#### Research in Astronomy and Astrophysics

# **IU Cancri: a solar-type contact binary with mass transfer**

Hui-Yu Yuan<sup>1</sup>, Hai-Feng Dai<sup>2</sup> and Yuan-Gui Yang<sup>2</sup>

<sup>1</sup> Information College, Huaibei Normal University, Huaibei 235000, China

<sup>2</sup> School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China; yygcn@163.com

Received 2018 December 28; accepted 2019 January 29

Abstract We present new CCD photometry of the solar-type contact binary IU Cnc, which was observed from November 2017 to March 2018 with three small telescopes in China. *BV* light curves imply that IU Cnc is a W-type contact binary with total eclipses. The photometric solution indicates that the mass ratio and fill-out factor are  $q = 4.104 \pm 0.004$  and  $f = 30.2\% \pm 0.3\%$ , respectively. From all available light minimum times, the orbital period may increase at a rate of  $dP/dt = +6.93(4) \times 10^{-7} \,\mathrm{d\,yr^{-1}}$ , which may result from mass transfer from the secondary component to the primary one. With mass transferring, IU Cnc may evolve from a contact configuration into a semi-detached configuration.

Key words: binaries: close — binaries: eclipsing — stars: individual (IU Cancri)

## **1 INTRODUCTION**

Eclipsing binaries are key objects for study, which can provide fundamental stellar properties and critical tests on the theories of stellar evolution and structure. The theory of thermal relaxation oscillations (see the review by Webbink 2003) postulates that a binary system can oscillate between contact and semi-detached states. Orbital period variations may provide some straightforward information, such as mass transfer and loss, and magnetic activity, and reveal an additional companion body around the binary star. Recently, the spectra of contact binaries, included in the LAMOST<sup>1</sup> (Luo et al. 2015) database, were statistically analyzed by Qian et al. (2017). Therefore, it is necessary to monitor some binary systems at special stages, which may provide some key observational evidence on the formation and evolution of contact binaries.

IU Cnc  $[\alpha_{J2000.0} = 09^{h}00^{m}59.06^{s}, \delta_{J2000.0} =$ +12°58′51.87″] is an EW-type binary identified from the Northern Sky Variability Survey (Woźniak et al. 2004). Its light variability ranges from 11.80 mag to 12.36 mag. Kreiner (2004) determined an orbital period of 0.4216450 d, which was later updated to 0.4216475 d (Otero & Wils 2005). This short-period eclipsing binary was then successively listed in three catalogs derived from sky surveys (Avvakumova et al. 2013; Drake et al. 2014; Huber et al. 2016). From *Gaia* Data Release 2, the absolute stellar parallax for IU Cnc is  $2.0684 \pm 0.0422$  mas (Gaia Collaboration 2018), which determines a distance of  $483.5 \pm 9.9$  pc from Earth. Three spectra of IU Cnc are obtained from the LAMOST survey, which are displayed in Figure 1. The flare around the H $\alpha$  line that was recorded on 2017 April 15 may be unremoved cosmic rays.

The spectral information is listed in Table 1. The associated phases are computed by the epoch of the observed primary eclipse, HJD 2458080.3572 (see Table 4). From this table, the spectral type of the more massive component (i.e., the primary) should be G2, because its observed phase (i.e., 0.869) only approaches the primary eclipse, indicating it is a W-type contact binary (see Sect. 3). Except for several light minimum times, no photometry or period analysis for this solar-type binary IU Cnc has been published up to now.

#### **2 CCD PHOTOMETRY**

New photometry of IU Cnc was acquired from November 2017 to March 2018, by employing the 80-cm telescope (Zheng et al. 2008) and the 85-cm telescope (Zhou et al. 2009) at Xinglong Station (XLS) of National Astronomical Observatories, Chinese Academy of Sciences (NAOC), and the 1.0-m telescope operated by Yunnan Astronomical Observatories (YNAO). These three telescopes are equipped with the standard Johnson

<sup>1</sup> http://www.lamost.org



Fig. 1 The low-precision spectra of IU Cnc, which were observed by LAMOST from 2015 to 2017.



**Fig.2** The complete light curves (a) and two eclipse times (b) for IU Cnc, which were observed in 2018 by several small telescopes. The continuous lines are constructed by the photometric solution.



Fig.3 Residuals of  $(O - C)_i$  (upper panel) and  $(O - C)_f$  (lower panel) for IU Cnc. The solid line is plotted by Eq. (2). The filled and open circles refer to photoelectric and CCD measurements, respectively.

| No. | Median JD (Hel.) | Sp. | $T_{\rm eff}$            | $\log(g)$         | [Fe/H]            | Phase <sup>a</sup> |
|-----|------------------|-----|--------------------------|-------------------|-------------------|--------------------|
| 1   | 2457127.0542     | F9  | $6099 \pm 14\mathrm{K}$  | $4.123\pm0.022$   | $0.172\pm0.012$   | 0.597              |
| 2   | 2457454.4847     | G2  | $6076\pm21\mathrm{K}$    | $4.265\pm0.035$   | $0.217 \pm 0.019$ | 0.357              |
| 3   | 2457989.0604     | G2  | $6074 \pm 118\mathrm{K}$ | $3.985 \pm 0.193$ | $0.218 \pm 0.114$ | 0.869              |

Table 1 The Spectral Information from LAMOST

Notes: <sup>*a*</sup> Phases correspond to the primary eclipse time (i.e., HJD 2458080.3572) at the epoch  $T_0$  with an orbital period of 0.42164408 d (see Eq. (1) of Sect. 3).

Table 2 Observing Log for the Contact Binary IU Cnc

| No. | Observing Date       | Exposure time                        | Data Number                      | Standard Error                           | Telescope    |
|-----|----------------------|--------------------------------------|----------------------------------|------------------------------------------|--------------|
| 1   | 2017 Nov. 21, 22     | $70 \mathrm{s}(B), 60 \mathrm{s}(V)$ | 113( <i>B</i> ), 113( <i>V</i> ) | $0.003 \max{(B)}, 0.003 \max{(V)}$       | 80-cm (XLS)  |
| 2   | 2018 Feb. 22, 23, 25 | $50 \mathrm{s}(B), 40 \mathrm{s}(V)$ | 308(B), 332(V)                   | $0.013 {\rm mag}(B), 0.009 {\rm mag}(V)$ | 1.0-m (YNAO) |
| 3   | 2018 Mar. 04, 05     | $50 \mathrm{s}(B), 40 \mathrm{s}(V)$ | 269(B), 262(V)                   | $0.006 	ext{mag}(B), 0.017 	ext{mag}(V)$ | 85-cm (XLS)  |



Fig. 4 (a) The relation between q and  $\Sigma$ , which is deduced from our BV light curves. (b) Residuals (o - c) of the observed light curves.

 $UBVR_cI_c$  filters. All photometric reductions were carried out by using IRAF in standard mode, including bias and dark subtraction, and flat-field correction.

In the observing process, TYC 817-2361-1 (V = $11.21 \pm 0.11$  mag) and TYC 817-2308-1 (V =  $11.43 \pm$ 0.12 mag) were chosen as comparison and check stars, respectively. Detailed information about the observations is given in Table 2. The typical exposure times depended on weather. The standard error is determined by the magnitude difference between the comparison and check stars. The individual differential magnitudes (i.e.,  $\Delta m = m_{\text{var}} - m_{\text{var}}$  $m_{\rm comp}$ ) with their associated Heliocentric Julian Dates (i.e., HJDs) in 2018 are listed in Table 3. The complete light curves, i.e., 577 data in B and 594 data in V, are displayed in the left panel of Figure 2, and the corresponding phases are computed by Equation (1) (see Sect. 3). The amplitudes of variable light are 0.472 mag in B and 0.506 mag in V bands. Two eclipses are shown in the right panel of Figure 2. From this figure, the primary eclipse is a total one with a duration of 37 min, implying that IU Cnc is a W-type contact binary. This kind of total eclipse occurs in other contact binaries, such as V343 Ori (Yang et al. 2008), AS CrB (Liu et al. 2017) and EF Dra (Yang 2012). The long duration of the total eclipse indicates that the mass ratio may be small or orbital inclination is large. From our new data, we determined several light minimum times, which are written in Table 4.

#### **3 INCREASING ORBITAL PERIOD**

For the eclipsing binary IU Cnc, no period analysis has been performed up till now. From the O - C gateway<sup>2</sup>, we compiled all eclipse times together with seven newly observed ones.

Table 5 provides 24 available light minimum times, including five photoelectric and 19 CCD measurements. With the weights from observed errors, we update a new ephemeris as follows,

$$Min.I = HJD \ 2452500.1058(20) + 0.42164408(23) \times E ,$$
(1)

<sup>&</sup>lt;sup>2</sup> http://var2.astro.cz/ocgate/

 Table 3
 Photometric Observations of IU Cnc in 2018

|              | B b         | and          |             |   |               | Vt          | and          |             |
|--------------|-------------|--------------|-------------|---|---------------|-------------|--------------|-------------|
| JD (Hel.)    | $\Delta m$  | JD (Hel.)    | $\Delta m$  | - | JD (Hel.)     | $\Delta m$  | JD (Hel.)    | $\Delta m$  |
| 2458172 2283 | $\pm 0.055$ | 2458175 3279 | -0.080      |   | 2458172 2254  | $\pm 0.448$ | 2458175 3031 | $\pm 0.359$ |
| 2450172.2205 | 0.000       | 2450175.3277 | 0.000       |   | 2450172.2254  | 10.462      | 2450175.3031 | 10.363      |
| 2458172.2294 | +0.061      | 2458175.5291 | -0.091      |   | 2458172.2200  | +0.403      | 2458175.3042 | +0.362      |
| 2458172.2306 | +0.061      | 2458175.3302 | -0.087      |   | 2458172.2277  | +0.451      | 2458175.3054 | +0.354      |
| 2458172.2317 | +0.071      | 2458175.3313 | -0.090      |   | 2458172.2289  | +0.475      | 2458175.3065 | +0.349      |
| 2458172 2328 | +0.076      | 2458175 3336 | -0.095      |   | 2458172 2300  | +0.485      | 2458175 3076 | +0.349      |
| 2458172 2341 | +0.085      | 2458175 3347 | -0.088      |   | 2458172 2311  | $\pm 0.408$ | 2458175 3088 | $\pm 0.344$ |
| 2450172.2541 | 10.000      | 2450175.5547 | 0.000       |   | 2450172.2511  | 0.450       | 2450175.3000 | 0.044       |
| 2458172.2352 | +0.105      | 24581/5.3359 | -0.099      |   | 2458172.2323  | +0.479      | 24581/5.3099 | +0.343      |
| 2458172.2364 | +0.104      | 2458175.3370 | -0.090      |   | 2458172.2334  | +0.479      | 2458175.3111 | +0.348      |
| 2458172.2375 | +0.115      | 2458175.3393 | -0.086      |   | 2458172.2347  | +0.496      | 2458175.3122 | +0.348      |
| 2458172 2386 | +0.118      | 2458175 3404 | -0.096      |   | 2458172 2358  | +0.502      | 2458175 3133 | +0.330      |
| 2458172 2308 | $\pm 0.141$ | 2458175 3415 | -0.007      |   | 2458172 2360  | $\pm 0.512$ | 2458175 3145 | +0.330      |
| 2450172.2590 | +0.141      | 2450175.5415 | -0.031      |   | 2450172.2309  | +0.512      | 2450175.5145 | $\pm 0.330$ |
| 2458172.2409 | +0.155      | 2458182.1655 | +0.312      |   | 2458172.2381  | +0.522      | 2458175.3157 | +0.338      |
| 2458172.2421 | +0.163      | 2458182.1673 | +0.328      |   | 2458172.2392  | +0.527      | 2458175.3168 | +0.331      |
| 2458172.2432 | +0.174      | 2458182.1686 | +0.347      |   | 2458172.2403  | +0.550      | 2458175.3180 | +0.318      |
| 2458172,2443 | +0.187      | 2458182 1699 | +0.340      |   | 2458172 2415  | $\pm 0.556$ | 2458175 3191 | +0.324      |
| 2458172.2415 | 10.202      | 2458182 1711 | 10.262      |   | 2458172 2426  | 10.555      | 2458175 2202 | 0.021       |
| 2436172.2433 | +0.202      | 2436162.1711 | +0.303      |   | 2436172.2420  | $\pm 0.555$ | 2436173.3202 | +0.318      |
| 2458172.2466 | +0.215      | 2458182.1724 | +0.371      |   | 2458172.2437  | +0.568      | 2458175.3214 | +0.322      |
| 2458172.2477 | +0.221      | 2458182.1737 | +0.381      |   | 2458172.2449  | +0.593      | 2458175.3225 | +0.316      |
| 2458172.2489 | +0.238      | 2458182.1749 | +0.378      |   | 2458172.2460  | +0.599      | 2458175.3237 | +0.315      |
| 2458172 2500 | $\pm 0.251$ | 2458182 1762 | $\pm 0.379$ |   | 2458172 2472  | $\pm 0.618$ | 2458175 3248 | $\pm 0.305$ |
| 2458172.2500 | 10.255      | 2458182 1775 | 10.284      |   | 2458172 2482  | 10.624      | 2458175 2250 | 10.200      |
| 2436172.2311 | +0.255      | 2436162.1773 | +0.584      |   | 2436172.2465  | +0.024      | 2436173.3239 | +0.309      |
| 2458172.2523 | +0.275      | 2458182.1788 | +0.390      |   | 2458172.2494  | +0.632      | 2458175.3273 | +0.307      |
| 2458172.2534 | +0.293      | 2458182.1801 | +0.389      |   | 2458172.2506  | +0.653      | 2458175.3285 | +0.305      |
| 2458172.2546 | +0.304      | 2458182.1813 | +0.389      |   | 2458172.2517  | +0.661      | 2458175.3296 | +0.308      |
| 2458172 2557 | $\pm 0.322$ | 2458182 1826 | ±0 301      |   | 2458172 2528  | $\pm 0.673$ | 2458175 3308 | +0.306      |
| 2450172.2557 | 0.022       | 2450102.1020 | 0.301       |   | 2450172.2520  | 10.010      | 2450175.5500 | 0.500       |
| 2436172.2308 | +0.331      | 2436162.1639 | +0.594      |   | 2436172.2340  | +0.080      | 2438182.1000 | +0.710      |
| 2458172.2582 | +0.346      | 2458182.1851 | +0.390      |   | 2458172.2551  | +0.703      | 2458182.1679 | +0.723      |
| 2458172.2593 | +0.362      | 2458182.1864 | +0.385      |   | 2458172.2562  | +0.711      | 2458182.1692 | +0.735      |
| 2458172.2605 | +0.360      | 2458182.1877 | +0.390      |   | 2458172.2574  | +0.722      | 2458182,1705 | +0.747      |
| 2458172 2616 | $\pm 0.387$ | 2458182 1890 | $\pm 0.392$ |   | 2458172 2588  | $\pm 0.744$ | 2458182 1717 | $\pm 0.757$ |
| 2450172.2010 | 10.307      | 2450102.1000 | 10.302      |   | 2450172.2500  | 10.744      | 2450102.1717 | 10.701      |
| 2438172.2028 | +0.385      | 2458182.1902 | +0.398      |   | 2458172.2599  | +0.748      | 2458182.1750 | +0.761      |
| 2458172.2639 | +0.383      | 2458182.1915 | +0.390      |   | 2458172.2610  | +0.755      | 2458182.1743 | +0.767      |
| 2458172.2650 | +0.402      | 2458182.1928 | +0.392      |   | 2458172.2622  | +0.772      | 2458182.1755 | +0.771      |
| 2458172.2662 | +0.383      | 2458182.1941 | +0.390      |   | 2458172.2633  | +0.775      | 2458182,1768 | +0.763      |
| 2458172.2684 | $\pm 0.408$ | 2/58182 1053 | $\pm 0.301$ |   | 2458172 2644  | $\pm 0.779$ | 2458182 1781 | +0.775      |
| 2450172.2004 | +0.403      | 2450102.1955 | +0.000      |   | 2450172.2044  | $\pm 0.779$ | 2450102.1701 | +0.115      |
| 24581/2.2696 | +0.401      | 2458182.1966 | +0.382      |   | 24581/2.2656  | +0.782      | 2458182.1794 | +0.775      |
| 2458172.2709 | +0.404      | 2458182.1979 | +0.381      |   | 2458172.2667  | +0.765      | 2458182.1806 | +0.771      |
| 2458172.2720 | +0.404      | 2458182.1992 | +0.368      |   | 2458172.2678  | +0.774      | 2458182.1819 | +0.781      |
| 2458172 2731 | +0.409      | 2458182 2004 | +0.360      |   | 2458172 2701  | +0.785      | 2458182 1832 | +0.781      |
| 2458172 2743 | +0.305      | 2458182 2017 | $\pm 0.346$ |   | 2458172 2714  | $\pm 0.779$ | 2458182 1845 | +0.779      |
| 2436172.2743 | +0.393      | 2436162.2017 | +0.340      |   | 2436172.2714  | +0.119      | 2436162.1643 | +0.779      |
| 2458172.2754 | +0.411      | 2458182.2030 | +0.339      |   | 2458172.2726  | +0.792      | 2458182.1858 | +0.777      |
| 2458172.2768 | +0.402      | 2458182.2043 | +0.323      |   | 2458172.2737  | +0.778      | 2458182.1870 | +0.772      |
| 2458172.2779 | +0.405      | 2458182.2055 | +0.311      |   | 2458172.2748  | +0.780      | 2458182.1883 | +0.768      |
| 2458172 2791 | $\pm 0.410$ | 2458182 2081 | $\pm 0.288$ |   | 2458172 2760  | $\pm 0.788$ | 2458182 1896 | $\pm 0.778$ |
| 2459172.2791 | 0.110       | 2459192.2004 | 10.200      |   | 2459172.2700  | 10.799      | 2459192.1009 | 0.767       |
| 2436172.2602 | +0.411      | 2436162.2094 | +0.270      |   | 2436172.2775  | +0.788      | 2436162.1906 | +0.707      |
| 2458172.2813 | +0.405      | 2458182.2106 | +0.253      |   | 2458172.2785  | +0.797      | 2458182.1921 | +0.768      |
| 2458172.2825 | +0.416      | 2458182.2119 | +0.236      |   | 2458172.2796  | +0.796      | 2458182.1934 | +0.771      |
| 2458172.2836 | +0.413      | 2458182.2132 | +0.237      |   | 2458172.2819  | +0.796      | 2458182.1947 | +0.762      |
| 2458172.2847 | +0.419      | 2458182.2144 | +0.214      |   | 2458172.2830  | +0.792      | 2458182.1959 | +0.765      |
| 2458172 2850 | 10.402      | 2458182 2157 | 10.204      |   | 2458172 2842  | 10.706      | 2458182 1072 | 10.754      |
| 2450172.2009 | $\pm 0.403$ | 2430102.2137 | +0.204      |   | 2430172.2042  | +0.790      | 2430102.1972 | +0.734      |
| 2458172.2881 | +0.398      | 2458182.2170 | +0.197      |   | 2458172.2853  | +0.794      | 2458182.1985 | +0.745      |
| 2458172.2893 | +0.416      | 2458182.2183 | +0.176      |   | 2458172.2864  | +0.801      | 2458182.1998 | +0.740      |
| 2458172.2904 | +0.410      | 2458182.2195 | +0.171      |   | 2458172.2876  | +0.804      | 2458182.2010 | +0.730      |
| 2458172 2916 | $\pm 0.392$ | 2458182 2208 | $\pm 0.163$ |   | 2458172 2887  | $\pm 0.804$ | 2458182 2023 | $\pm 0.723$ |
| 2458172.2017 | 10.202      | 2459192.2200 | 10.151      |   | 2459172.2007  | 10.702      | 2459192.2026 | 10.726      |
| 2436172.2927 | +0.383      | 2436162.2221 | +0.151      |   | 2436172.2696  | +0.795      | 2438182.2030 | +0.700      |
| 2458172.2938 | +0.379      | 2458182.2234 | +0.140      |   | 2458172.2910  | +0.784      | 2458182.2049 | +0.691      |
| 2458172.2950 | +0.385      | 2458182.2246 | +0.122      |   | 2458172.2921  | +0.781      | 2458182.2074 | +0.688      |
| 2458172.2961 | +0.360      | 2458182.2259 | +0.117      |   | 2458172.2932  | +0.769      | 2458182.2087 | +0.669      |
| 2458172 2072 | $\pm 0.347$ | 2458182 2272 | $\pm 0.113$ |   | 2458172 2044  | $\pm 0.765$ | 2458182 2100 | $\pm 0.657$ |
| 2450172.2972 | 10.041      | 2450102.2272 | 10.110      |   | 2450172.22744 | 10.700      | 2450102.2100 | 10.007      |
| 24581/2.2984 | +0.322      | 2458182.2284 | +0.095      |   | 2458172.2955  | +0.755      | 2458182.2112 | +0.645      |
| 2458172.2995 | +0.320      | 2458182.2297 | +0.093      |   | 2458172.2966  | +0.746      | 2458182.2125 | +0.631      |
| 2458172.3006 | +0.320      | 2458182.2310 | +0.084      |   | 2458172.2978  | +0.726      | 2458182.2138 | +0.620      |
| 2458172.3018 | +0.294      | 2458182.2323 | +0.075      |   | 2458172.2989  | +0.708      | 2458182.2150 | +0.603      |
| 2458172 3020 | $\pm 0.285$ | 2458182 2336 | $\pm 0.073$ |   | 2458172 3001  | $\pm 0.703$ | 2458182 2163 | $\pm 0.590$ |
| 2459172 2040 | 10.200      | 2459192.2330 | 10.013      |   | 2450172.3001  | 10.103      | 2459192.2103 | 0.030       |
| 24581/2.3040 | +0.285      | 2458182.2348 | +0.063      |   | 24581/2.3012  | +0.696      | 2458182.21/6 | +0.575      |
| 2458172.3052 | +0.274      | 2458182.2361 | +0.049      |   | 2458172.3023  | +0.683      | 2458182.2189 | +0.564      |
| 2458172.3063 | +0.255      | 2458182.2374 | +0.042      |   | 2458172.3035  | +0.651      | 2458182.2201 | +0.555      |
| 2458172.3075 | +0.253      | 2458182.2386 | +0.040      |   | 2458172.3046  | +0.654      | 2458182.2214 | +0.550      |
|              |             |              |             |   |               |             |              |             |

Notes: The full table is available online (http://www.raa-journal.org/docs/Supp/ms4331\_Table3.pdf).

| JD (Hel.)     | Min | Error         | Filter | Telescope    |
|---------------|-----|---------------|--------|--------------|
| 2458079.30405 | II  | $\pm 0.00096$ | В      | 80-cm (XLS)  |
| 2458079.30417 | II  | $\pm 0.00012$ | V      | 80-cm (XLS)  |
| 2458080.35715 | Ι   | $\pm 0.00022$ | B      | 80-cm (XLS)  |
| 2458080.35722 | Ι   | $\pm 0.00023$ | V      | 80-cm (XLS)  |
| 2458172.27926 | Ι   | $\pm 0.00024$ | B      | 1.0-m (YNAO) |
| 2458172.27817 | Ι   | $\pm 0.00027$ | V      | 1.0-m (YNAO) |
| 2458173.33024 | Ι   | $\pm 0.00023$ | B      | 1.0-m (YNAO) |
| 2458173.33064 | Ι   | $\pm 0.00029$ | V      | 1.0-m (YNAO) |
| 2458182.18545 | II  | $\pm 0.00025$ | B      | 85-cm (XLS)  |
| 2458182.18455 | II  | $\pm 0.00021$ | V      | 85-cm (XLS)  |
| 2458183.02942 | II  | $\pm 0.00017$ | B      | 85-cm (XLS)  |
| 2458183.02924 | II  | $\pm 0.00016$ | V      | 85-cm (XLS)  |
| 2458183.24069 | Ι   | $\pm 0.00036$ | B      | 85-cm (XLS)  |
| 2458183.23985 | Ι   | $\pm 0.00027$ | V      | 85-cm (XLS)  |

 Table 4
 Newly Obtained Light Minimum Times

 Table 5
 All Compiled Eclipse Times for IU Cnc

| JD (Hel.)    | Error        | Method | Epoch   | Min | $(O-C)_i$ | $(O-C)_f$ | Reference |
|--------------|--------------|--------|---------|-----|-----------|-----------|-----------|
|              |              |        |         |     | (d)       | (d)       |           |
| 2454833.9050 | $\pm 0.0004$ | CCD    | 5535.0  | Ι   | +0.0059   | -0.0010   | [1]       |
| 2454839.8092 | $\pm 0.0002$ | CCD    | 5549.0  | Ι   | +0.0071   | +0.0002   | [1]       |
| 2455244.3755 | $\pm 0.0010$ | pe     | 6508.5  | II  | +0.0050   | +0.0011   | [2]       |
| 2455245.8507 | $\pm 0.0003$ | CCD    | 6512.0  | Ι   | +0.0045   | +0.0006   | [3]       |
| 2455260.3969 | $\pm 0.0002$ | pe     | 6546.5  | II  | +0.0039   | +0.0001   | [2]       |
| 2455286.3297 | $\pm 0.0002$ | CCD    | 6608.0  | Ι   | +0.0055   | +0.0019   | [4]       |
| 2455580.8454 | $\pm 0.0005$ | CCD    | 7306.5  | II  | +0.0022   | +0.0003   | [5]       |
| 2455617.3192 | $\pm 0.0040$ | CCD    | 7393.0  | Ι   | +0.0037   | +0.0019   | [6]       |
| 2455621.3208 | $\pm 0.0024$ | pe     | 7402.5  | II  | -0.0003   | -0.0020   | [2]       |
| 2455621.5365 | $\pm 0.0030$ | pe     | 7403.0  | Ι   | +0.0046   | +0.0028   | [2]       |
| 2455626.3803 | $\pm 0.0002$ | pe     | 7414.5  | II  | -0.0006   | -0.0023   | [7]       |
| 2455667.7032 | $\pm 0.0003$ | CCD    | 7512.5  | II  | +0.0011   | -0.0004   | [5]       |
| 2455909.9370 | $\pm 0.0002$ | CCD    | 8087.0  | Ι   | -0.0001   | -0.0006   | [8]       |
| 2456002.7006 | $\pm 0.0003$ | CCD    | 8307.0  | Ι   | +0.0016   | +0.0014   | [9]       |
| 2456015.3472 | $\pm 0.0003$ | CCD    | 8337.0  | Ι   | -0.0011   | -0.0013   | [6]       |
| 2456330.5267 | $\pm 0.0003$ | CCD    | 9084.5  | II  | -0.0013   | -0.0007   | [10]      |
| 2456643.5968 | $\pm 0.0006$ | CCD    | 9827.0  | Ι   | -0.0026   | -0.0016   | [11]      |
| 2457049.4309 | $\pm 0.0001$ | CCD    | 10789.5 | II  | -0.0019   | -0.0012   | [12]      |
| 2457049.6448 | $\pm 0.0005$ | CCD    | 10790.0 | Ι   | +0.0013   | +0.0019   | [12]      |
| 2457050.4888 | $\pm 0.0001$ | CCD    | 10792.0 | Ι   | +0.0019   | +0.0026   | [12]      |
| 2457117.3162 | $\pm 0.0002$ | CCD    | 10950.5 | II  | -0.0013   | -0.0008   | [12]      |
| 2457463.6988 | $\pm 0.0002$ | CCD    | 11772.0 | Ι   | -0.0001   | -0.0005   | [13]      |
| 2457820.2016 | $\pm 0.0000$ | CCD    | 12617.5 | II  | +0.0018   | -0.0001   | [14]      |
| 2458079.3041 | $\pm 0.0001$ | CCD    | 13232.0 | Ι   | +0.0035   | +0.0001   | [15]      |
| 2458080.3572 | $\pm 0.0002$ | CCD    | 13234.5 | II  | +0.0024   | -0.0009   | [15]      |
| 2458172.2792 | $\pm 0.0003$ | CCD    | 13452.5 | II  | +0.0059   | +0.0019   | [15]      |
| 2458173.3304 | $\pm 0.0003$ | CCD    | 13455.0 | Ι   | +0.0030   | -0.0010   | [15]      |
| 2458182.1850 | $\pm 0.0002$ | CCD    | 13476.0 | Ι   | +0.0030   | -0.0010   | [15]      |
| 2458183.0293 | $\pm 0.0002$ | CCD    | 13478.0 | Ι   | +0.0040   | +0.0000   | [15]      |
| 2458183.2403 | $\pm 0.0003$ | CCD    | 13478.5 | Π   | +0.0042   | +0.0002   | [15]      |

References: [1] Diethelm 2009; [2] Hubscher et al. 2012; [3] Diethelm 2010 [4] Brat et al. 2011; [5] Diethelm 2011; [6] Hoňková et al. 2013; [7] Hubscher & Lehmann 2012; [8] Nelson 2012; [9] Diethelm 2012; [10] Honková et al. 2014; [11] Honkova et al. 2015; [12] Juryšek et al. 2017; [13] Nelson 2017; [14] Nagai 2018; [15] This Study.

whose standard derivation in a parenthesis is in the unit of the last decimal place. The residuals,  $(O-C)_i$ , are listed in Table 5. The corresponding O-C curve is displayed in the upper panel of Figure 3. From this figure, the orbital period

$$(O-C)_i = 0.0330(1) - 7.53(1) \times 10^{-6}E + 4.004(2) \times 10^{-10}E^2.$$
(2)

| Parameter          | Star 1 (Sec.)       | Star 2 (Pri.)       |  |  |  |
|--------------------|---------------------|---------------------|--|--|--|
| $q = M_2/M_1$      | 4.014               | ± 0.004             |  |  |  |
| $i(^\circ)$        | 80.43               | $\pm 0.12$          |  |  |  |
| $T(\mathbf{K})$    | $6272 \pm 4$        | $6075 \pm 118^a$    |  |  |  |
| A                  | 0.5                 | 0.5                 |  |  |  |
| g                  | 0.32                | 0.32                |  |  |  |
| X, Y               | +0.649, +0.218      | +0.649, +0.217      |  |  |  |
| $x_B, y_B$         | +0.831, +0.182      | +0.832, +0.179      |  |  |  |
| $x_V, y_V$         | +0.751, +0.254      | +0.752, +0.252      |  |  |  |
| Ω                  | $7.7395 \pm 0.0053$ |                     |  |  |  |
| ${}^{b}\ell_{iB}$  | $0.2618 \pm 0.0006$ | $0.7382 \pm 0.0015$ |  |  |  |
| $\ell_{iV}$        | $0.2523 \pm 0.0006$ | $0.7477 \pm 0.0018$ |  |  |  |
| $r_{\rm pole}$     | $0.2595 \pm 0.0013$ | $0.4810 \pm 0.0020$ |  |  |  |
| $r_{\rm side}$     | $0.2717 \pm 0.0014$ | $0.5230 \pm 0.0023$ |  |  |  |
| $r_{\rm back}$     | $0.3152 \pm 0.0017$ | $0.5505 \pm 0.0029$ |  |  |  |
| $\Sigma (O-C)_i^2$ | 0.8587              |                     |  |  |  |
| f                  | $30.2\pm0.3\%$      |                     |  |  |  |

 Table 6
 Photometric Elements of the Contact Binary IU Cnc

Notes: <sup>a</sup> The mean effective temperature for Star 2 (i.e., the primary component) is taken from the LAMOST data. <sup>b</sup>  $\ell_i = L_i/(L_1 + L_2)$ .

 Table 7 Several W-type Contact Binaries with Increasing Period

| Star      | Sp. | $q^{\mathrm{a}}$ | Period<br>(d) | dP/dt<br>(×10 <sup>-7</sup> d yr <sup>-1</sup> ) | $\begin{array}{c} f \\ (\%) \end{array}$ | Reference              |
|-----------|-----|------------------|---------------|--------------------------------------------------|------------------------------------------|------------------------|
| EQ Cep    | -   | 0.526            | 0.30695       | 11.7                                             | 62.1                                     | Liu et al. (2011)      |
| AD Cnc    | K0V | 0.770            | 0.28274       | 4.94                                             | 8.3                                      | Qian et al. (2007)     |
| IU Cnc    | G2  | 0.249            | 0.42164       | 6.93                                             | 30.2                                     | Present study          |
| V1191 Cyg |     | 0.107            | 0.31338       | 4.5                                              | 68.6                                     | Zhu et al. (2011)      |
| CE Leo    | Κ   | 0.533            | 0.30343       | 3.05                                             | 15.8                                     | Yang et al. (2013)     |
| GU Ori    | G0V | 0.455            | 0.47068       | 1.45                                             | 26.9                                     | Yang et al. (2017)     |
| BB Peg    | F8V | 0.370            | 0.36150       | 0.30                                             | 34                                       | Kalomeni et al. (2007) |
| V432 Per  | G4V | 0.374            | 0.38331       | 1.19                                             | 3.3                                      | Lee et al. (2008)      |

Notes: <sup>a</sup> The mass ratio is  $q = M_s/M_p$ , where  $M_p$  and  $M_s$  are the masses for the primary and secondary components, respectively.

The final residuals,  $(O - C)_f$ , are also listed in Table 5, and are plotted in the lower panel of Figure 3. From the quadratic coefficient of Equation (2), we can easily determine a period increase rate of  $dP/dt = +6.93(4) \times 10^{-7} \,\mathrm{dyr}^{-1}$ .

#### **4 PHOTOMETRIC SOLUTION**

On five nights in February and March of 2018, we first obtained two-color light curves, which are used to derive the photometric solution by the 2015 version of the Wilson-Devinney Code<sup>3</sup> (Wilson & Devinney 1971; Wilson & van Hamme 2016). As displayed in the left panel of Figure 2, IU Cnc is a total contact binary, whose geometric elements are reliable only from light curves. In the calculation, the limb darkening, gravity darkening, and albedo coefficients are taken from the literature (van Hamme 1993; Lucy 1967; Ruciński 1973). The adjustable parameters are listed as follows:  $T_1$ ,  $\Omega_{1,2}$ ,  $L_1$  and q.

The spectra of IU Cnc are displayed in Figure 1, whose phases are given in Table 1. For the W-subtype binary seen in Figure 2(a), the more massive component (i.e., the primary) is occulted by the less massive one (i.e., the secondary) at a deep eclipse time (i.e., zero phase). The observed spectrum should be attributed to radiation from the primary component. Therefore, the spectral type of the primary is G2. Its mean effective temperature of  $T_{\rm p} = 6075 \pm 120$  K is taken from Table 1. Moreover, the spectral type of F9 may result from the spectrum being polluted by the secondary component.

Due to lack of a mass ratio, we first preformed a series of solutions deduced from BV light curves. The mass ratio ranges from 0.5 to 6.0 with a step of 0.5. The contact configuration is always assumed. The resulting residuals versus mass ratio (i.e.,  $\Sigma$  and q) are displayed in Figure 4(a), where a minimum value of  $\Sigma$  occurs around q = 4. This in-

<sup>&</sup>lt;sup>3</sup> ftp://ftp.astro.ufl.edu/pub/wilson/lcdc2015

dicates that IU Cnc is a W-subtype contact binary. Then we consider q as a free parameter. The final photometric solution is derived and listed in Table 6. The calculated light curves are shown in Figure 2(a) as solid lines. Their corresponding residuals (o - c) (i.e., observed values minus theoretical ones), are displayed in Figure 4(b). Although small distortions still exist around phase 0.5, the overall trend of BV observations is described by our photometric solution very well. This may be similar to another previously studied binary, WW Gem (Yang et al. 2014). The fill-out factor for this binary is  $f = 30.2\% \pm 0.3\%$ .

### **5 DISCUSSION**

According to the spectral type of G2 for IU Cnc, the mass of the primary is adopted to be  $M_{\rm p} = 1.0(\pm 0.02) M_{\odot}$  (Drilling & Landolt 2000), but the associated error depends on the uncertainty of its effective temperature. Combined with the photometric elements in Table 6, other absolute parameters for IU Cnc are given as follows,  $M_{\rm s} = 0.25(\pm 0.08) M_{\odot}$ ,  $R_{\rm p} = 1.36(\pm 0.11) R_{\odot}$ ,  $R_{\rm s} = 0.74(\pm 0.06) R_{\odot}$ ,  $L_{\rm p} = 2.24(\pm 0.35) L_{\odot}$ , and  $L_{\rm s} = 0.75(\pm 0.11) L_{\odot}$ .

The orbital period of IU Cnc may be undergoing a secular increase as described by Equation (2). This situation appears in other W-type contact binaries, which are listed in Table 7. From this table, the period increase rate is typical for this kind of binary. The period increase may generally be attributed to mass transfer from the less massive component to the more massive one. Assuming conservative transfer, its mass transfer rate may be computed by the following equation (Singh & Chaubey 1986),

$$\frac{\dot{P}}{P} = 3 \frac{1-q}{q} \frac{\dot{M}_{\rm p}}{M_{\rm p}} , \qquad (3)$$

where the mass ratio is  $q = M_{\rm s}/M_{\rm p}$ . Inserting  $\dot{P}$ , P, q and  $M_{\rm p}$  into Equation (3), the rate of mass transfer is  $dM_{\rm p}/dt = +1.82(\pm 0.01) \times 10^{-7} M_{\odot} \,{\rm yr}^{-1}$ . This will result in the mass ratio increasing with mass transfer, which causes the inner and outer critical Lagrangian surfaces to inflate. Finally, the Roche lobe of such a binary system approximates the inner critical Lagrangian surface. In this case, the binary will evolve into a "broken-contact" configuration as predicted by the thermal relaxation model (Webbink 2003).

Therefore, IU Cnct provides more good observational evidence supporting the thermal relaxation oscillation model (TRO; Webbink 2003), and resembles other binaries, such as DD Com (Zhu et al. 2010), II Per (Zhu et al. 2009), RV Psc (He & Qian 2009) and UU Lyn (Zhu et al. 2007).

In future observations, it will be necessary to obtain radial velocity curves and more eclipse times for IU Cnc in order to determine the absolute parameters and to identify the orbital period increase.

Acknowledgements All authors express thanks to the referee for his/her helpful comments. This research has received funding from the National Natural Science Foundation of China (Nos. 11873003 and 11473009), the Natural Science Research Project (No. KJ 2017A850) and the Outstanding Young Talents Program (No. gxyq2018161) of the Educational Department of Anhui Province. New photometry of IU Cnc is performed by using 80-cm and 85-cm telescopes at the XLS of NAOC. This work was partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences.

#### References

- Avvakumova, E. A., Malkov, O. Y., & Kniazev, A. Y. 2013, Astronomische Nachrichten, 334, 860
- Brat, L., Trnka, J., Smelcer, L., et al. 2011, Open European Journal on Variable Stars, 137, 1
- Diethelm, R. 2009, Information Bulletin on Variable Stars, 5894, 1
- Diethelm, R. 2010, Information Bulletin on Variable Stars, 5945, 1
- Diethelm, R. 2011, Information Bulletin on Variable Stars, 5992, 1
- Diethelm, R. 2012, Information Bulletin on Variable Stars, 6029, 1
- Drake, A. J., Graham, M. J., Djorgovski, S. G., et al. 2014, ApJS, 213, 9
- Drilling, J. S., & Landolt, A. U. 2000, Normal Stars, ed. A. N. Cox, Allen's Astrophysical Quantities, ed. A. N. Cox (New York: AIP Press) 381
- Gaia Collaboration, 2018, A&A, 616, A1
- He, J., & Qian, S. 2009, Ap&SS, 321, 209
- Honková, K., Juryšek, J., Lehký, M., et al. 2014, Open European Journal on Variable Stars, 165, 1
- Honkova, K., Jurysek, J., Lehky, M., et al. 2015, Open European Journal on Variable Stars, 168, 1
- Hoňková, K., Juryšek, J., Lehký, M., et al. 2013, Open European Journal on Variable Stars, 160, 1
- Huber, D., Bryson, S. T., Haas, M. R., et al. 2016, ApJS, 224, 2
- Hubscher, J., & Lehmann, P. B. 2012, Information Bulletin on Variable Stars, 6026, 1

- Hubscher, J., Lehmann, P. B., & Walter, F. 2012, Information Bulletin on Variable Stars, 6010, 1
- Juryšek, J., Hoňková, K., Šmelcer, L., et al. 2017, Open European Journal on Variable Stars, 179, 1
- Kalomeni, B., Yakut, K., Keskin, V., et al. 2007, AJ, 134, 642
- Kreiner, J. M. 2004, Acta Astronomica, 54, 207
- Lee, J. W., Youn, J.-H., Kim, C.-H., Lee, C.-U., & Kim, H.-I. 2008, AJ, 135, 1523
- Liu, L., Qian, S.-B., Zhu, L.-Y., et al. 2011, MNRAS, 415, 3006
- Liu, L., Qian, S., Zhu, L., et al. 2017, New Astron., 51, 1
- Lucy, L. B. 1967, ZAp, 65, 89
- Luo, A.-L., Zhao, Y.-H., Zhao, G., et al. 2015, RAA (Research in Astronomy and Astrophysics), 15, 1095
- Nagai, K., 2018, Var. Star Bull. Japane Stars, 64, 1, http:// vsolj.cetus-net.org/vsoljno64.pdf
- Nelson, R. H. 2012, Information Bulletin on Variable Stars, 6018, 1
- Nelson, R. H. 2017, Information Bulletin on Variable Stars, 6195, 1
- Otero, S. A., & Wils, P. 2005, Information Bulletin on Variable Stars, 5630, 1
- Qian, S.-B., Yuan, J.-Z., Soonthornthum, B., et al. 2007, ApJ, 671, 811
- Qian, S.-B., He, J.-J., Zhang, J., et al. 2017, RAA (Research in Astronomy and Astrophysics), 17, 087
- Ruciński, S. M. 1973, Acta Astronomica, 23, 79
- Singh, M., & Chaubey, U. S. 1986, Ap&SS, 124, 389
- van Hamme, W. 1993, AJ, 106, 2096
- Webbink, R. F. 2003, in Astronomical Society of the Pacific

Conference Series, 293, 3D Stellar Evolution, eds. S. Turcotte, S. C. Keller, & R. M. Cavallo, 76

- Wilson, R. E., & Devinney, E. J. 1971, ApJ, 166, 605
- Wilson, R. E., & van Hamme, Computing Binary Star Observables, 2016, Florida International University, http://faculty.fiu.edu/~vanhamme/wdfiles/ ebdoc2016-bf.pdf
- Woźniak, P. R., Vestrand, W. T., Akerlof, C. W., et al. 2004, AJ, 127, 2436
- Yang, Y.-G. 2012, RAA (Research in Astronomy and Astrophysics), 12, 419
- Yang, Y.-G., Wei, J.-Y., & He, J.-J. 2008, AJ, 136, 594
- Yang, Y.-G., Dai, H.-F., & Zhang, J.-F. 2013, New Astron., 19, 27
- Yang, Y.-G., Yang, Y., Dai, H.-F., & Yin, X.-G. 2014, AJ, 148, 90
- Yang, Y., Dai, H., Yuan, H., Zhang, X., & Zhang, L. 2017, PASJ, 69, 69
- Zheng, W.-K., Deng, J.-S., Zhai, M., et al. 2008, ChJAA (Chin. J. Astron. Astrophys.), 8, 693
- Zhou, A.-Y., Jiang, X.-J., Zhang, Y.-P., & Wei, J.-Y. 2009, RAA (Research in Astronomy and Astrophysics), 9, 349
- Zhu, L.-Y., Qian, S.-B., Boonrucksar, S., He, J.-J., & Yuan, J.-Z. 2007, ChJAA (Chin. J. Astron. Astrophys.), 7, 251
- Zhu, L. Y., Qian, S. B., Zola, S., & Kreiner, J. M. 2009, AJ, 137, 3574
- Zhu, L., Qian, S.-B., Mikulášek, Z., et al. 2010, AJ, 140, 215
- Zhu, L. Y., Qian, S. B., Soonthornthum, B., He, J. J., & Liu, L. 2011, AJ, 142, 124