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Abstract Radio interferometry significantly improves the resolution of observed images, and the final result

also relies heavily on data recovery. The Cotton-Schwab CLEAN (CS-Clean) deconvolution approach is a

widely used reconstruction algorithm in the field of radio synthesis imaging. However, parameter tuning

for this algorithm has always been a difficult task. Here, its performance is improved by considering some

internal characteristics of the data. From a mathematical point of view, a peak signal-to-noise-based (PSNR-

based) method was introduced to optimize the step length of the steepest descent method in the recovery

process. We also found that the loop gain curve in the new algorithm is a good indicator of parameter tuning.

Tests show that the new algorithm can effectively solve the problem of oscillation for a large fixed loop gain

and provides a more robust recovery.
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1 INTRODUCTION

Radio interferometry enables high-resolution observations

by combining multiple telescopes at different locations to

achieve sampling in the spatial frequency domain, e.g. at

VLA1 and ALMA2. However, radio interferometry cannot

satisfy the Nyquist sampling theorem in the spatial fre-

quency domain in most cases, which is equivalent to in-

troducing a blur kernel into the spatial domain. In the field

of radio astronomy, a blur kernel and a blur image are often

referred to as a dirty beam (or point spread function, PSF)

and dirty image, respectively (Thompson et al. 2017). The

effect of a dirty beam needs be removed from the dirty im-

age to obtain the latent true image.

CLEAN deconvolution is widely employed in the pro-

cessing of radio interferometric data and it has become the

standard implementation in almost all radio interferometric

data processing softwares. Many CLEAN deconvolution

1 http://www.vla.nrao.edu/
2 http://www.almaobservatory.org/

algorithms have been proposed to solve problems such as

the approximation of scale information: scale-less CLEAN

algorithms (Högbom 1974; Clark 1980; Schwab & Cotton

1983), multi-scale CLEAN algorithms (Cornwell 2008;

Rau & Cornwell 2011) and adaptive-scale CLEAN algo-

rithms (Bhatnagar & Cornwell 2004; Zhang et al. 2016a,b).

However, loop gain in the Cotton-Schwab Clean (CS-

Clean) algorithm always uses a fixed empirical value dur-

ing a deconvolution. If the loop gain is not within the range

of empirical values, then deconvolution may be very slow,

or oscillating or non-convergent (Thompson et al. 2017).

If the loop gain is too small, the deconvolution process be-

comes slow and can also cause arithmetic errors due to

repeated subtractions (Steer et al. 1984). If the loop gain

is too large, then deconvolution will oscillate or diverge.

Another problem is that a more suitable loop gain in the

CS-Clean algorithm is found through several experiments

and there is no accurate ‘indicator’ to guide the selection

of loop gain in the different deconvolution methods. In this

article, a new algorithm (which we call Robust CLEAN)
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is proposed to solve these two problems to achieve a more

robust recovery.

2 CLEAN ALGORITHM

Radio interferometric data (spatial coherence function or

visibility function) V true are measured in the spatial

frequency domain. By the van Cittert-Zernike theorem

(Thompson et al. 2017), the relation between the visibility

function V true and latent true spatial distribution (image)

Itrue is as follows

V true(u, v) =

∫ ∫ +∞

−∞

Itrue(l, m)e2πi(ul+vm)dldm,

(1)

where (u, v) and (l, m) are the coordinates of spatial fre-

quency domain and spatial domain respectively. This is

a complete sampling of the spatial frequency domain.

However, in real measurements, the sampling is incom-

plete and noisy,

Idirty = F
(

S
(

V true + nf

))

, (2)

where Idirty is the dirty image which is the Fourier trans-

form of the measured visibility data, F is the Fourier trans-

form operator, S is the sampling pattern and nf represents

total noise and error such as from the receiver system. By

the convolution theorem, the dirty image Idirty is a convo-

lution of the dirty beam B with the latent true distribution

and noise

Idirty = B ∗ Imodel + B ∗ n, (3)

where Imodel is the model image, the symbol ∗ denotes the

convolution operator and n is spatial noise.

In the CLEAN deconvolution framework, the latent

true distribution is represented as

Itrue = Imodel + ǫ =
N

∑

k=0

I
comp
k (pk) + ǫ, (4)

where I
comp
k (pk) is a model component, N is the number

of model components, pk are some parameters of model

components, and ǫ is the difference between the model

image Imodel and the latent true distribution Itrue. Some

commonly used models are a set of delta functions or

Gaussian functions. A set of delta functions is used as a

model in the CS-Clean algorithm, and the corresponding

model and parameters are

I
comp
k = akδ(x − xk), (5)

where ak and δ(x − xk) are the amplitude of the model

component and the delta function at the position xk , re-

spectively. So, the amplitude ak is the only parameter that

can be adjusted by users in a delta function model.

In the spatial domain, CS-Clean deconvolution is

equivalent to minimizing χ2 to find the optimal solution

χ2 =

∥

∥

∥

∥

∥

Idirty − B ∗
∑

k

I
comp
k

∥

∥

∥

∥

∥

2

2

, (6)

where ‖ · ‖2 is the l2 norm. The χ2 gradient is computed to

find the updated direction in the steepest descent method

∂χ2

∂pk

= −2
∂

∂pk

(Idirty − B ∗
∑

k

I
comp
k )

= −2
∂

∂pk

(Iresidual
k ),

(7)

∂χ2

∂pk

= −2
∂χ2

∂ak

= −2
∂

∂ak

(Iresidual
k )

= −2B ∗
[

Iresidual
]

k
,

(8)

where

[Ir]k = max

∣

∣

∣

∣

∣

Idirty − B ∗
∑

k

I
comp
k

∣

∣

∣

∣

∣

. (9)

Here k is the ordinal of a component, | · | is an abso-

lute value operator and
[

Iresidual
]

k
is the peak value of

the residual image Iresidual
k . We know from Equation (8)

that the residual image offers the updated direction in the

search space. The deconvolution algorithm finds the peak

in the residual image, which is equivalent to getting the up-

dated direction along the axis with the largest derivative.

The model is updated by

Imodel
k+1 = Imodel

k + ga
ap
k δ(x − xk), (10)

where Imodel
k is the model image composed of k compo-

nents, 0 < g < 1, a
ap
k is the peak value of the current

residual image and ak = ga
ap
k . So, the loop gain g be-

comes the only adjustable parameter. At present, the value

of g is empirical and generally recommended from 0.01 to

0.25 (Thompson et al. 2017). As mentioned above, some

problems may occur when the loop gain is not appropriate.

These problems can be solved effectively by more accu-

rately estimating model components.

3 THE NEW ALGORITHM

An improper loop gain actually causes inappropriate model

components to be subtracted. A method based on the

PNSRs of residual images is introduced to solve this prob-

lem. The dirty image and residual images of interme-

diate steps actually contain two parts: the ‘signal’ term
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Fig. 1 Left: uv coverage, right: Robustly-weighted PSF has a range of −0.068 to 1.0 that is shown by logarithmic scaling (CASA

scaling power cycles = −1.6).

(a) (b)

(c) (d)

Fig. 2 Deconvolution results from a radio image of M51: (a) the true image, (b) the dirty image, (c) the restored image from the new

algorithm with g = 0.6, (d) the corresponding residual image.

(

B ∗ Imodel
)

and the ‘noise’ term (B ∗ n). The peak sig-

nal to noise ratio (PSNR) of a residual image (or a dirty

image) is defined as follows

PSNR = 10 lg

(

|mn|

σ

)

, (11)

where lg is the base 10 logarithmic function, mn is the ab-

solute maximum value of the residual image (or dirty im-

age) and σ is the noise mean squared error from the noise

term of the dirty image. In the new algorithm, the loop gain

g is adaptive with the change of PSNR from the current

residual image. It is proportional to the ratio of the PSNR

in the current residual image (PSNRn) to the PSNR of the

dirty image (PSNR0)

g =

{

k PSNRn

PSNR0

, k PSNRn

PSNR0

≥ a

a, k PSNRn

PSNR0

< a
, (12)
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(a) (b) (c)

Fig. 3 Deconvolution results from a radio image of M31: (a) the dirty image, (b) the restored image from the CS-Clean algorithm, (c)

the restored image from the new algorithm with k = 0.6.

(a) (b)

Fig. 4 Deconvolution results from a radio image of M31: (a) the residual image from the CS-Clean algorithm, (b) the residual image

from the new algorithm with k = 0.6.

(a) (b)

Fig. 5 This figure shows some results from a radio image of M31. (a) The reconstruction speed of model flux is displayed with iteration

number and different k values 0.4, 0.6 and 0.8, and is compared with fixed loop gain g = 0.1; (b) the change of loop gain with iteration

number and different k values 0.4, 0.6 and 0.8, and compares with fixed loop gain g = 0.1.

where 0 < k ≤ 1.0; obviously 0 < g ≤ 1.0 and a is a

threshold. g = 1.0 at the first iteration only when k = 1.0;

and k is used to estimate other factors such as extended

features. If k PSNRn

PSNR0

is less than a certain threshold, then

this threshold will be used as the loop gain in subsequent

iterations. This strategy can avoid a time-consuming de-

convolution caused by too small loop gains. To optimize

this reconstruction problem, other factors such as the de-

gree of extension of a radio source need to be considered.

Here, these factors are included into this parameter k. In
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other words, k is an overall representation of these factors

(or these priors). We have found that this algorithm works

well when 0.1 ≤ k ≤ 0.6 and a ≤ 0.1.

The motivation for this method is as follows: the mea-

sured data always contain noise due to factors such as the

receiving system. A dirty image is a combination of signal

and noise. For the given measured data, the noise is fixed.

Therefore, at the beginning of the deconvolution, signal

is strong and the PSNR is large. At this point, the loop

gain should be a large value. As the number of deconvo-

lution iterations increases, some signals are removed and

the PSNR of the current residual image becomes smaller.

Then, a small loop gain is advisable.

Combining Equations (11) and (12), g can be simpli-

fied as follows

g =

{

k
lg |mn|−lg σ

lg |m0|−lg σ
k

lg |mn|−lg σ

lg |m0|−lg σ
≥ a

a k
lg |mn|−lg σ

lg |m0|−lg σ
< a

, (13)

where mn and m0 are the peak values of the current

residual image and the dirty image, respectively. lg σ is

fixed for a given image, so Equation (13) indicates that

when k
lg |mn|−lg σ

lg |m0|−lg σ
≥ a, loop gains are proportional to

the absolute maximum value of the current residual im-

age. Therefore, a loop gain curve, which is a function of

loop gains and the number of iterations, not only shows

that loop gains change with the number of iterations, but

also reveals the change of signal amplitude in a decon-

volution process. Obviously, a loop gain curve that corre-

sponds to a good reconstruction should be a monotonically

non-increasing function. If the loop gain curve oscillates,

it indicates that some of the model components are overes-

timated and a smaller k should be used. With the help of

a loop gain curve, the parameter adjustment becomes eas-

ier. If the loop gain curve is strongly associated with the

model image and residual image, then a parameter adjust-

ment may be a better option. A loop gain curve can guide

users to make more accurate adjustments to parameters.

4 NUMERICAL EXPERIMENT

To illustrate the performance of the new algorithm, CASA

software3 was used to simulate the Expanded VLA

(EVLA) in B configuration to observe two radio images

(M51 and M31) for 6 hours in the L-band at 1 GHz and

32 channels. The corresponding uv coverage is shown in

the left part of Figure 1. The measured visibilities con-

tain Gaussian noise, which makes the dirty image have a

noise level of root mean square (RMS) 5.0× 10−5 Jy. The

3 http://casa.nrao.edu/

main lobe width of the dirty beam is about 2 arcsec and the

image resolution is 1 arcsec. Robust weighting is used to

compute a dirty image. The corresponding PSF is exhib-

ited in Figure 1 and its maximum negative sidelobes have

a peak of −0.068, which is 6.8% of the peak value of the

PSF. The deconvolution results of the new algorithm are

compared to the reconstruction results of the CS-Clean al-

gorithm.

In Figure 2, deconvolution results of the radio M51

image from the new algorithm are depicted. Panels (a) and

(c) in Figure 2 are similar, which demonstrates that the

new algorithm can effectively recover the original (true)

image from the dirty image convolved with the dirty beam.

Deconvolution results of the radio image of M31 are dis-

played in Figure 3 and Figure 4. Visually, both algorithms

can effectively recover the original image. This once again

verifies that the new algorithm is effective. Experiments in-

dicate that it is often easy for the new algorithm to find a

better solution.

Several k values such as 0.4, 0.6 and 0.8 in the new

algorithm are tested, and the change in loop gain is com-

pared to the fixed loop gain in the CS-Clean algorithm.

In Figure 5(b), the loop gain in the new algorithm is

adaptively changing and monotonically decreasing, which

also corresponds to the reconstruction speed shown in

Figure 5(a). In the initial phase of deconvolution, the loop

gain is large and the signal is extracted quickly. With more

in-depth deconvolution, the signal is reduced, the loop gain

is reduced and the reconstruction speed is slowed down.

For a more effective comparison, the first 50 iterations

of deconvolution and 50 iterations of the same total flux are

plotted in Figure 6(a) and 6(b) respectively. As expected,

neither algorithm manifested significant oscillation at the

beginning of the deconvolution process (see Fig. 6(a)).

Figure 6(b) displays the changes in the total flux after 50 it-

erations with the same reconstruction level. The CS-Clean

deconvolution shows oscillations, but the new algorithm

does not. As can be seen from Figure 5(b), loop gains of

the CS-Clean deconvolution algorithm are the same for all

model components. They cannot track the signal ampli-

tude, but the new algorithm can do this. These experiments

indicate that the new algorithm can effectively solve the

oscillation problem caused by a fixed loop gain.

5 SUMMARY

We introduce a PSNR-based method to improve the CS-

Clean deconvolution algorithm. We mathematically pro-

vide a way to determine the rate of the steepest descent

method. In the new algorithm, the loop gain is adaptively
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(a) (b)

Fig. 6 This figure shows the changes in the total flux of M31 when deconvolution is applied. (a) The top and bottom panels display

the reconstruction speed of model flux with g = 0.6 and k = 0.6 in the first 50 iterations; (b) the top and bottom panels show the

reconstructed speed of model flux with g = 0.6 and k = 0.6 in the 50 iterations of the same reconstruction level, respectively. The top

panel is from the CS-Clean algorithm while the bottom panel is from the new algorithm.

changed, and the loop gain curve is a good indicator of pa-

rameter adjustment. This makes the resulting deconvolu-

tion more robust. The improvement comes from more de-

tailed consideration of the data in the deconvolution pro-

cess. In the future, we will explore other ways and more

factors to improve deconvolution algorithms. This work is

implemented using Python and with the CASA package.
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