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Abstract In this work, we first obtain the hydrostatic equilibrium equation in dilaton gravity. Then, we

examine some of the structural characteristics of a strange quark star in dilaton gravity in the context of

Einstein gravity. We show that the variations of dilaton parameter do not affect the maximum mass, but

variations in the cosmological constant lead to changes in the structural characteristics of the quark star. We

investigate the stability of strange quark stars by applying the MIT bag model with dilaton gravity. We also

provide limiting values for the dilaton field parameter and cosmological constant. We also study the effects

of dilaton gravity on the other properties of a quark star such as the mean density and gravitational redshift.

We conclude that the last reported value for the cosmological constant does not affect the maximum mass

of a strange quark star.

Key words: dense matter — equation of state — gravitation — stars: fundamental parameters (masses,

radii)

1 INTRODUCTION

Einstein’s Theory of General Relativity (GR) explains

phenomena and events well within the solar system.

Tolman, Oppenheimer and Volkoff (TOV) (Tolman 1939;

Oppenheimer & Volkoff 1939) obtained the first hydro-

static equilibrium equation (HEE) from the solution of

Einstein’s field equations. So far, the structure of compact

objects, such as neutron stars and quark stars that have gen-

eral relativistic properties due to their great density, has

been modeled by many authors through the numerical so-

lution of the TOV equation (Silbar & Reddy 2004; Bordbar

et al. 2006, 2016; Narain et al. 2006).

In recent years, studies outside the solar system have

led to the emergence of new theories and observations such

as accelerated expansion of the universe (Knop et al. 2003;

Perlmutter et al. 1999; Riess et al. 1998; Tonry et al. 2003),

which GR is incapable of explaining. The absence of a

comprehensive gravitational theory on quantum scales has

led to a lot of attention being focused on the emergence of

new gravitational theories. Such theories include GR and

can explain new cosmological phenomena, and discover-

ies that GR cannot explain and interpret well.

Adding new terms, including higher-order curvature

invariants and scalar fields, to Einstein Lagrangian yields

theories that are known as modified gravity. One of these

new modified gravities considers the dilaton scalar field

and its potential in the universe. The scalar field has

been used to justify inflation and also to describe cold

dark matter (Cho 1990), which is a type of dark matter.

Recently, study of the structure of compact objects in mod-

ified gravity has been widely considered including neutron

stars (Astashenok 2016; Hendi et al. 2015), black holes

(Chan et al. 1995; Hendi et al. 2016b) and quark stars

(Astashenok 2016; Astashenok et al. 2015).

To obtain the structural characteristics of compact ob-

jects in the new gravities, we use the action related to the

proposed gravitational theory. By varying this action and

taking the principle of least action into account, we derive

the field equation for the considered gravity. Then by solv-

ing this equation and using conservation of the momentum-

energy tensor, we procure the HEE of the new theory.
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Furthermore, by using the equation of state (EoS) of matter

in the compact object, we solve the derived HEE equation

numerically and yield the maximum mass and radius of

the star under study. The HEE in modified gravity has been

considered by several authors: HEE in Gauss-Bonnet grav-

ity (Momeni & Myrzakulov 2015), HEE in f(G) gravity

(Sharif & Fatima 2016), HEE in f(R) gravity (Astashenok

2016; Astashenok et al. 2013; Arapoǧlu et al. 2011), HEE

in gravity’s rainbow (Hendi et al. 2016a) and HEE in mas-

sive gravity (Katsuragawa et al. 2016; Hendi et al. 2017).

After Witten conjectured the hypothesis of strange

quark matter (Witten 1984; Farhi & Jaffe 1984), it has been

shown that a new class of compact objects may exist which

is composed from strange quark matter, known as strange

quark stars (SQSs) or strange stars (Haensel et al. 1986;

Alcock et al. 1986b,a; Alcock & Olinto 1988; Glendenning

1990). SQSs are composed from up (u), down (d) and

strange (s) quarks along with a small number of electrons

that are in β equilibrium. The best candidates for SQSs

are some of the observed compact objects that may not be

compatible with the neutron star model, such as X-ray pul-

sar LMC X-4 with M = 1.29 ± 0.05 M⊙ (Gangopadhyay

et al. 2013; Paul et al. 2011; Rawls et al. 2011), X-ray

burster 4U 1608-52 (Paul et al. 2011; Bombaci 1997; Dey

et al. 1998) with M = 1.74±0.14 M⊙ (Güver et al. 2010)

and millisecond pulsar J1614-2230 (Paul et al. 2011; Deb

et al. 2017) with M = 1.97 ± 0.04 M⊙ (Demorest et al.

2010). In this work, the considered quark star is made of

strange quark matter from the center up close to the sur-

face. Here, we want to calculate some bulk properties of an

SQS by using the modified HEE in dilaton gravity and con-

sidering the MIT bag model to produce the EoS of strange

quark matter (SQM). This paper is divided into six sec-

tions. In Section 2, we propose a new procedure to find

HEE in dilaton gravity in the context of Einstein gravity.

In Section 3, we present the HEE in dilaton gravity as a

correction of the HEE in Einstein gravity (correction of

TOV). In Section 4, we obtain the maximum mass of the

quark star from the numerical solution of the HEE gener-

ated in Sections 2 and 3 and compare our results with the

results obtained in GR. In Section 5, we investigate causal-

ity condition and dynamical stability of SQSs in dilaton

gravity. Our conclusions are drawn in Section 6.

2 HEE IN DILATON GRAVITY

The total action of dilaton gravity (Stotal) is as follows

Stotal =
1

2κ

∫

d4x
√
−g
(

R − 2gµν∂µΦ∂νΦ

− V (Φ)
)

+ Smatter,

(1)

in which Einstein’s gravity is regarded as the background.

In this action, R, Φ and V (Φ) are the Ricci scalar, dilaton

field and potential of this field, respectively. Smatter is the

action related to the matter, which is considered to be a

perfect fluid. To find the dilaton field equation, we vary

Equation (1) with respect to the dilaton field Φ and the

metric tensor gµν . Using the principle of least action, field

equations are obtained as follows

Gµν = κTµν +
(

2∂µΦ∂νΦ−gµν∂aΦ∂aΦ−
1

2
gµνV (Φ)

)

,

(2)

�Φ −
1

4

∂V

∂Φ
= 0, (3)

where Gµν and κ = 8πG
c4 are the Einstein tensor and

Einstein gravitational constant, respectively. Tµν is the

energy-momentum tensor associated with a perfect fluid.

We consider that the potential of a dilaton field consists of

two Liouville terms

V (Φ) = 2Λ0e
2ξ0Φ − 2Λe2ξΦ . (4)

Potentials of this type have been previously studied to

solve dilaton black hole field equations (Chan et al. 1995;

Dehghani & Farhangkhah 2005).

To find a static solution of Equations (2) and (3), we

assume the four-dimensional spacetime metric as

ds2 = −B (r) dt2 +
dr2

A (r)
+ R2(r)r2dΩ2 , (5)

in which B(r), A(r) and R(r) are unknown functions to be

determined and dΩ2 =
(

dθ2 + sin2 θ dφ2
)

. We consider

R(r) as the ansatz which has the form

R(r) = eαΦ(r) . (6)

This ansatz was first used to investigate answers related to

field equations of charged dilaton black strings (Dehghani

& Farhangkhah 2005). Recently, this ansatz has been ap-

plied by some authors (Sheykhi et al. 2006; Hendi et al.

2015) to study properties of dilaton gravity. It is important

to note that when α = 0, the ansatz becomes R(r) = 1 and

dilaton gravity turns to Einstein gravity. By making this

ansatz and using Equation (3), and introducing the metric

in Equation (5), we have

Φ(r) =
α

1 + α2
ln

(

b

r

)

, (7)

where b is an arbitrary constant.

For a perfect fluid, the general form of energy-

momentum tensor is given by

T µν =
(

ρc2 + P
)

uµuν + Pgµν . (8)
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In these relations, P and ρ are the pressure and energy

density of the perfect fluid from the viewpoint of the lo-

cal observer respectively, and uµ is the local fluid velocity

4-vector. Using the metric defined by Equations (5) and

(8), the energy-momentum tensor for the perfect fluid has

the form

T a
b = diag(−ρc2, P, P, P ). (9)

To solve the dilaton field equation, with the metric

Equation (5) and energy-momentum tensor Equation (9),

we obtain the components of Equation (2) as follows

κρc2 = −Λ γα2

−
A′

rK1,1
−

AK1,−3

r2K2
1,1

+
γ α2

K−1,1b2
+

1

r2γα2
,

(10)

κP = Λγα2

+
AB′

rBK1,1
+

AK1,−3

r2K2
1,1

−
γ α2

K−1,1b2
−

1

r2γα2
,

(11)

κP =Λγα2

+
AB′

2rBK1,1
−

2α2A

r2K2
1,1

−
γα2

K−1,1b2
−

AB′2

4B2

+
A′B′

4B
+

A′

2rK1,1
+

AB′′

2B
,

(12)

where

Ki,j ≡ i + jα2, γ ≡
(

b

r

)
2

K1,1

,

and the prime and double-prime denote the first and sec-

ond derivatives with respect to r respectively. Furthermore,

by using conservation of the energy-momentum tensor

T µν
;µ = 0 we have

dP

dr
= −(ρc2 + P )

(

B′

B

)

. (13)

It is notable that in Equations (10) to (12), we set Λ to be a

free parameter and it behaves the same as a cosmological

constant. Meanwhile, Λ0, ξ0 and ξ are constants that are

chosen as follows to solve Equations (2) and (3)

Λ0 =
α2

b2K−1,1
, ξ0 =

1

α
, ξ = α.

The function A(r) is obtained by integrating Equation (10)

in the form

A(r) =

(

γ−α2

r2K1,−1
−

Λ γα2

3K1,−1
−

γ α2

K2
1,−1b

2

)

r2K2
1,1

−
κ c2K1,1

r
K1,−3

K1,1

∫

r
2K1,−1

K1,1 ρ (r) dr .

(14)

If we replace α = 0 in this equation, then we see that A(r)

in the dilaton field reduces to known A(r) = (1− 2 GM
rc2 −

Λ
3 r2) in Einstein-Λ gravity (Stuchlı́k 2000; Balaguera-

Antolı́nez et al. 2005; Böhmer & Harko 2005a), there-

fore, we can write 4π
∫

r
2K1,−1

K1,1 ρ (r) dr = Meff(r, α) in

which Meff(r, α) =
∫

4πρ (r) R2
eff dReff is the effective

mass with the corresponding effective radius that is given

by Reff = 3

√

3K1,1

K3,−1
r

(

K3,−1

3K1,1

)

. One can obtain B′

B
by sub-

stituting Equation (14) into Equation (11), then replac-

ing B′

B
in Equation (13). With this replacement and using

dP
dr

= dP
dReff

dReff

dr
, we obtain dilaton HEE as

dP

dReff
=

1

2
σ

4α2

3K1,1 δ
−

2K1,−1

K1,1

(

c2ρ + P (r)
)

×

[

−
σ δ K1,1P (r) κ

τ
−

K1,1

σ δ τ Y α2

+
σ δ K1,1Λ Y α2

τ
+

σ δ K1,1α
2Y

τ b2K1,−1

+
K1,−3

σ δ K1,1

]

(15)

with

τ =
K2

1,1

Υα2K1,−1
−

K2
1,1δ

2σ2Υ α2

K2
1,−1b

2
−

K2
1,1δ

2σ2Λ Υα2

3 K1,−1

−
κc2 K1,1 Meff

4 π

(

(σ δ)
K1,−3

K1,1

) ,

Υ =

(

b

σδ

)
2

K1,1

,

δ = R

(

3K1,1

K3,−1

)

eff ,

σ =

(

K3,−1

3K1,1

)

(

K1,1

K3,−1

)

.

It is important to note that in dilaton gravity, gravi-

tational mass, m(r) =
∫

4πr2ρ(r)dr and radius, r, are

modified to Meff and Reff respectively.

3 DILATON HEE AS A CORRECTION OF TOV

In this section, we use the same techniques as in Hendi

et al. (2015). We expand Equation (15) in a series of α.

When α has very small values, we can neglect all terms of
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order higher than 2, then we have

dP

dr
=

(

4 r3P (r)κ π − 8
3 Λ π r3 + κ c2m(r)

) (

ρc2 + P (r)
)

2 r
(

κ c2m(r) + 4
3 rπ

(

Λ r2 − 3
))

− α2 72
(

ρc2 + P (r)
)

r
(

4 Λ π r3 + 3 κ c2m (r) − 12 rπ
)2

×

{

πr

3
ln
( b2

r2

)

[

3

4
κ c2

(

Λ r2 + 1
)

m(r)

+ π
[

κ
(

Λ r2 + 3
)

P (r) − 4 Λ
]

r3

]

+
1

4
κ2 (m(r))2 c4

+ π c2κ m(r)r

[

κ P (r) ln (r) r2 +
(

−Λ r2 + 1
)

ln(r)

+
2

3
Λ r2 −

7

4

]

+ π2r

[

r2κ P (r)
(

κ c2N(r) +
2

3
Λ r3

− r
)

− κ c2N(r)
(

Λ r2 − 1
)

−
2

9
r5Λ2

−
2

3
Λ r3 + 2 r

]

}

,

(16)

in which N(r) =
∫

−4 r2 ln (r) ρ (r) dr. As can be seen,

the first term on the right-hand side of this equation is the

well-known TOV equation, and the second term is consid-

ered as a correction term in dilaton gravity. On close in-

spection of Equation (16), in the case of α = 0, the new

HEE equation will be exactly the same as TOV.

4 STRUCTURE OF STRANGE QUARK STARS IN

DILATON GRAVITY

In this section, we calculate some structural properties of

SQSs in dilaton gravity. To obtain the configurational char-

acteristics of the quark stars, we must solve the HEE equa-

tion, Equation (16), numerically by using an EoS in the

form P = P (ρ).

4.1 EoS of Strange Quark Matter

We obtain the EoS of SQM using the MIT bag model. In

this model, the total energy is the sum of kinetic energy

of quarks plus a bag constant (Bbag) (Chodos et al. 1974).

In fact, the bag constant Bbag can be interpreted as the

difference between the energy densities of noninteracting

quarks and interacting ones. Dynamically it acts as a pres-

sure, which keeps the quark gas at constant density and po-

tential. The value of bag constant, Bbag, lies in the interval

58.8 MeV fm−3 < Bbag < 91.2 MeV fm−3 (Stergioulas

2003) and in this work, the values 60, 75 and 90 MeV fm−3

are considered for the bag constant. In order to obtain the

EoS, we have neglected the mass of u and d quarks and

considered the mass of an s quark to be ms = 150 MeV.

More details on the EoS of SQM can be found in Bordbar

& Peivand (2011).

In Figure 1, we plot the behavior of the EoS for SQM

in the MIT bag model for various values of Bbag. This fig-

ure demonstrates that for all values of bag constant, the

EoS of SQM can be treated as linear. Also, it is observed

that an EoS for SQM with a lower value of Bbag is stiffer

than the higher case. In the next section, we calculate max-

imum mass and corresponding radius of an SQS in dilaton

gravity by using this EoS and Equation (16) (also Eq. (15)).

4.2 Maximum Mass of an SQS in Dilaton Gravity

Like other compact objects, SQSs reach a limiting gravi-

tational mass known as the maximum mass. Subsequently,

we can obtain the maximum mass (Mmax) of an SQS in

dilaton gravity in the states with various values of α and Λ,

by numerically integrating Equation (16) (or Eq. (15)) and

using the EoS of SQM.

In Table 1, we calculate and present the structural

properties of an SQS with varying α with the reported

value of cosmological constant (Λ ≤ 10−56 cm−2) and for

a vanishing cosmological constant. As we can see, these

values of Λ and α do not have a significant impact on the

structural properties of an SQS.

Finding the exact value of the cosmological constant

is an open issue. Although its reported value can be valid

in large-scale structure, when we encounter a local scale

structure close to a massive object, such as a neutron star

or SQS, the value of Λ may be very different from its re-

ported value for large-scale structure (Bordbar et al. 2016).

Motivated by this reason, Λ ≤ 10−13 cm−2 has been ap-

plied to investigate the structural properties of compact ob-

jects in the presence of cosmological constant by several

authors (Hendi et al. 2015; Bordbar et al. 2016; Zubairi

et al. 2015). In addition, it is notable that some cosmo-

logical models consider Λ as a decreasing variable with

time, which has been predicted by decaying vacuum en-

ergy (Waga 1993; Böhmer & Harko 2005b). Therefore,

considering the effect of such differing values of the cos-

mological constant on structural properties of a compact

object can be interesting. In the remainder of this section,

we have used Λ ≤ 10−13 cm−2 to examine the bulk prop-

erties of SQSs in dilaton gravity.

In Figure 2, we plot the gravitational mass-radius for

Λ = α = 0. The values of maximum mass and corre-

sponding values of radius are listed in Table 2. As is appar-

ent, these values are the same as Mmax and R in Einstein

gravity (Bordbar & Peivand 2011).
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Fig. 1 EoS of SQM for various values of bag constant (left panel). The right panel features an enlarged view of the left one.
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Fig. 3 The mass-radius relation of an SQS for various positive val-

ues of Λ (α = 0, b = 10
−4 and Bbag = 90 MeV fm

−3).

The gravitational mass versus radius and central en-

ergy density for a constant value of α but different values

of Λ is plotted in Figures 3 and 5, respectively. We have

also plotted the effective gravitational mass versus effec-

tive radius (see Fig. 4). Figure 3 demonstrates that an in-

crease in Λ has led to an increase in the maximum mass.

Moreover, for Λ ≤ 10−14 deviation of the M −R relation

from Einstein gravity is very small (see Fig. 3). This result

is repeated in Figure 4 and it can be ascertained that val-

ues of the gravitational mass and corresponding radius are

the same as effective mass and corresponding effective ra-

dius respectively (see Table 2). For a given central energy

density (ρc), the mass of SQS increases by increasing cos-

mological constant (see Fig. 5). We can find that for higher

values of the cosmological constant, gravitational mass in-

creases at a higher rate and reaches Mmax in SQSs with

smaller values of central energy density (ρc).

In Figure 6, we investigate the quark star structure

for a given positive value of Λ but for different values of

α, which demonstrates that variations in dilaton parame-

ter α do not affect the SQS structure. It should be noted

that there is no answer to the diaton HEE for α ≥ 10−4.

Bbag = 90 MeV fm−3 is considered in the figures drawn

so far. In Figure 7, we plot the mass-radius relation of an

SQS in dilaton gravity for Bbag = 60 and 75 MeV fm−3

for a given value of Λ and different values of α. It can be

seen that in these situations, the lack of influence of α on

the mass and radius of SQS still remains. Values of the

maximum mass and corresponding radius values in these

modes are shown in Tables 3 and 4.
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Fig. 7 Same as Fig. 6, but for Bbag = 60 MeV fm
−3 (dashed lines) and Bbag = 75 MeV fm

−3 (solid lines).

In Figure 8, the maximum gravitational mass as a func-

tion of Λ in all cases of Bbag is plotted. This indicates that

Mmax is an increasing function of Λ. However, the rate of

increase for Mmax versus Λ increases with an increasing

bag constant.

In Figure 9, we plot the energy per baryon (E/A) for

SQM with the various values of bag constant as a function

of pressure. We see that the zero point of pressure for SQM

considered with lower values of Bbag has a lower E/A.
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Table 1 Maximum gravitational mass (Mmax) and the corresponding radius (R) of an SQS in dilaton gravity for various positive values

of Λ and α with various values of Bbag.

Bbag (MeV fm−3) α Λ Mmax (M⊙) R (km) ρ (1015g cm−3) z (10−1)

60

0 0 1.55 8.86 1.06 4.37

1.00 × 10−8 0 1.55 8.86 1.06 4.37

1.00 × 10−5 0 1.55 8.86 1.06 4.37

0 1.00 × 10−56 1.55 8.86 1.06 4.37

1.00 × 10−8 1.00 × 10−56 1.55 8.86 1.06 4.37

1.00 × 10−5 1.00 × 10−56 1.55 8.86 1.06 4.37

75

0 0 1.43 8.15 1.25 4.40

1.00 × 10−8 0 1.43 8.15 1.25 4.40

1.00 × 10−5 0 1.43 8.15 1.25 4.40

0 1.00 × 10−56 1.43 8.15 1.25 4.40

1.00 × 10−8 1.00 × 10−56 1.43 8.15 1.25 4.40

1.00 × 10−5 1.00 × 10−56 1.43 8.15 1.25 4.40

90

0 0 1.34 7.58 1.46 4.45

1.00 × 10−8 0 1.34 7.58 1.46 4.45

1.00 × 10−5 0 1.34 7.58 1.46 4.45

0 1.00 × 10−56 1.34 7.58 1.46 4.45

1.00 × 10−8 1.00 × 10−56 1.34 7.58 1.46 4.45

1.00 × 10−5 1.00 × 10−56 1.34 7.58 1.46 4.45

Table 2 Maximum gravitational mass (Mmax) and the corresponding radius (R) of an SQS in dilaton gravity for various positive

values of Λ at b = 10
−4 and α = 0.

Λ Mmax (M⊙) R (km) Meff
max (M⊙) Reff (km) ρ (1015g cm−3) zeff (10−1) z (10−1)

0 1.34 7.58 1.34 7.58 1.46 4.45 4.45

1.00 × 10−14 1.34 7.58 1.34 7.58 1.43 4.48 4.48

1.00 × 10−13 1.36 7.68 1.36 7.68 1.43 4.78 4.78

3.00 × 10−13 1.43 7.95 1.43 7.95 1.35 5.69 5.69

4.00 × 10−13 1.47 8.13 1.47 8.13 1.30 6.25 6.25

5.00 × 10−13 1.52 8.34 1.52 8.34 1.24 6.99 6.99

8.00 × 10−13 1.86 10.01 1.86 10.01 0.88 13.27 13.27

Table 3 Maximum gravitational mass (Mmax) and the corresponding radius (R) of an SQS in dilaton gravity for various positive values

of Λ and α with Bbag = 60 MeV fm
−3.

α Λ Mmax (M⊙) R (km) ρ (1015 g cm−3) z (10−1) Bbag (MeV fm−3)

1.00 × 10−7 1.00 × 10−15 1.55 8.86 1.06 4.38 60

1.00 × 10−7 1.00 × 10−14 1.55 8.88 1.06 4.41 60

0 1.00 × 10−13 1.59 9.04 1.02 4.84 60

0 3.00 × 10−13 1.71 9.53 0.94 6.22 60

0 4.00 × 10−13 1.78 9.87 0.88 7.20 60

0 5.00 × 10−13 1.90 10.43 0.80 8.85 60

1.00 × 10−8 5.00 × 10−13 1.90 10.43 0.80 8.85 60

1.00 × 10−6 5.00 × 10−13 1.90 10.43 0.80 8.85 60

This implies that some SQM modeled with lower values of

Bbag is more stable than others.

In Table 5, we give the percentage increase of max-

imum mass of an SQS and we apply various values of

the bag constant to calculate EoS of SQM in differ-

ent values of Λ with respect to obtained Mmax in GR

(α = Λ = 0) with the same value of Bbag (for instance

(∆M)
B=90
Λ1

= (Mmax)
B=90
Λ1=1×10−13 − (Mmax)

B=90
Λ0=0 =

0.02 M⊙ = 1.49%(Mmax)
B=90
Λ0=0 derived for Bbag = 90).

We can see that the effect of Λ on SQSs that have higher

stability is larger than the other ones (see columns in

Table 5). In addition, this table shows that the increasing

rate of the percentage increase of maximum mass for an

SQS, is enhanced by enhancing Λ (see rows in Table 5).

Negative values of Λ are investigated in Figure 10 with

a particular value of α to obtain the SQS structure. As we

can see, increasing the maximum mass and its correspond-
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Table 4 Maximum gravitational mass (Mmax) and the corresponding radius (R) of an SQS in dilaton gravity for various positive values

of Λ and α with Bbag = 75MeV fm
−3.

α Λ Mmax (M⊙) R (km) ρ (1015 g cm−3) z(10−1) Bbag (MeV fm−3)

1.00 × 10−7 1.00 × 10−15 1.43 8.15 1.25 4.40 75

1.00 × 10−7 1.00 × 10−14 1.44 8.15 1.26 4.48 75

1.00 × 10−8 1.00 × 10−13 1.46 8.30 1.21 4.77 75

0 1.00 × 10−13 1.46 8.30 1.21 4.77 75

0 3.00 × 10−13 1.55 8.63 1.15 5.90 75

0 4.00 × 10−13 1.60 8.87 1.09 6.60 75

0 5.00 × 10−13 1.67 9.18 1.03 7.60 75

1.00 × 10−8 5.00 × 10−13 1.67 9.18 1.03 7.60 75

1.00 × 10−6 5.00 × 10−13 1.67 9.18 1.03 7.60 75

Table 5 The percentage increase of maximum mass of an SQS in dilaton gravity for various values of Λ at b = 10
−4 and α = 0 with

different values of Bbag.

Bbag (∆M)Λ1
[Mmax Λ1

] (∆M)Λ2
[MmaxΛ2

] (∆M)Λ3
[Mmax Λ3

] (∆M)Λ4
[MmaxΛ4

]

(Λ1 = 1.00 × 10−13) (Λ2 = 3.00 × 10−13) (Λ3 = 4.00 × 10−13) (Λ4 = 5.00 × 10−13)

90 1.49% 6.72% 9.70% 13.43%

75 2.10% 8.39% 11.89% 16.78%

60 2.58% 10.32% 14.84% 22.58%
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Fig. 8 Maximum mass of an SQS versus cosmological constant

(×10
−13) for different bag constants with α = 0.
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Fig. 9 The energy per baryon versus the pressure (P ) for SQSs with

the various values of bag constant.

ing radius is simultaneous with increasing cosmological

constant using negative values (also see Table 6).

Table 6 Maximum gravitational mass (Mmax) and the corre-

sponding radius (R) of SQS in dilaton gravity for various nega-

tive values of Λ at b = 10
−4 and α = 0.

α Λ Mmax (M⊙) R (km)

0 0 1.34 7.57

0 −8.00 × 10−13 1.19 6.94

0 −1.00 × 10−12 1.16 6.83

It should be noted that for Λ ≥ 10−12, HEE in dila-

ton gravity does not have a logical answer. The structural

results for Λ < 10−14 are similar to those for Λ = 0.

4.3 Redshift and Mean Density

Information about the compactness of a compact object,

mass-radius ratio, can be found from the gravitational red-

shift, which is an observational quantity (denoted by z).

We can obtain z by using Equation (14) in two forms:

zeff =

{

[

−
Λ (Υ)α2

3K1,−1
−

Υ α2

K2
1,−1b

2
+

(Υ)−α2

Ω2K1,−1

]

Ω2K2
1,1

−
2 GK1,1Meff Ω

−
K1,−3

K1,1

c2

}−
1

2

− 1 ,

(17)
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−13 .

and

z =

{

[

1 −
2GM

Rc2
−

ΛR2

3

]

+
α2

3Rc2

[

−Rc2
(

R2Λ + 3
)

ln
( b2

R2

)

+
(

−3Λ R3 + 6R
)

c2 − 14GM

]}−
1

2

− 1 ,

(18)

where in Equation (17), Ω = σδ and Υ are functions

of Reff and to obtain Equation (18), we have expanded

Equation (14) in a series of α and neglected all terms of

order higher than 2.

In Tables 2 to 4 we have evaluated z and ρ = 3M
4πR3

(the mean energy density) for an SQS in different cases.

For all cases, we can see that with increasing Λ, gravita-



78–10 A. Peivand et al.: Strange Quark Star in Dilaton Gravity

tional redshift increases while ρ decreases (see Table 2 and

Table 4). We can ascertain that increasing Λ is equivalent

to increasing Bbag. Therefore, it can be interpreted as in-

creasing the values of the difference between the energy

densities of non-interacting quarks and interacting quarks.

In addition, we can find that for fixed values of Λ, varia-

tions of α do not affect z or ρ.

4.4 Energy Conditions

Any acceptable physical model of isotropic fluid must sat-

isfy conditions on energy (Hendi et al. 2016a; Visser &

Barcelo 2000). The variations of pressure and energy den-

sity of an SQS with respect to fractional radius are shown

in Figure 11 and 12. As we can see, the pressure of the

system is non-zero and positive at the origin. In addition,

it is clear that the pressure and energy density decrease

monotonically by increasing fractional radius. Moreover,

it is observed that pressure reaches zero at the boundary

of the star (r = R) in all cases. In addition, the sum of

pressure and energy density versus r
R

throughout the star

is also shown in these figures. It is clear that all energy con-

ditions for a perfect fluid are satisfied for an SQS in dilaton

gravity.

4.5 Matching Interior and Exterior Solutions

In this part, we investigate interior and exterior solutions at

the matching boundaries by noting that we have assumed

ρ = ρ throughout the star. At first, we can find the inte-

rior radial component of metric tensor ( 1
A(r) ) by expanding

Equation (14) in a series of α and neglecting all terms of

order higher than 2, therefore for r < R we have

A(r)in =

[

1 −
Λ r2

3
−

κc2m (r)

4 π r

]

+

[

2 −
1

3
Λ r2 ln

(

b2

r2

)

− Λ r2 − ln

(

b2

r2

)

−
κc2m (r)

4 π r
+

4

3
κρ c2r2 ln (r) −

4

9
κρ c2r2

−
κc2m (r) ln (r)

π r

]

α2 ,

(19)

which by replacing m(r) = M
R3 r3 and ρ = 3 M

4πR3 yields

A(r)in =

[

1 −
Λ r2

3
−

κc2M

4 π R3
r2

]

+

[

2 −
1

3
Λ r2 ln

(

b2

r2

)

− Λ r2

− ln

(

b2

r2

)

−
7 κc2M

12 π R3
r2

]

α2.

(20)

We can calculate time component (B(r)) of internal

metric tensor by integrating Equation (13) from a specific

value of r (r < R) to the surface of the star (r = R). We

obtain

B (r)in = B (R)

(

ρ c2

P (r) + ρ c2

)2

, (21)

where B(R) is the time component of metric at the sur-

face and P (r) is pressure at a specified radius that can

be determined by numerically integrating Equation (16).

It is notable that if one inserts r = R in Equation (21)

(P (r = R) = 0), then B(r)in = B(R).

We can derive exterior radial and time components of

the metric by solving Equations (10) and (11) and also con-

sidering that outside of the star, P (r) = ρ(r) = 0. Then,

for r > R, we have

A(r)out =B(r)out =

[

1 −
Λ r2

3
−

κc2M

4π r

]

+

[

2 −
Λ r2 ln

(

b2

r2

)

3
− Λ r2 − ln

(

b2

r2

)

−
7 κc2M

12 π r
+

κc2M

π r
ln

(

R

r

)]

α2.

(22)

According to Equations (19)–(22), we can easily see that

the interior solution smoothly matches the exterior solution

at the surface of the star (r = R).

In Figures 13 and 14, we have plotted 1
A(r) and B(r)

against fractional radius ( r
R

) for different values of α, Λ

and Bbag. We can see that the components of the met-

ric at the center of the object are non-singular and posi-

tive (Shee et al. 2018). Also, these figures demonstrate that
1

A(r) and B(r) are a monotonically increasing functions of
r
R

throughout the star as proved by Lake (2003) for any

physically acceptable model.

5 STABILITY

5.1 Speed of Sound

When we examine the stability of a compact object in

terms of the speed of sound, two conditions must be sat-

isfied

(1) The causality condition: Speed of sound (vs) has to be

positive and less than the speed of light (c). The varia-

tions of
v2

s

c2 with the fractional radius and energy den-

sity (
ρ
ρc

) are shown in Figure 15 and 16. It is observed

that the speed of sound lies between 0 and 1 inside the

quark star in all cases. Also, vs decreases with increas-

ing (decreasing) radius (energy density) of the star and

reaches its minimum value at the surface.
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(2) Herrera cracking: The concept of cracking proposed

by Herrera (1992) has been applied to investigating the

stability of an anisotropic compact object (Shee et al.

2018; Deb et al. 2017; Maurya et al. 2018). We do not

need to check for cracking, because the model that we

considered here is an isotropic quark star and the pres-

sure of the star is equal in all directions (see Eq. (9)).

5.2 Adiabatic Index

An essential criterion for the dynamical stability of a com-

pact object against radial adiabatic infinitesimal perturba-

tions is determined by the adiabatic index Γ

Γ =
ρ

P

(

1 +
P

ρ c2

)dP

dρ
. (23)

Chandrasekhar showed that for the dynamical stability

of a compact object, Γ must be greater than 4
3 throughout
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(b) Bbag = 75 MeV fm
−3 and (c) Bbag = 90 MeV fm

−3.

it (Chandrasekhar 1964). The variation of Γ versus radial

coordinate r is shown in Figures 17 and 18 for different

cases of α, Λ and bag constant. One can see that the varia-

tion of α has no effect on the adiabatic index values, while

the variation of Λ increases the rate of increase in Γ. In

amounts other than the reported value of Λ, the adiabatic

index reaches greater values near the surface of the star

with larger values of bag constant (see Fig. 18). We can

also see in Figures 17 and 18 that the values of Γ for the

central layers of an SQS star are closer to and greater than
4
3 but for layers near the surface they are very large. In all

of the cases that we have considered here, the values of Γ

are higher than 4
3 .

Therefore, we can conclude that an SQS in dilaton

gravity is stable with all values of bag constant that we

have considered due to the causality condition and because
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the adiabatic index inequality (Γ ≥ 4
3 ) is valid everywhere

inside the star.

6 CONCLUSIONS

We obtained the HEE of a compact object in dilaton grav-

ity by using two approaches. Then, by employing the ob-

tained HEEs we calculated some structural properties of

an SQS. We assumed that the dilaton gravity has been con-

structed from a dilaton field with a potential, including two

Liouville type terms in the context of Einstein gravity. We

found that with the values of α and Λ where HEE in dila-

ton gravity has a logical answer, the SQS does not change

with variations in α. This behavior also persists with dif-

ferent values of the bag constant. On the other hand, in-

creasing Λ enhances the maximum mass. We ascertain that

the percentage increase of maximum mass for an SQS has

higher values for SQSs that are more stable than others.

We demonstrate that the effect of dilaton gravity and ap-

plying smaller bag constant in the EoS of SQM on the SQS

leads to SQSs with bigger masses and radii which are more

stable than SQSs in Einstein gravity. We also show that

SQSs in dilaton gravity are stable against radial adiabatic

infinitesimal perturbations in all of the cases that we con-

sidered here. Moreover, our results indicate that the causal-

ity condition and energy conditions are valid for the model

that we considered. Since the values of Mmax and radius

for Λ < 10−14 are the same values for Λ = 0, and cosmo-

logical observations suggest Λ ≤ 3 × 10−56 cm−2, it can

be concluded that this limit on the cosmological constant

does not affect the structure of an SQS in dilaton gravity.
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