
RAA 2019 Vol. 19 No. 7, 102(10pp) doi: 10.1088/1674–4527/19/7/102

c© 2019 National Astronomical Observatories, CAS and IOP Publishing Ltd.

http://www.raa-journal.org http://iopscience.iop.org/raa

Research in

Astronomy and

Astrophysics

The design and implementation of a ROACH2+GPU based correlator on the

Tianlai dish array

Chen-Hui Niu1,2,3, Qun-Xiong Wang2,4, David MacMahon3, Feng-Quan Wu2, Xue-Lei Chen2,5,6, Ji-Xia

Li2,5, Hai-Jun Tian4, Guillaume Shippee3, Dan Werthimer3 and Xiao-Ping Zheng1

1 College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China;

zhxp@mail.ccnu.edu.cn
2 Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of

Sciences, Beijing 100101, China; xuelei@cosmology.bao.ac.cn, wufq@bao.ac.cn
3 University of California Berkeley, Campbell Hall 339, Berkeley CA 94720, USA
4 College of Science, China Three Gorges University, Yichang 443002, China
5 School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
6 Center of High Energy Physics, Peking University, Beijing 100871, China

Received 2019 March 29; accepted 2019 April 9

Abstract A digital correlator is a crucial element in a modern radio telescope. In this paper, we describe

a scalable design for the correlator system of the Tianlai pathfinder array, which is an experiment ded-

icated to testing key technologies for conducting a 21 cm intensity mapping survey. The correlator im-

plements the FX design, which firstly performs a fast Fourier transform (FFT) including polyphase filter

bank (PFB) computation using a Collaboration for Astronomy Signal Processing and Electronics Research

(CASPER) Reconfigurable Open Architecture Computing Hardware-2 (ROACH2) board, then computes

cross-correlations by employing Graphics Processing Units (GPUs). The design has been tested both in

laboratory and in actual observation.

Key words: instrumentation: interferometers

1 INTRODUCTION

In a radio astronomy telescope array, the correlator is im-

plemented to obtain the short time average of signal corre-

lations, which is called the (interferometric) visibility. By

performing the cross-correlation, phase information about

the radio wave is preserved, and the sky radio intensity map

can be reconstructed in the synthesis imaging process by

using the visibilities as input data (Thompson et al. 2001).

The correlator thus serves a central function in radio tele-

scopes.

The Tianlai project is a 21 cm intensity mapping ex-

periment with the aim of measuring the baryon acoustic

oscillations (BAO) features in the matter power spectrum

(Chen 2012). Currently, two pathfinder arrays have been

built in a radio quiet site in Hongliuxia, Balikun county,

Xinjiang, China. The cylinder array includes three cylin-

drical reflectors, which are 15 meters wide and 40 meters

long oriented in the north-south direction. It has a total of

96 dual polarization receivers, which generate 192 input

channels. The dish array includes 16 dishes with 6-meter

aperture. Each dish is equipped with a dual polarization

receiver, and a total of 32 input channels is produced. The

radio signal collected in the antenna feed is amplified by a

low noise amplifier, which is then converted to an optical

signal and transmitted via an optical fiber cable to the sta-

tion house located 8 km away. Afterwards, the optical sig-

nal is converted back to a radio signal, which is sent to the

receiver. The analog receiver utilizes a heterodyne design

with the intermediate frequency band of 135−235 MHz.

The digital backend samples this signal at a rate of 250

Mega samples per second (MSPS). The correlator handles

the full polarizations, and produces both cross-correlations

and auto-correlations.

102–2 C. H. Niu et al.: Correlator on the Tianlai Dish Array

A prototype system with 32 input channels based on

this channel has been built and installed on the pathfinder

Tianlai dish array. The design of this system (e.g., the em-

ployment of a network switch instead of communication

within one chassis) also allows it to be expanded to a scale

which can handle the 192 receiver channels. The current

Tianlai cylinder array uses a 192-channel digital correla-

tor built by the Institute of Automation, Chinese Academy

of Sciences, which relies on Field-Programmable Gate

Array (FPGA) boards and digital signal processors (DSP)

that they designed themselves. Here we introduce the 32-

channel system as well as the 192-channel system design

in some details for future reference.

2 SYSTEM DESIGN

The visibilities of the interferometry array are usually com-

puted in either of the following two ways: 1) the XF type

in which the time-ordered voltage signals from the differ-

ent receiver channels are paired and convolved with each

other to produce the cross-correlations. A Fourier trans-

form is then performed to obtain the visibilities at different

frequencies; 2) the FX type in which the voltage signal of

each receiver channel is first Fourier transformed to pro-

duce a spectrum, and then each pair is cross-correlated for

the same frequency. In either way, the result is integrated

for some pre-specified duration to yield the final output. As

multiplying in frequency domain is equivalent to convolv-

ing in the time domain, the results from these two types of

correlators are identical. With modern digital technology

and larger telescope arrays, the FX type is more convenient

to implement (Price et al. 2016), thus it has became more

popular, and we also choose the FX type in this design.

One design of the Tianlai correlator system we con-

sidered is based on an FPGA board for the data sam-

pling and performing the fast Fourier transform (FFT).

An instantaneous frequency spectrum is then derived from

the time series data. The data from different channels are

then transposed, i.e., re-arranged so that the data with

same frequencies from different receivers are put together.

The transposed data are sent to an array of Graphics

Processing Units (GPUs) via a 10 Gbit s−1 network switch,

which computes the cross-correlations. Computationally,

the cross-correlation is a multiply and accumulation

(CMAC) process. The FPGA board we installed is the

Reconfigurable Open Architecture Computing Hardware-

2 (ROACH2) board1, which has been widely utilized in

radio astronomy projects (Hickish et al. 2016) (e.g., the

1 https://casper.berkeley.edu/wiki/ROACH2

Precision Array for Probing the Epoch of Re-ionization

(PAPER) (Parsons et al. 2010)). Our design is built upon

the PAPER correlator model (Parsons et al. 2008), which

creates a flexible and scalable hybrid correlator system.

Our correlator consists of the F-engine, the network

switch and the X-engine. The F-engine is dedicated to per-

forming the Fourier transform, while the X-engine is ded-

icated to computing the cross-correlations. The network

switch is used to transpose the data. We use the CASPER

ROACH2 board for the F-engine and the NVIDIATM GPU

board for the X-engine. The required number of ROACH2

boards is dependent on the number of receiver inputs.

Suppose the F-engine consists of M ROACH2 nodes and

the X-engine has N GPU nodes. Every ROACH2 node

handles m-way analog radio inputs, and after perform-

ing the FFT, it outputs m spectra. Each spectrum has

F frequency points. To optimize data traffic, each GPU

node processes F/N frequency points, and each frequency

point includes M × m conjugate multiply computations.

Therefore, the ROACH node should divide the F point

spectrum into N bands, and then send the specified band to

the corresponding GPU node for the CMAC computation.

A block diagram of the correlator structure is shown

in Figure 1. The F-engine is built with CASPER ROACH2

(R2 2012 version). Each ROACH2 board is connected with

two daughter analog-to-digital converter (ADC) boards

through the Z-DOK+ connectors. The ADC board is the

CASPER ADC 16×250-8 Q2 2012 version, which uses

four HMCAD1511 chips made by Hittite MicrowaveTM

with a total of 16 inputs2 and samples 16 analog signal

inputs with 8 bits at 250 Msps. The ADC input ports are

Sub-Miniature-A connectors, which require analog signal

of −8.5 dBm Gaussian noise. We find that good linear-

ity can be achieved for an input ranging from –12 dBm to

6 dBm.

The ROACH nodes are controlled by a ROACH2-

server. In our case, it is built on a DellTM PowerEdge T110

with IntelTM Xeon(R) CPU E31220, which can itself be

controlled remotely through the Internet. The ROACH2

boards can be booted either by loading the kernel from

the ROACH2 server (net boot) or from the onboard mem-

ory chip (solo boot). A Berkeley Operating System for

ReProgrammable Hardware (BORPH) operating system,

which is a full-featured Linux operating system support-

ing FPGA applications (So Hayden Kwok-Hay 2007), is

run on the ROACH2 boards, and the ROACH2 boards

2 https://casper.ssl.berkeley.edu/wiki/

ADC16x250-8

C. H. Niu et al.: Correlator on the Tianlai Dish Array 102–3

Fig. 1 Block diagram of the Tianlai dish array correlator.

Fig. 2 The F-engine data flow block diagram. The data flow starts from ADC, goes though the PFB, Equalizer, Transpose, then is sent

via an Ethernet interface to the X-engine.

can be controlled via an interface called the Karoo Array

Telescope Control Protocol (KATCP) (Foley et al. 2016).

Compiled binary executable programs (bof file) can be up-

loaded to the ROACH2 boards as firmware.

The output data from the F-engine are initially

grouped by receiver channels, i.e., a block of spectra

has the same receiver channel but different frequencies.

However, only the correlations for the data with the same

frequency are non-zero and need computation, and for this

computation the spectra from different receiver channel

pairs are needed by the computing unit. So, the data should

be re-arranged according to their frequencies. This is done

by a pre-specified program in the F-engine. The data are

packaged and then sent to different ports on the X-engine.

In the X-engine, the correlations are obtained and then

sent to a hard drive server for storage. Our X-engine is built

with NVIDIA GTX 690 GPUs3. Each GPU node has two

GTX 690 units, which are equipped with two GPU cores.

The CASPER High Availability Shared Pipeline Engine

(Hashpipe)4 is used to manage the GPU threads and data

transfer within each GPU node.

3 https://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-690
4 https://github.com/david-macmahon/hashpipe

102–4 C. H. Niu et al.: Correlator on the Tianlai Dish Array

For the dish array, one ROACH2 board can handle the

32 inputs, and the cross-correlation can be done with 1

GPU node. Indeed, in this case there is no need to rely

on the network switch, and data from the F-engine can

be sent to the X-engine port directly. However, as an op-

tion for the cylinder correlator, we also considered the de-

sign of a system with 192 receiver input channels. In this

case, the F-engines consist of six ROACH2 boards, and

each board handles 32 inputs. For the X-engine, we es-

timate the total amount of computation for the 192-input

system is 35.6 TFLOPS, while the computing performance

of each node is 4.8 TFLOPS. We thus estimate at least 8

GPU nodes (16 GPUs) are required for computation.

2.1 F-engine

The F-engine includes four main function blocks: 1) the

FFT block that channelizes the digital data from ADC;

2) the Equalizer block that truncates the data to reduce

the size; 3) the Transpose block that transposes the data;

4) the Ethernet block that sends the data to the correspond-

ing GPU nodes based on the frequency.

As the functions and requirements for our correlator

are very similar to those of the PAPER experiment cor-

relator, which also incorporated the ROACH2 system, we

based our design on its design5. The whole design can be

simulated with the Matlab SimulinkTM CASPER tool set,

which has a graphical user interface (GUI) for the FPGA

programming.

An F-engine data flow block diagram is shown in

Figure 2. The whole system is triggered and synchronized

with the 1 pulse per second (1PPS) block. A monitor block

is also added to watch the status of operation. A Seed block

is included for testing by generating digital pseudo-random

Gaussian noise for the ADC. Additionally, a Snap block is

added to debug the ADC, polyphase filter bank (PFB) and

Equalizer.

Each input data stream from the ADC is channelized in

the frequency domain with a PFB to minimize energy leak-

age. A Hamming window is multiplied within each data

stream. Two length options for the FFT are implemented

in our design, which are 512 and 1024 respectively.

The FFT of a real number input will generate com-

plex numbers, but with Hermitian symmetry on the Fourier

components, i.e., the negative frequency part is just the

complex conjugate of the corresponding positive fre-

quency component, only half of the complex numbers are

5 https://casper.berkeley.edu/wiki/PAPER_

Correlator_Manifest

independent. To avoid wasting memory and data trans-

portation, the input data block of two input channels is

combined as the real and imaginary components respec-

tively to form a complex input, and then FFTed together

(Proakis & Manolakis 1996). Taking two time series x1[n],

x2[n] as the real part and imaginary part, the combined

complex number is given as

y[n] = x1[n] + j · x2[n]. (1)

Assume the Fourier pair as

y[n] ↔ S[ν]. (2)

The Fourier transform of x1[n], x2[n] can be recovered

with the Fourier transform of y[n], i.e.,

F{x1[n]} =
Sr[ν] + Sr[−ν]

2
+ j ·

Si[ν] − Si[−ν]

2
,

F{x2[n]} =
Si[ν] + Si[−ν]

2
− j ·

Sr[ν] − Sr[−ν]

2
,

(3)

where Sr[ν] and Si[ν] are the real and imaginary parts of

the Fourier transform of y[n] respectively. This recovery is

implemented in the block. The output data numbers of the

PFB block are 36 bits long, with the first 18 bits for the real

part and the last 18 bits the imaginary part.

In the pipeline, an Equalizer block follows the FFT.

It serves two purposes: (1) To compensate for the varying

spectral response by multiplying the data with a frequency

dependent adjustment factor, so as to obtain a nearly flat

spectral response, and achieve good dynamical range in the

digital sampling. (2) To reduce the amount of data to be

exchanged via the network switch, the original 18 bit data

are truncated to 4 bits by the Equalizer. To preserve the

maximum amount of information, the Equalizer should be

designed such that the data should most frequently fall in

a suitable range. For radio astronomy, the data are usually

noise-dominated, with occasional outliers mostly coming

from radio frequency interferences (RFIs). For such a sig-

nal, the root mean square (RMS) can be estimated from the

autocorrelation power levels,

RMS =

√

P

2N
, (4)

where P is the integrated autocorrelation value and N is

the number of samples in the integration. The Equalizer is

dedicated to desaturating the output while preserving most

information. The RMS of the 4-bit output falls between 2

and 3, out of the full 4-bit range of –7 to +76. Considering

6 https://casper.ssl.berkeley.edu/wiki/PAPER_

Correlator_EQ

C. H. Niu et al.: Correlator on the Tianlai Dish Array 102–5

the RFI, the Equalizer is designed as follows (see Fig. 3).

The 36 bit complex data are divided into an 18 bit real part

and an 18 bit imaginary part. They are then multiplied with

the scale factor, which is an unsigned fix 18 7 number, i.e.,

an 18 bit long fixed point number with 7 bits after the

binary point, and the product is a fix 36 24 number. The

most significant bits are usually 0, except for the strong

RFI. This number is then rounded even from 21 bit, then

the 22nd to 25th bits are selected while the other bits are

discarded. The output is a fix 4 3 number, in the range of

1.001b to 0.111b. The b means in binary format. The two

4 bit real numbers are then re-packed to an 8-bit complex

number and sent to the next block in the pipeline.

After the FFT step, the data are directed to the X-

engine for cross correlation computation. This computa-

tion is distributed over multiple units, and each unit would

need the same frequency signal from all receiver units. The

data need to be transposed (the so called “corner turn”), so

as to arrange the data in the desired order, i.e., convert-

ing the data shape from [input channel, frequency] to [fre-

quency, input channel], as shown in Figure 4.

This is achieved in the F-engine by writing the data

blocks consecutively to a dual-port RAM, and then reading

out the data not in the original order, but at pre-specified

addresses, so that they can be regrouped in the desired or-

der. The regrouped data are then packaged with a destina-

tion address in their headers and redirected to the X-engine

via the network interface controllers (NICs) onboard. As

we have four 10GbE NICs for each ROACH2 board, the

spectrum is split into four sub-bands, denoted by tid=0, 1,

2, 3.

The frequency ordered data are divided into four

blocks, so that each block contains 128 (for 512 frequency

bins) or 256 (for 1024 frequency bins) frequency points,

which are consecutively written into the four dual port

RAMs. Each FPGA processes 32 input channels from the

ADCs. The 32 inputs are sampled in parallel which are

written as 16 complex numbers, with each complex num-

ber corresponding to the spectrum of two real inputs. After

going through the Equalizer, the length of the data is 4 bit

for each real number, and 8 bit in total for the complex

number. Within such a sub-block, the data already have

the same frequency but different input channels, which are

suitable for use by the X-engine. The reading program will

read 64 bits of data at a time, corresponding to 16 inputs of

4 bits, so it could acquire 32 inputs of the same frequency

by reading in two numbers from the RAM.

Synchronous ports are used in the functional block de-

sign, to ensure the synchronization of different ROACH2

nodes to the same clock cycle. After all parameters such as

the IP and MAC addresses are set, a synchronization signal

called the “Arm signal” is sent to each node. Then, all the

ROACH2 nodes are initialized and waiting for a 1PPS sig-

nal to trigger the system. The Arm signals at the different

nodes are not required to be synchronized, but the 1PPS

signals are synchronized by choosing the same length of

cable for each signal. After this operation, all the ROACH2

nodes will be synchronized. A related diagram is shown in

Figure 5.

2.2 X-engine

When the F-engine is initialized, a trigger signal is also

sent to initiate the X-engine. The X-engine receives the

data from the F-engine in packets, which are delivered

into the different computing nodes, where the CMAC com-

putations are performed. For one GPU node, there are

two NVIDIA GTX690 cards, each containing two GPU

cores, two IntelTM Xeon CPUs and four 10 Gbps NICs.

These four GPU cores work separately, each processing the

CMAC of 256 frequency points for the 32 input correlator,

or 32 frequency points if there are 192 inputs and 1024 fre-

quency channels. The CMAC process uses the xGPU pack-

age (Clark et al. 2013), which is written in CUDA-C and

is optimized on GPU memory resources by specific thread

tasks.

The data movement in the X-engine is managed by

Hashpipe7, which specializes in communication between

threads in both GPUs and CPUs. A sketch of the data flow

in the X-engine pipeline is shown in Figure 6. We open

four Hashpipe threads for each GPU node (note these are

NOT the GPU threads) and also set up three ring buffers in

the memory for each GPU node. Each ring buffer is divided

into three memory segments. The data from the network

switch are received by the net thread, which reassembles

the data sequence as required by the xGPU code, and stores

the data in the so-called GPU ring buffer. The GPU thread

then processes the data in the buffer and computes the cor-

relations. After the GPU has finished the computation, it

outputs the result to the so-called CPU ring buffer. The

CPU thread then collects the result in a suitable format,

which is then put in the so called disk ring buffer. Finally,

the disk thread saves the data on the disk ring buffer to files

on the storage system. In the pipeline, before one thread

starts to work, it will fill the ring buffer and alert the next

7 https://github.com/david-macmahon/hashpipe

102–6 C. H. Niu et al.: Correlator on the Tianlai Dish Array

Fig. 3 Equalizer block. The scale factor could be varied both with different frequency and input channel.

Fig. 4 Data Transpose from the original grouping to the transposed one. fi(ν) is the Fourier transform of time stream, subscript i is

the antenna input index that ranges from 0 to 31, ν is the frequency channel index that ranges from 0 to 511 for the model with 512

frequency bins in this illustration.

thread to prepare. For each ring buffer, the upstream and

downstream threads would write and read a different seg-

ment at the same time. The size and number of sub-buffers

are selected to avoid data outflow. Hashpipe also provides

a status buffer which can extract key-value pairs in each

thread. This key-value is updated every running cycle. The

status can be viewed using a GUI monitor that has been

written in both Ruby and Python. The GPU CMAC is done

by xGPU which is written by Clark et al. (2013). We also

test the GPU performance of xGPU code with different

numbers of antenna stations. A single GTX690 core will

achieve peak performance of 1.2 TFLOPS when the num-

ber of antenna stations increases to 96, and stays stable

with more inputs. We reach 42% of the official peak per-

formance which is 2.8 TFLOPS for a single core8.

8 https://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-690/performance

C. H. Niu et al.: Correlator on the Tianlai Dish Array 102–7

… … … ...

Arm signal

1 PPS Signal

Node 1

Node N

Node 2

Arm signal

Arm signal

Fig. 5 Synchronization of the ROACH2 nodes. The dashed lines indicate the start trigger using the 1PPS signal.

Fig. 6 Hashpipe thread manager diagram.

2.3 Network and Data Packet

The dish pathfinder array with a total of 32 inputs does

not require the 10GbE network switch, as its data flow is

still within the limit of direct communication through the

10GbE network. However, we designed the system with

flexibility and scalability, so that it could be extended to

larger arrays. Indeed, we seek a design which can at least

handle the 192 inputs of the cylinder array. Our design that

includes eight ROACH2s can handle a maximum of 256

inputs. The design is also partially tested, although in the

end it is not implemented in full.

The data communication on the 10GbE is handled via

the User Datagram Protocol (UDP). The data packet for-

mat is shown in Figure 7, which includes the header, con-

tent and cyclic redundancy checksum (CRC) for error cor-

rection. In the header, after the UDP header, an application

header is added to signify the packet properties. The appli-

cation header is 8-bytes long, which is divided into three

parts: 6 bytes for packet counter MCNT, 1 byte for Fid and

1 byte for Xid. The counter MCNT denotes the time se-

quence of the data, and Hashpipe can detect packet loss

by checking if there is any jump in the MCNT sequence.

The Fid is the identification of the ROACH2 node from

which the packet is produced. The Xid denotes the GPU

core where the package is sent, from which one could also

know the frequency band in the package.

When considering the correlations, the natural order is

to analyze one receiver channel, then run cross-correlation

with all channels (including itself as auto-correlation).

The cross-correlations are computed in time segments, in

which the data are in the format of [time, (fixed) channel,

(run) input channel]. This is also shown in Figure 7, where

In0 means data from input 0. The data from the F-engine

output are in the form of complex numbers with a 4-bit real

part and 4-bit imaginary part. Each packet contains 1/32 of

the whole frequency band, i.e., for the 1024 frequency bin

model, there are 1024/32 = 32 frequency channels in each

packet. In order to optimize the 10 GbE data transfer, we

stack eight time channels from the next time stamp at the

102–8 C. H. Niu et al.: Correlator on the Tianlai Dish Array

Header MCNT

(6Bytes)

Fid

(1Byte)

Xid

(1Byte)

P
y
lo
a
d

t0

ch0 In0, In1, In2, In3, In4,, In30, In31

... ..
.

ch31 In0, In1, In2, In3, In4,, In30, In31

t1

ch0 In0, In1, In2, In3, In4,, In30, In31

... ..
.

ch31 In0, In1, In2, In3, In4,, In30, In31

...

... ..
.

CRC 8 Bytes

Fig. 7 Packet Data Format in our system. For the 512 FFT length model, each time is from ch0 to ch15.

GPU
Xid:0

GPU
Xid:1

GPU
Xid:3

GPU
Xid:4

GPU
Xid:6

GPU
Xid:5

GPU
Xid:7

GPU
Xid:2

ROACH2
Fid:0

ROACH2
Fid:2

ROACH2
Fid:1

ROACH2
Fid:3

ROACH2
Fid:4

ROACH2
Fid:5

10 GbE

Switch

Vlan 1

Vlan 2

Vlan 3

Vlan 4

Destination IP:

10.10.10.(32+8×i+Xid)

i = [0,1,2,3]

Xid = [0,1,2,...,6,7]

IP Address on ROACH2 NIC:

10.10.10.(8×i+Fid)

i = [0,1,2,3]

Fid = [0,1,2,...,5]

NICs IP in each GPU

server:

IP:10.10.10.(32+i)

i = [0,1,2,...,30,31]

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Fig. 8 Network and IP assignment strategy in our system. The 10GbE Switch is divided into four Vlans.

Time[s]

F
re
q
u
en
cy
[M
H
z]

Fig. 9 Phase fringe between two telescope inputs by observing the Sun.

C. H. Niu et al.: Correlator on the Tianlai Dish Array 102–9

same frequency band in each packet. So, the total size for

one output packet from the F-engine is

Nchan×Ninput×8+Header+CRC = 8208(Bytes). (5)

The data are transferred between the F-engine and X-

engine via a 10GbE switch. In our system, each GPU node

has four 10GbE ports. As a result, for the 192-inputs we

need a total of 4 × 6 ROACH2 nodes + 4 × 8 GPU nodes

= 56 ports on the 10GbE switch. We have a MellanoxTM

SX1024 Switch which has 48 ports of 10GbE and 12 ports

of 40GbE. Furthermore, the 12 ports of 40 GbE can be split

into 12×4 = 48 10GbE ports. This would be sufficient for

our purpose if we build the correlator for the 192 inputs

using this system.

In Figure 8, we show the IP assignment strategy in our

network system. The 10 GbE ports on each ROACH2 node

are denoted by indexes i ∈ [0, 1, 2, 3]. After the transpose,

the output from the ith port of the ROACH2 board contains
BW

4 × i to BW
4 × (i + 1) frequency points between eight

packets going to different GPU cores. Considering port 0

for example, we will have 0-256 frequency points. As each

GPU core processes 32 frequency points, the data output

from Port 0 must be sent to eight GPU cores. Given that

each GPU node has four GPU cores, only two nodes are re-

quired to receive the data, namely, node0 and node1. Thus

we can divide the ports of the 10GbE switch into four sub-

nets using a Virtual Local Area Network (VLAN), which

will direct the data from port 0 on each ROACH2 board to

GPU node0 and node1. The source of the packet received

in the GPU core could be located from its Fid in the header,

as discussed earlier.

3 TESTS AND EXPERIMENTS

We have conducted a number of simple tests both in labo-

ratory and on site to check the performance of the correla-

tor.

In a frequency chirp test of the F-engine, we feed in

a monotone analog signal, then after going through the

F-engine we grab the packet using WiresharkTM, a soft-

ware package to view the UDP packet. As expected, the

F-engine produced the correct result. We also tested the

correlation of two identical signals with a delay. For the

correlation of a signal in the form Aei(2πft+φ) and one

with time delay τ , the cross-correlation should be

V = I∗1 · I2 = Iei2πfτ . (6)

When the delay τ is a constant, the phase will be linear

with frequency and have a slope of k = 2πτ . We use a

power splitter to split the signal, and added an L = 7.5 m

radio frequency cable in one of the signal paths to simulate

a time delay, The result is consistent with a linear slope,

with τ = L/v where the signal speed is found to be v =

0.7c, as expected for the signal speed in the RF cable used.

We also did some tests about the linearity of our cor-

relator. By adjusting the input power of the Gaussian white

noise signal and the corresponding output, we found good

linearity in the range of –12 dBm to 6 dBm input power.

Finally, the correlator was installed on the dish array

and we observed bright radio sources such as the Sun,

Cygnus A and others. Interference fringes can be clearly

seen for the bright sources. Figure 9 shows the visibility

of the Sun through two inputs of the dish array during a

period of 1.5 hours. The phase of visibility varied with

frequency and time caused by Equation (6). Note that the

phase disturbance during the last 40 minutes is caused by

external RFIs.

4 SUMMARY

A correlator system based on the ROACH2-GPU frame-

work is developed for the Tianlai Dish array with 32 inputs,

and the design allows scalable expansion to a larger ar-

ray, e.g., the 192 input correlator. This correlator design is

flexible and scalable. Two FFT lengths, 1024 and 512, are

implemented. In the correlator system, different ROACH2

boards and X-engine are running the same F-engine gate-

ware and X-engine software with different parameters. The

X-engine consists of the xGPU computation core and the

Hashpipe data flow management system. The hardware at

hand is adequate for the 32 input correlator, but for the 192

input correlator, it can only handle 1/8 bandwidth right

now. The only thing that needs modification in the soft-

ware is to change some parameters such as frequency band

configuration for the F-engine and X-engine. Furthermore,

the ROACH2-SWITCH-GPU framework can also be used

for different purposes at the same time. The switch has

a broadcast mechanism, where we could install a differ-

ent backend, e.g., a backend to search for fast radio bursts

(FRBs) to the system by extending the switch system and

adding some FRB nodes. We also did some experiments

with our instrument, and the 32-input correlator system

worked normally. Given the additional hardware, it can

also be extended to the 192-input system, or even to larger

systems in the future.

Acknowledgements We thank the support from the

CASPER community for making the hardware and soft-

ware they developed available, and offering helps when

102–10 C. H. Niu et al.: Correlator on the Tianlai Dish Array

we encountered problems. Chenhui Niu acknowledges the

China Scholarship Council for providing support during

his visit to the CASPER group in UC Berkeley. The Tianlai

project has been supported by the Repair and Procurement

Program of the Chinese Academy of Sciences (CAS),

the National Natural Science Foundation of China (Grant

Nos. 11473044, 11633004, 11773011 and 11761141012),

MoST Grants (2016YFE0100300 and 2012AA121701),

and the CAS Frontier Science Key Project (QYZDJ-SSW-

SLH017).

References

Chen, X. 2012, in International Journal of Modern Physics

Conference Series, 12, 256

Clark, M. A., LaPlante, P. C., & Greenhill, L. J. 2013,

International Journal of High Performance Computing

Applications, 27, 178

Foley, A. R., Alberts, T., Armstrong, R. P., et al. 2016, MNRAS,

460, 1664

Hickish, J., Abdurashidova, Z., Ali, Z., et al. 2016, Journal of

Astronomical Instrumentation, 5, 1641001

Parsons, A., Backer, D., Siemion, A., et al. 2008, PASP, 120,

1207

Parsons, A. R., Backer, D. C., Foster, G. S., et al. 2010, AJ, 139,

1468

Price, D. C., Kocz, J., Bailes, M., & Greenhill, L. J. 2016, Journal

of Astronomical Instrumentation, 5, 1602002

Proakis, J. G., & Manolakis, D. G. 1996, Digital Signal

Processing: Principles, Algorithms and Applications (Upper

Saddle River, NJ: Prentice Hall)

So, Hayden Kwok-Hay 2007, Borph: An Operating System

for Fpga-based Reconfigurable Computers, PhD Thesis,

University of California at Berkeley

Thompson, A. R., Moran, J. M., & Swenson, Jr., G. W.

2001, Interferometry and Synthesis in Radio Astronomy (2nd

ed. New York: Wiley, c2001.xxiii)

