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Abstract Employing multiple pulsars and using an appropriate algorithm to establish ensemble pulsar

timescale can reduce the influences of various noises on the long-term stability of pulsar timescale, com-

pared to a single pulsar. However, due to the low timing precision and significant red noises of some pulsars,

their participation in the construction of ensemble pulsar timescale is often limited. Inspired by the princi-

ple of solving non-stationary sequence modeling using co-integration theory, we put forward an algorithm

based on co-integration theory to establish an ensemble pulsar timescale. It is found that this algorithm can

effectively suppress some noise sources if a co-integration relationship between different pulsar data exists.

Different from the classical weighted average algorithm, the co-integration method provides the chance for

a pulsar with significant red noises to be included in the establishment of an ensemble pulsar timescale.

Based on data from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav),

we found that the co-integration algorithm can successfully reduce several timing noises and improve the

long-term stability of the ensemble pulsar timescale.
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1 INTRODUCTION

Pulsar timing is an effective tool for studying astrophysics

and fundamental physics. This includes tests of gravitation,

precision constraints on general relativity and especially

using arrays of pulsars as detectors for low-frequency grav-

itational waves (Zhu et al. 2015; Will 2014; Arzoumanian

et al. 2015). The basis of pulsar timing is the high-precision

timing model, accomplished by the determination of a se-

ries of model parameters, such as the spin parameters, as-

trometric parameters, binary orbit parameters and so on.

The errors of the model parameters will affect the timing

precision in different ways (Tong et al. 2017). At present,

millisecond pulsars (MSPs) have higher stability of ro-

tation and are more widely used in the study of pulsar

timescale (Splaver 2004; Verbiest et al. 2009). For ex-

ample, Hobbs et al. (2012) obtained a preliminary pulsar

timescale based on the Parkes Pulsar Timing Array in-

cluding 19 MSPs observed by the Parkes radio telescope.

It was shown that a pulsar timing array allows investi-

gation of “global” phenomena, such as a background of

gravitational waves or instabilities in atomic timescales

that produce correlated timing residuals in the pulsars of

the array. However, there are various physical processes

that might be responsible for the accuracy of the pulsar

timescale. Timing noise is still not fully understood, but

usually refers to unexplained low-frequency features in the

timing residuals of pulsars. In the presence of red timing

noise, Coles et al. (2011) adopted a transformation based

on the Cholesky decomposition of the covariance matrix

that whitens both the residuals and timing model, which

has sufficient accuracy to optimize the pulsar timing anal-

ysis. In addition, using data from multiple pulsars, it is pos-

sible to obtain an average pulsar timescale that has stability

better than that derived from individual pulsar data (Petit

et al. 1993; Rodin 2008; Zhong & Yang 2007; Hobbs et al.

2011).

The purpose of using data from multiple pulsars is to

suppress the timing noise intensity of individual pulsars.

This approach will open up a new window to improve the
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accuracy and long-term stability of pulsar timescales by es-

tablishing an ensemble pulsar timescale (EPT). However,

similar to the establishment of atomic timescale (AT), the

accuracy and long-term stability of EPT depend signifi-

cantly on information from the timing residuals of the pul-

sar data involved. The lower the timing noise is, the bet-

ter the result of EPT that will be obtained, which often

limits the participation of a large number of pulsars with

significant timing noise. Based on the timing clock model

analysis, any clock model can be regarded as a connection

between the regression model and time series variables.

Whether establishing a good pulsar timescale or forecast-

ing it, the clock difference series should be stationary. Only

in this way can we ensure that some statistical parameters

in the selection and examination of the model, such as co-

efficient of determination R2 and T statistics, have a stan-

dard normal distribution, and therefore, the statistics are

reliable. Otherwise, all of the above inferences can easily

produce a spurious regression.

In the field of economics, in order to avoid spurious re-

gression of non-stationary series, Engle & Granger (1987)

proposed the co-integration theory that provides another

way for the modeling of non-stationary series. For ex-

ample, although some economic variables themselves are

non-stationary series, a linear combination of them is likely

to be stationary. This combination process is known as

the co-integration equation, and it can explain the long-

term equilibrium relationship between different variables.

In principle, pulsars with significant timing noise show

non-stationary characteristics of timing residuals. If the

linear combination of pulsar timing residuals is a stationary

series, they are also co-integrable. According to the above

ideas, an algorithm based on co-integration theory to es-

tablish EPT is proposed in this paper, which mainly uses

pulsars with significant timing noise, and the results show

that the algorithm can successfully reduce several timing

noises and significantly improve the long-term frequency

stability of EPT. Co-integration is a powerful method, be-

cause it not only allows us to characterize the equilibrium

relationship between two or more non-stationary series, but

also will provide better guidance in studying the establish-

ment of EPT in future.

2 CO-INTEGRATION AND METHOD

In the process of regression analysis for most non-

stationary time series, the difference method is usually

used to eliminate the non-stationary trend term in the se-

ries, so that the series can be modeled after it is stationary.

However, the series themselves after difference calculation

often are limited in terms of the scope of the problem dis-

cussed and make the reconstructed model difficult to ex-

plain. Co-integration theory has greatly alleviated the dif-

Table 1 Basic Parameters for Seven Pulsars

Pulsar name P Number of TOAs RMS Span

(ms) (µs) (yr)

J0030+0451 4.87 2468 0.723 8.8

J0613–0200 3.06 7651 0.592 8.6

J1012+5307 5.26 11 995 1.197 9.2

J1643–1224 4.62 7119 2.057 9.0

B1855+09 5.36 4071 1.339 8.9

J1910+1256 4.98 2690 1.449 8.8

B1937+21 1.56 9966 1.549 9.1

ficulty of non-stationary series in modeling. Co-integration

theory is proposed for integration. A series with no deter-

ministic component which has a stationary, invertible, au-

toregressive moving average (ARMA) representation after

difference d times is said to be integrable of order d, de-

noted as Yt ∼ I(d). Obviously, for d = 0, Yt will be sta-

tionary.

Co-integration theory can be understood in that there

may be a long-term equilibrium relationship between sev-

eral time series with the same order of integration, and one

kind of linear combination of them has a lower order of

integration. To formalize these ideas, the following defini-

tion adopted from Engle and Granger is introduced: (i) if

all components of Yt are I(d); (ii) there exists a vector α

( 6= 0) so that α
′

Yt ∼ I(d−b), d ≥ b ≥ 0. The components

of the vector Yt are said to be co-integrable of order d, b,

denoted as Yt ∼ CI(d − b), and the vector α is called the

co-integrating vector.

In general, there are two main methods to examine

the co-integration, including the Engle-Granger (EG) two-

step method and Johansen-Juselius (JJ) multivariate maxi-

mum likelihood method (Engle & Granger 1987; Johansen

1995). The major difference between the above methods

is that the EG two-step method adopts the technique of

solving linear equations, while the JJ test uses the multi-

variate equation technique. In this paper, the EG method is

adopted to assess the null hypothesis of no co-integration

among the time series in Yt. Detailed test steps can be seen

in Engle & Granger (1987).

3 EPT ALGORITHM BASED ON

CO-INTEGRATION THEORY

In pulsar timing, the timing residuals are the differences

between the observed times of arrival (TOAs) and the ones

predicted by the timing model, i.e., the difference between

two timescales, AT and PT. Here, PT stands for the pul-

sar timescale. However, in practical data processing, the

TOAs recorded in terms of AT should be transformed to

Barycentric Coordinate Time (TCB), and PT is predicted

at Solar System Barycenter (SSB) by the pulsar timing

model. Hence, for a given pulsar i, the residuals are de-
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Fig. 1 The raw timing residuals vs. two-step preprocessing resid-

uals for pulsar B1937+21 (the cyan and blue represent the raw

residuals vs. the averaged residuals in panel a), and blue and

magenta stand for the averaged residuals vs. linear interpolation

residuals in panel b).

noted as

Resi = AT − PTi , (1)

where Resi is a timing residual; AT is reference atomic

time; PTi is pulsar time for a given pulsar i. The EPT (Petit

& Tavella 1996) established by multiple pulsars (i =1, 2,

· · · , n) can be defined as

AT − EPT =

n
∑

i=1

ωi(AT − PTi) , (2)

where ωi is the relative weight assigned to pulsar i.

Because we adopted the EG test to analyze pulsar data in

this paper, and hence assume that for two known pulsars

whose timing residuals are Resi ∼ I(1) when they are co-

integrated, the co-integrated regression equation for both

sets of timing residuals can be expressed as

Res1 = α + βRes2 + ε̂ , (3)

where α and β represent regression coefficients; ε̂ is the

model residuals, and ε̂ ∼ I(0). According to Equations

(1)–(3) we obtain










ω1 = 1
1−β ,

ω2 = −β
1−β ,

Resept = ε̂+α
1−β ,

(4)

where Resept signifies the timing residuals of EPT. This

can be regarded as a transformation from ε̂ by shift factor α

and scale factor (1−β), and both α and (1−β) are constant

coefficients, which will not affect the order of integration,

so Resept ∼ I(0).

4 OBSERVATIONAL DATA

4.1 NANOGrav Timing Observations

We used pulsar timing data from the North American

Nanohertz Observatory for Gravitational Waves

(NANOGrav) nine-year data set described in The

NANOGrav Collaboration et al. (2015) (hereafter NG9)

for our analysis. NG9 contain 37 MSPs observed at the

Green Bank Telescope (GBT) and Arecibo Observatory

(AO). Each telescope is equipped with two generations of

backends, with more recent backends processing up to an

order of magnitude larger bandwidth for improving pulse

sensitivity. Polarization calibration and radio frequency

interference (RFI) excision algorithms were applied to

the raw data profiles using the PSRCHIVE (Hotan et al.

2004; van Straten et al. 2012) software package when

pulse profiles were folded and de-dispersed using an

initial timing model. After calibration, known RFI signals

were excised and the final pulse profiles used to generate

TOAs were fully time averaged with some frequency

averaging to build pulse signal-to-noise ratio (S/N). See

NG9 for more details on the data processing method.

Because the purpose of this article is to improve the

long-term frequency stability of EPT consisting mostly

of pulsars with significant timing noise, and the stability

of a pulsar timescale is related to the timing span, in this

paper the requirement for selecting pulsars from NG9 is

that both the sampling time span is longer than 8 yr and

the detection is obvious at low frequency, taking the form

of “red” timing noise in timing residuals for the pulsars.

We identified seven pulsars that met these criteria; see the

basic parameters for these seven pulsars in Table 1.

4.2 Data Preprocessing

NG9 contained all TOAs and timing solutions for 37 pul-

sars. Each pulsar was observed at each epoch with at least

two receivers. At GBT, the 820 and 1400 MHz bands were

used, and at AO, the 430 and 1400 MHz or 1400 and

2300 MHz bands were used. We note that the frequency-

dependent profile shape changes across the entire observ-

ing band can be significant for some sources over the

full band (Pennucci et al. 2014), and we wish to main-

tain homogeneity in the inferred timing data from our pul-

sars, so we only analyze timing residuals associated with

1400 MHz. In addition, data from pulsar B1937+21 were

just from GBT. We use the unit root test with significance

level 0.01 to analyze residual data for seven pulsars. The

results show that they all seem to be stationary, Res∼I(0).

This may be due to mostly MSPs in NG9 having a higher

stability of rotation, the dispersion of timing residuals be-

ing dominated by white noise or red noise being drowned

out by the white one within a shorter observation span.

Hence, we choose pulsar data with significant red noise

and further reduce the white noise intensity in the tim-

ing residuals in some way that can make the processed

data meet the condition of being non-stationary, Res∼I(1),



100–4 F. Gao et al.: Ensemble Pulsar Timescale Algorithm

-2
0
2
4

R
es

id
u
al

/m
s ×10

-3

-2
-1
0
1

R
es

id
u
al

/m
s ×10

-3

-3
-2
-1
0
1

R
es

id
u
al

/m
s ×10

-3

5.35 5.4 5.45 5.5 5.55 5.6 5.65

MJD/d ×10
4

-5

0

5

R
es

id
u
al

/m
s ×10

-3

J1910+1256

J0030+0451

B1937+21

B1855+09

Fig. 2 The timing residuals for four known pulsars B1855+09, B1937+21, J0030+0451 and J1910+1256, from top to bottom respec-

tively.
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Fig. 3 The histograms of timing residual distributions for four known pulsars B1855+09, B1937+21, J0030+045 and J1910+1256. The

solid line is the fitting curve for each residual distribution. The values of standard deviation (σ) for the four residual distributions are

also given.

which is equivalent to just retaining the red noise compo-

nent in the original data. Besides, pulsar timing observa-

tions are usually irregular and the associated sampling rate

is much lower than that compared to an atomic clock. Thus,

a simple method will be adopted to reduce the intensity of

white noise and make the two columns of data involved in

the co-integration test correspond to each other.

For long-term pulsar timing studies, it becomes useful

to visually inspect timing residuals that have been aver-

aged in order to look for long term trends or biases. The

following details on data preprocessing will be illustrated

with one pulsar, i.e., J1937+21: Firstly, we construct daily

averaged residuals, with each residual value being equal to

the average of all raw residuals within one day. This pro-

cess is similar to comparing pulsar time with an atomic

clock once a day. Subsequently, the data are linearly inter-

polated and sampled at intervals of about 15 days to obtain

equally distributed data. The purpose of the above two-step

process is to reduce the white noise intensity and further

help analyze whether the low-frequency noise in residu-
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Fig. 4 The timing residuals for two known pulsars B1937+21 and J0030+0451, and for EPTc, from top to bottom respectively.
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Fig. 5 The fitting curves of timing residual distributions for two

known pulsars (dotted line for B1937+21 and dash-dotted line for

J0030+0451) and for EPT (dashed line for EPTc). The values

of standard deviation for the three residual distributions are also

given in parentheses.

als for different pulsars has a co-integration relationship

with each other. Other methods that only discuss the reduc-

tion of white noise intensity will be given in future work.

The original timing residual distribution vs. two-step pre-

processing residual data are shown in Figure 1. Similarly,

timing residuals from six other known pulsars are also reg-

ularly processed.

5 RESULTS AND ANALYSIS

According to the mathematical model of co-integration

theory in Section 3, it is necessary to examine the in-

tegrated order of the time series to determine whether
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Fig. 6 The standard deviation increment of timing residuals vs.

timing span for two known pulsars (plus signs for B1937+21 and

asterisks for J0030+0451) and for EPT (left-pointing triangles for

EPTc).

there are co-integrated relationships. In this paper, the EG

method was adopted to examine timing residuals of all

pulsars after preprocessing data. We found that pulsars

B1855+09, B1937+21, J0030+0451 and J1910+1256 were

integrated of order 1, denoted as I(1), and others were

I(0). These results may be due to the intensity of red

noise in residuals of pulsars J0613-0200, J1012+5307 and

J1643-1224 being relatively weak. After data preprocess-

ing, timing residuals still show some “quasi-stationary”

features. In order to search for pulsars with a co-integration

relationship by using only the EG two-step method, we

apply further analysis to pulsars B1855+09, B1937+21,

J0030+0451 and J1910+1256.
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(dashed line for B1937+21 and dash-dotted line for J0030+0451)

and for EPT calculated by different algorithms (magenta dashed

line for EPTc and blue dash-dotted line for EPT) (Color version

is online).

The timing residuals of pulsars B1855+09, B1937+21,

J0030+0451 and J1910+1256 are depicted in Figure 2,

and the histograms of residual distributions can be seen in

Figure 3. In Figure 2, the timing residual distributions for

all pulsars show an obvious irregular low-frequency trend,

and histograms of residual distributions are significantly

different from the normal distribution in Figure 3. All of

these indicate that the timing residuals for four known pul-

sars have a common feature of instability, which is consis-

tent with the case where the integrated order of residuals

is denoted as I(1). In addition, by comparing the residual

distributions and standard deviations of the residuals, we

find there are significant differences in the different sets

of pulsar data. These differences are not only apparent in

the trend of the associated residual distribution, but also in

the shape of the fitting curve. These are related to the fact

that every pulsar data set is affected by different sources of

noise.

Next, according to Equation (3) in Section 3, we

should further examine the linear combination for resid-

uals from two random pulsars (for example pulsars A and

B) with associated I(1). If ε̂ is integrated of order 0, then

pulsars A and B are co-integrable. We found that only the

linear combination of pulsars B1937+21 and J0030+0451

meets the condition that ε̂ is given by I(0), indicating

that pulsars B1937+21 and J0030+0451 are co-integrable.

The timing residuals of the EPT established by pulsars

B1937+21 and J0030+0451 can be obtained according to

Equation (4) in Section 3 and called EPTc. In order to

measure the degree of stability of the associated residuals,

first of all, we compared both residual distributions and

residual histograms for pulsars B1937+21, J0030+0451

and EPTc in Figures 4 and 5.

In Figure 4, we can see that the amplitude fluctua-

tions of residuals for pulsars B1937+0451 and J0030+0451

are stronger and have obvious low-frequency features,

but the residuals for EPTc are characterized by nor-

malization, simplicity, significant reduction of non-

stationary process, etc. The ranges of residual ampli-

tude variation for pulsars B1937+21 and J0030+0451,

and EPTc are (−2.91, +1.74)µs, (−3.03, +1.66)µs and

(−2.47, +1.19)µs, respectively. The standard deviation

for EPTc is smallest. In addition, the shape of the fitting

curve for EPTc in Figure 5 is also closer to a normal dis-

tribution than those of pulsars B1855+09 and J0030+0451.

The above aspects all indicate that the degree of stability

for EPTc has been greatly improved.

5.1 Variance Analysis

The dispersion of pulsar timing residuals can be divided

into white and red noise. White noise mainly comes from

random errors in the process of timing observation, while

red noise is a kind of signal having strong intensity at

lower frequencies, giving it a power-law spectral density.

We can define the dispersion of residual as σRMS, while

white noise is denoted σW and red noise is labeled σTN

(Yang et al. 2014; Gao et al. 2018). In theory, their rela-

tions are as follows

σRMS
2 = σW

2 + σTN
2 , (5)

where if the ratio of σRMS to σW is close to 1, it indi-

cates that the dispersion of residuals is mainly affected

by white noise and the data are stationary. If the value of

σRMS/σW is much higher than 1, it indicates that there is a

significant red noise component within the timing residu-

als. Generally, the effect of red noise on dispersion of resid-

uals changes with increasing observing span. To reflect this

change, Gao et al. (2018); Lam et al. (2017) used variance

increment to show an important contribution of red noise

to residual fluctuation. Considering that the dimension of

standard deviation is consistent with the magnitude of data,

it is more obvious when describing data dispersion, and the

variance and standard deviation can be easily converted to

each other. As defined by Gao et al. (2018), the standard

deviation increment is written as follows

∆σ(τ) = 〈Var(X(t + τ))1/2 − Var(X(t))1/2〉 , (6)

where t stands for timing span, Var(X(t)) represents the

variance of the data in t and τ is the increment of tim-

ing span. In theory, for data with significant systematic

fluctuations, the standard deviation increment will change

with an increase of τ . In this paper, we take the pulsar

B1937+21 as an example to illustrate how to choose the

values for parameters t and τ . After data preprocessing,
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there are 206 points corresponding to residuals for pulsar

B1937+21 in 8.4 yr, and the interval between two points is

approximately 15 days. To take t as the interval span of ten

adjacent points, for τ =0, 10, 20, · · · , sequentially add an

interval span of ten points. Meanwhile, in order to avoid

introducing statistical error, the standard deviation incre-

ment in (6) is averaged. The timing span is divided into at

least two segments, so the maximum span of τ is nearly

half of 8.4 yr. Similarly, pulsar J0030+0451 and EPTc are

processed in the same way. The relations between standard

deviation increment and timing span for three pulsars are

shown in Figure 6.

As visible in Figure 6, the values of ∆σ(τ) for pul-

sars B1937+21 and J0030+0451 increase rapidly with

the change of τ , while the ∆σ(τ) for EPTc changes

slowly. This is because red noise in the residuals of pul-

sars B1937+21 and J0030+0451 is obvious. Along with

the timing span increase, strong red noise becomes an im-

portant factor for the dispersion of residuals from a pulsar.

This is consistent with the fact that the integrated order of

two pulsars is 1. It can also be explained in that the linear

combination of pulsar residuals which are co-integrable is

a stationary series by EPTc.

5.2 σz(τ) Methods

Using the exceptionally stable rotation of MSPs to gen-

erate a timescale needs a reliable statistical measure for

studying the physics of pulsar rotation and comparing pul-

sar stabilities with those of terrestrial clocks. Clock data

are commonly analyzed using a statistic called σy(τ), the

square root of the “Allan variance” (Allan 1966), which

can be computed from second differences of a table of

clock offset measurements. σy(τ) is ideally suited for an-

alyzing AT which have very small frequency drift rates.

However, for most pulsar timing data, the lowest-order

deviations are related to the third difference, which re-

mains in a pulsar timing series after the phase, frequency,

spin-down rate and astrometric parameters have been de-

termined by comparison with terrestrial time, and their

effects are removed. Following Taylor (1991), the σz(τ)

statistic, defined in terms of third-order polynomials fit-

ted to sequences of measured time offsets, is suggested for

studying the pulsar timing data. Since it is more sensitive

to redder noise than other commonly used measures, and is

suited for comparing pulsar stabilities with those of other

timescales. In this paper, we utilize an improved σz(τ) pro-

posed by Matsakis et al. (1997), which is a good statistic

for the analysis of low-frequency-dominated red noise of

pulsar timing residuals. To find σz(τ), divide the data into

subsequences and fit a cubic function to the data in each

subsequence by minimizing the weighted sum of squared

differences

R2 =

Nm
∑

i=1

[

x(ti) −
X(ti)

σi

]2

= min , (7)

then set

σz(τ) =
τ2

2
√

5
〈c2

3〉1/2 , (8)

where angled brackets denote averaging over the subse-

quences, weighted by the inverse squares of the formal er-

rors in c3. The detailed recipe for the computation of σz(τ)

can be referenced in Matsakis et al. (1997).

In Figure 7, we present values of σz(τ) for both pul-

sars B1937+0451 and J0030+0451, and EPTc, defined as

the weighted root-mean-square of the coefficients of the

cubic terms fitted over intervals of length τ . For com-

parison, another EPT calculated by the traditional classi-

cal weighted average algorithm is given in Figure 7. The

weights ωi are inversely proportional to the variance of two

pulsars 1937+21 and J0030+0451, respectively. Because

σ2
z(τ) can be easy to describe by a power law, if white

noise is dominant in the time series, the slope of the log-log

graph is close to –1.5 for all four time series, showing that

at least up to intervals for τ of several years, as expected

for residuals dominated by uncorrelated measurement er-

rors. By contrast, when the red noise is dominant, the

tail of the curve will gradually become an upward trend,

which is interpreted as the influence of low-frequency

noise on frequency stability. For both pulsars B1937+21

and J0030+0451, the curves display a tail-upward trend,

while the curves of both EPTc and EPT exhibit a down-

ward trend as a whole. This indicates that the timing resid-

uals for two pulsars B1937+21 and J0030+0451 are domi-

nated by low-frequency noise believed to be intrinsic to the

pulsars. It is noted that the stability of pulsar timescale for

pulsar J0030+0451 at log τ ∼0.6 is more stable than that

for EPTc. This anomaly should be induced by the increas-

ing errors of σz for larger intervals of length τ because of

the decreasing number of sequences.

The level of long-term frequency stability plays an im-

portant role in the study of pulsar timescales. Figure 7

demonstrates that the value of σz(τ) for the two pulsars

B1937+0451 and J0030+0451 and for EPT calculated by

the different algorithm EPTc and EPT in the span 8.4 yr

are 10−13.70, 10−13.61, 10−15.20 and 1014.12, respectively.

The long-term frequency stability of EPTc is nearly one

order of magnitude higher than those of the two pulsars,

B1937+0451 and J0030+0451. In addition, one can note

that the stability of EPTc is better than EPT as a whole in

Figure 7. The above analysis indicates that the long-term

frequency stability level of a pulsar can be significantly

improved within a limited observation span when combin-

ing pulsar data with the co-integration relation to estab-

lish EPT. One thing to keep in mind is that these stabilities
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of pulsars in Figure 7 are not further compared with other

pulsar data that have weak red noise and AT at different

stations. This is because there are many factors influenc-

ing the stabilities of different timescales. In this paper, we

only demonstrate that the method to establish EPT based

on combining the pulsar data with the co-integration rela-

tion is reliable and feasible. Further research will be carried

out in follow-up work.

6 DISCUSSION AND CONCLUSIONS

It should be noted that it is necessary to satisfy a strict

constraint condition to establish EPT based on the co-

integration theory: the timing residuals of pulsars are co-

integrable. The combination of timing residuals with the

co-integration relation can only reduce the number of in-

tegrated order, and in this way it can obviously reduce the

timing noise intensity of EPT and improve its long-term

frequency stability. This constraint condition means that

the following problems may be encountered in practical

application: (1) In a short span, the red noise in resid-

uals of MSPs is not dominant or cannot be measured,

and residual data show “quasi-stationary” characteristics,

which will limit the application of methods in data. (2) At

present, the low-frequency timing noise of most pulsar

data is irregular, which means that the co-integration re-

lation between pulsars may be negatively affected by the

increase or decrease of the data span. This may lead to

segmented co-integration. In addition, we only use the EG

(Engle & Granger 1987) two-step test to discuss and estab-

lish the EPT algorithm based on two pulsars in this paper.

If data from multiple pulsars are regarded as multivariate

variables, and the co-integration relation between them is

tested by using the JJ (Johansen 1995) method, the appli-

cation of co-integration theory in the algorithm of EPT can

be further extended.

Based on the co-integration theory, an algorithm to es-

tablish EPT by using pulsar data with significant timing

noise is proposed in this paper. This algorithm can suc-

cessfully reduce several types of timing noise and improve

the long-term stability of the associated pulsar timescale.

Compared to the optimal weighting method (Rodin 2008)

and the global fitting method (Hobbs et al. 2012), our co-

integration method is similar to the traditional classical

weighted average method but with a new way of choosing

weights. However, different from the traditional classical

weighted average algorithm, this algorithm can effectively

suppress some noise sources if there is a co-integration re-

lationship between different pulsar data, and provides the

chances of a pulsar with significant red noises to be in-

cluded in the establishment of EPT.
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