations from different decision trees by the

corresponding majority votes as the final classi-

fication result.

4 EXPERIMENTS AND DISCUSSION

4.1 Data Sets

The proposed scheme was evaluated on two sets of stellar

spectral libraries. These two spectral sets are referred to as

the Jacoby, Silva and Pickles (JSP) data, from the corre-

sponding publications listed below, and Large Sky Area

Multi-Object Fiber Spectroscopic Telescope (LAMOST)

data. Note, these data are described firstly in this subsec-

tion.

4.1.1 The JSP spectral set

This data set consists of 359 spectra from three represen-

tative stellar spectral libraries from Jacoby et al. (1984),

Silva & Cornell (1992) and Pickles (1998). Each of the

three libraries covers the spectral types from O to M.

The Jacoby spectral library has 159 spectra with a

configuration of 0.14 nm pixel−1 and a wavelength range

of 351.1 − 742.8nm. The Silva spectral library has 71

spectra with 0.5 nm pixel−1 and a wavelength range of

351.0 − 893.0 nm. The Pickles spectral library has 129

spectra with 0.5 nm pixel−1 and a wavelength range of

360.0 − 900.0 nm. In order to analyze them on the same

scale, all of the spectra are resampled with a step of 0.5 nm

using a linear interpolation in the wavelength range of

385.0− 600.0 nm.

4.1.2 LAMOST spectral set

From Data Release 5 (DR5) published by the LAMOST

project, we select 6000 stellar spectra with SNRU, SNRG,

SNRR, SNRI (the signal to noise ratios of the u, g, r, i

bands respectively) all higher than 20. To be consistent

with the JSP spectral set, all of the LAMOST spectra are

also resampled with a step of 0.5 nm using a linear inter-

polation on the wavelength range of 385.0 − 600.0 nm.

4.1.3 Spectral class representations

In the automatic classification of a stellar spectrum, a fun-

damental problem is how to represent the class in a com-

puter. We represent the spectral types (O, B, A, F, G, K, M)

using integers 1 ∼ 7 respectively. Ten spectral subtypes are

represented by the product of the subtype number and 0.1.

For example, the category of an A0 star is denoted by 3.0,

and the category of an F5 star by 4.5.
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Fig. 2 Seven stellar spectra. nm: nanometer.
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Fig. 3 The continuum normalized spectra in Fig. 2.
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Fig. 4 Experimental results on the JSP spectral set. The vertical

axis is the estimation from the proposed scheme and the horizontal

axis is the reference type. SpT: spectral types.
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Fig. 5 Experimental results on LAMOST spectra. The vertical

axis is the estimation from the proposed scheme and the horizontal

axis is the reference type. SpT: spectral types.

4.2 Experimental Results

To evaluate the proposed scheme (Sects. 2 and 3), the JSP

spectral set is randomly divided into two subsets, a train-

ing set and a test set. The training set consists of 70% JSP

spectra and is used for learning the parameters of the RF.

The other 30% of the spectra form the test set. The test

set is used to evaluate the performance of the learned RF.

This evaluation result may depend on the dividing of the

training set and test set. To alleviate this issue and increase

the objectiveness of the evaluation, we repeat the above-

mentioned procedures 10 times, and take the average of

ten experimental evaluations as the final result. The exper-

imental results are presented in Figure 4. The evaluation

of the LAMOST spectra set is conducted similarly and the

results are displayed in Figure 5.

The results in Figure 4 show strong consistency be-

tween the estimation from the proposed scheme and the

reference types. In experiments conducted on LAMOST

spectra (Fig. 5), a strong discrepancy is present in one

spectrum. This discrepancy is indicated by the point in the

bottom-right corner of Figure 5. This spectrum is depicted

in Figure 6. Its reference type is M7 and the estimation is

A3. After checking with help from Dr. Xiao Kong from the

LAMOST project, we confirmed that this is a spectrum of

a binary star with component types M and A.

To quantitatively evaluate the performance of the pro-

posed scheme, we use four measures — mean of the

squared difference (MSD), mean of the absolute difference

(MAD), mean of difference (MD) and accuracy of spectral

type (AST). Suppose S = {(xi, yi), i = 1, · · · , m} is a set

of spectra with their associated type labels; ŷi is the estima-

tion of yi, where m is an integer representing the number

of spectra in S. On S, MSD, MAD and MD are defined as

follows:

MSD(S) =

√

√

√

√

m
∑

i=1

(y(i) − ŷ(i))2

m
, (2)
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Table 1 Quantitative Performance Evaluation

Spectral set AST MSD MAD MD

JPS spectra 0.9537 0.2151 0.1481 0.0574

LAMOST spectra 0.9377 0.1954 0.0787 0.0067
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Fig. 6 The spectrum with the most notable classification incon-

sistency in Fig. 5.

MAD(S) =

m
∑

i=1

|y(i) − ŷ(i)|

m
, (3)

MD(S) =

m
∑

i=1

(y(i) − ŷ(i))

m
. (4)

Suppose there are n spectra in S whose estimated

spectral types are consistent with their reference value. The

corresponding AST is defined as

AST(S) = n/m . (5)

Some quantitative evaluation results are presented in

Table 1.

4.3 Effects of Spectrum Preprocessing

In the proposed scheme (Fig. 1), two essential procedures

are flux normalization and continuum normalization. There

are more or fewer deviations and distortions in observed

spectra. Therefore, these two preprocessing procedures ev-

idently improve the spectral classification performance on

both JPS data and LAMOST data (Table 2). In particu-

lar, the JPS spectra are observed with multiple telescopes

and calibrated using multiple pipelines, and a greater vari-

ety of calibration deviation and distortions exists in them.

Therefore, much larger performance improvement is ob-

served on JPS spectra than on LAMOST spectra (Table 2).
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Fig. 7 The importance scores of stellar spectrum features on the

JSP spectral data. The above seven curves are computed based on

some spectra with spectral types O∼M respectively; the bottom

curve indicates the effectiveness of the spectral fluxes.
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Fig. 8 The importance scores of stellar spectrum features on the

LAMOST data. The above six curves are computed from spectra

with spectral types B∼M respectively; the bottom curve indicates

the effectiveness of the spectral fluxes.

Table 2 Effects of Spectrum Preprocessing

IE FN CN AST MSD MAD MD

(a) On JPS spectra

1 no no 0.4630 1.9975 1.2120 1.0954

2 yes no 0.8333 0.2287 0.1620 0.0250

3 no yes 0.4907 2.0000 1.2231 1.1472

4 yes yes 0.9537 0.2151 0.1481 0.0574

(b) On LAMOST spectra

5 no no 0.8391 0.3025 0.1642 0.0175

6 yes no 0.9289 0.2242 0.0723 0.0067

7 no yes 0.9091 0.2152 0.0999 0.0043

8 yes yes 0.9377 0.1954 0.0787 0.0067

IE: index of an experiment; FN: flux normalization; CN: continuum

normalization.
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4.4 Comparisons with Related Works in the

Literature

Zhang et al. (2009) studied the classification of stellar

spectra using a non-parametric regression method with a

continuum spectrum normalization on the JSP data, and

achieved an accuracy of MSD=0.3226 and MAD=0.2554.

Kheirdastan & Bazarghan (2016) obtained three accura-

cies of MSD=1.39, 1.53 and 1.64 using an ANN, as well

as the SVM and K-means methods combined with PCA

on some spectra from SEGUE-2 (Yanny et al. 2009) and

SEGUE-1 from the Sloan Digital Sky Survey (SDSS) III.

On the JSP spectra, Liu et al. (2017) achieved an accu-

racy of MSD=0.2214 and MAD=0.1632 using the non-

parametric regression method. The experimental results in

Table 2 show that the RF approach enables good perfor-

mance on both the JSP spectra and LAMOST spectra.

5 SPECTRAL FEATURE EVALUATIONS

The evaluation of variable effectiveness is a fundamental

procedure to understand the potential physical interpre-

tations and study more effective schemes. The RF algo-

rithm estimates the importance of a variable by looking

at how much prediction error increases in the case of one

variable being permuted with all others left unchanged.

Conventional calculation methods of variable importance

measure (VIM) in an RF are divided into two types: One

is based on the Gini index and the other is the Out-of-Bag

(OOB) data error rate. The score statistics for the variable

Xj are denoted by VIM
(Gini)
j and VIM

(OOB)
j respectively.

Interested readers are referred to Breiman (2002) for their

definitions. In the existing literature on RF, the VIM
(OOB)
j

score statistic is more extensive than the VIM
(Gini)
j score

statistic. Therefore, this article ranks the importance of

variables based on the VIM
(OOB)
j score statistic.

The evaluation results are presented in Figures 7 and 8.

In Figure 7, the eight curves from the bottom to top are the

importance scores of spectral features at every wavelength

computed from the JSP spectral data with spectral types

from O to M respectively. The seven curves in Figure 8

from the bottom to top are the importance scores of the

spectral features at every wavelength computed from the

LAMOST spectral data with spectral types from B to M

respectively, showing the relationship between the impor-

tant spectral variables and spectral lines of each type. The

results from these figures signify that for the spectral data

from different systems, the important features selected by

the RF are approximately similar, which indicates that the

RF selects the important spectral lines from each type of

spectrum as the basis for classification. The evaluation is

helpful in understanding the results of the proposed stellar

classification scheme and exploring its potential improve-

ments in the future.

6 CONCLUSIONS

Although there is a series of research papers in the liter-

ature on the automatic classification of stellar spectra, the

performance of automatic classification is still being im-

proved, especially for some spectra without flux calibration

or with only relative flux calibration, for example, spectra

from LAMOST.

This work proposed a stellar spectral classification

scheme based on an RF, and experimental results demon-

strate its superiority on real spectral data. The characteris-

tics of this work are a comprehensive investigation of the

effects from flux normalization and continuum normaliza-

tion. This work also studied the evaluation of spectral fea-

tures. This evaluation is helpful in understanding poten-

tial physical interpretations and designing more effective

schemes.
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