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Abstract We investigate the masses of glitching pulsars in order to constrain their equation of state

(EOS). The observations of glitches (sudden jumps in rotational frequency) may provide information on

the interior physics of neutron stars. With the assumption that glitches are triggered by superfluid neu-

trons, the masses of glitching neutron stars can be estimated using observations of maximum glitches.

Together with the observations of thermal emission from glitching pulsars Vela and J1709–4429, the slope

of symmetry energy and incompressibility of nuclear matter at saturation density can be constrained.

The slope of symmetry energy L should be larger than 67 MeV while the lower limit of incompress-

ibility for symmetric nuclear matter K0 is 215 MeV. We also obtain a relationship between L and K0:

6.173 MeV + 0.283K0 ≤ L ≤ 7.729 MeV + 0.291K0. The restricted EOSs are consistent with the obser-

vations of 2-solar-mass neutron stars and gravitational waves from a binary neutron star inspiral.

Key words: neutron stars: glitch — neutron stars: cooling — neutron stars: tidal deformability — nuclear

physics: symmetry energy

1 INTRODUCTION

Neutron stars, as remnants of supermassive stars, provide

natural laboratories for isospin asymmetric nuclear matter

at supra-saturation density. Many efforts have been made

to constrain the equation of state (EOS) of cold, dense nu-

clear matter by both the observations of neutron stars and

experiments in terrestrial laboratories.

During recent decades, significant progress has been

achieved in development of the EOS of isospin asym-

metric nuclear matter. Theoretical approaches have been

used to predict common features of the EOS (Brueckner

et al. 1968; Sjöberg 1974; Zuo et al. 2002; Brockmann

& Machleidt 1984; Müther et al. 1987; Brockmann &

Machleidt 1990; Sumiyoshi et al. 1992; Huber et al. 1994;

Prakash et al. 1988; Gale et al. 1990; Chen et al. 2007).

The symmetry energy and incompressibility at saturation

density characterize the EOS of neutron stars. Terrestrial

experimental data of the centroid energy of the giant dipole

resonance for 208Pb (Trippa et al. 2008), isospin diffusion

in heavy ion collisions (Tsang et al. 2009) and the energies

of excitations due to isobaric analog states (Danielewicz

& Lee 2014) provide information on the symmetry en-

ergy. By analyzing the observations of pulsars, Lattimer &

Lim (2013); Lattimer (2012); Lattimer & Prakash (2016);

Chen et al. (2009a); Pons et al. (2013); Hooker et al.

(2015); Newton et al. (2014); Steiner et al. (2010); Steiner

& Gandolfi (2012); Steiner et al. (2015) investigate the

relation between the symmetry energy and observations

of neutron stars. The ranges of constraints on both the

terrestrial experiments and astrophysical observations are

summarized in Lattimer & Prakash (2016); Newton et al.

(2014). The constrained symmetry energy (Esym) of the

saturation density from the above experiments is around

31 MeV. Moreover, the constraints on the slope of sym-

metry energy (L) at the saturation density give a range of

L ≈ 58.7 ± 28.1 MeV (Li 2004; Oertel et al. 2017). The

incompressibility (K0) of symmetric nuclear matter which

determines the curvature of the EOS is also important. The

value of incompressibility can be obtained from experi-

mental data of isoscalar giant monopole and dipole res-

onances (compression modes) in nuclei (Brown & Osnes

1985; Shlomo et al. 2006).
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Pulsar glitches (sudden jumps in rotational frequency)

are traditionally thought to be a manifestation of vortex dy-

namics associated with a neutron superfluid (Anderson &

Itoh 1975). Most studies of pulsars are based on a rigid

model (Link et al. 1999; Andersson et al. 2012; Chamel

2013; Steiner et al. 2015; Newton et al. 2015; Ho et al.

2015). In this model, it is assumed that glitches are driven

by superfluid neutrons in the inner crust. The average rate

of angular momentum transfer indicates a minimum frac-

tion of inertia that stores angular momentum (Link et al.

1999). If the entrainment is taken into account, the neutron

superfluid in the neutron star crust does not carry enough

angular momentum to explain the glitches (Chamel 2013;

Andersson et al. 2012). The observations of glitches also

offer a method to investigate the superfluid model (Ho

et al. 2015). The discrepancy can also be solved by in-

ducing crust-core coupling (Newton et al. 2015). Recently,

Watanabe & Pethick (2017) announced that entrainment

may be small if pairing is included in the calculation of

effective masses in the crust. Moreover, Ho et al. (2015)

estimate the masses of glitching pulsars cooperating with

thermal observations. However, in their work, only S-wave

pairing was taken into consideration. Pizzochero (2011);

Antonelli & Pizzochero (2017) assume continuous vortex

lines through the core (both S-wave and P-wave pairings).

Under this assumption, Pizzochero et al. propose a new

method to constrain the masses of glitching pulsars with

their maximum glitches. In their study, among the 127

glitching pulsars, 16 objects can get both upper limits and

lower limits of masses.

Neutron star cooling, which can provide informa-

tion on superfluidity, has been extensively studied in re-

cent decades (Yakovlev et al. 2001, 2002; Levenfish &

Yakovlev 1996; Yakovlev et al. 1999). In these stud-

ies, three types of superfluidity are taken into consid-

eration: singlet-state (1S0) superfluidity of neutrons and

protons, and triplet-state (3P2) neutron superfluidity. The

superfluidity of nucleons suppresses the neutrino pro-

cess and affects nucleon heat capacities (Yakovlev et al.

1999). Moreover, the additional emission associated with

Cooper pairing of nucleons appears (Flowers et al. 1976).

Kaminker et al. (2002) attempt to analyze which criti-

cal temperatures are consistent with both the observations

and microscopic calculations (Lombardo & Schulze 2001;

Wambach et al. 1993; Schulze et al. 1996). From Yakovlev

et al. (2002); Kaminker et al. (2002), we can figure out

that the cooling behavior of medium-mass neutron stars is

sensitive to both the superfluidity models and the EOS in

the cores of neutron stars. They also provide a method to

estimate the masses of neutron stars from their cooling be-

havior.

The aim of the present paper is to give a constraint

on the slope of the symmetry energy and incompressibility

from the observations. Many recent studies have focused

on how symmetry energy influences the observations, such

as the crust thicknesses, moments of inertia and tidal de-

formabilities (Hooker et al. 2015; Newton et al. 2015;

Steiner et al. 2015). Instead of being concerned with the av-

erage rate of angular momentum transfer, we concentrate

on the observations of maximum glitches. We assume a

neutron star with 1S0 neutron superfluid in the inner crust,

and 1S0 proton superfluid and 3P2 neutron superfluid in

the core. The vortex lines only pin to the inner crust. Thus

we can evaluate the masses of glitching stars based on the

work of Pizzochero et al. (2017). In conjunction with the

predictions of masses from the observations of cooling of

neutron stars, the EOS could be constrained. We also ex-

amine whether the restricted EOSs are consistent with the

recent observation of GW170817.

In this paper, we combine the observations of maxi-

mum glitch and the cooling of neutron stars to constrain

the EOS. The restricted EOSs are consistent with the ob-

servations of 2-solar-mass neutron stars and gravitational

waves from a binary neutron star system.

This paper is organized as follows: the EOS is pre-

sented in Section 2 with the definitions of parameters.

In Section 3, multiple observations are used to constrain

the EOS. We also investigate whether the restricted EOSs

are consistent with the constraints from GW170817 in the

same section. A summary will be given in Section 4.

2 THE EQUATION OF STATE

The EOS of cold, dense nuclear matter is poorly under-

stood. In this paper, we use an effective momentum depen-

dent interaction (MDI) (Welke et al. 1988) which could be

generalized to asymmetric nuclear matter (Das et al. 2003).

In the core, the energy per nucleon of symmetric nuclear

matter reads (Das et al. 2003; Chen et al. 2009b)

E0(ρ) =
8π
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The symmetry energy can be obtained
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1
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Here

ρ = ρn + ρp, δ =
ρn − ρp

ρ
, pf = ~

(
3π2 ρ

2

)1/3

,

σ = 4/3, Λ = 1.0k0
f ,

where k0
f is the Fermi momentum at the saturation density

0.16 fm−3. In Chen et al. (2005, 2009b), the parameters

are chosen to be Al(x)+Au(x) = −216.55MeV, Al(x)−
Au(x) = −24.59 MeV+4Bx/(σ+1), B = 106.35MeV,

Cl = −11.7 MeV and Cu = −103.4MeV. These param-

eters are obtained by fitting the momentum dependence of

single-particle potential predicted by Gogny Hartree-Fock

calculations. The parameter x is introduced to mimic the

various theoretical predictions of momentum dependent

symmetry energy (Chen et al. 2005). The other properties

of the nuclear EOS at saturation density are fixed with var-

ious x.

From Figure 1, we can figure out that in the MDI(−1)

and MDI(0) cases, the symmetry energy monotonically

rises below 2ρ0, while in the MDI(1) case, the symmetry

energy rises in the beginning and then begins to fall.

As mentioned in the introduction, the properties

of the nuclear EOS vary with different theoretical ap-

proaches (Brueckner et al. 1968; Sjöberg 1974; Zuo et al.

2002; Brockmann & Machleidt 1984; Müther et al. 1987;

Brockmann & Machleidt 1990; Sumiyoshi et al. 1992;

Huber et al. 1994; Prakash et al. 1988; Gale et al. 1990;

Chen et al. 2007). The values of incompressibility for nu-

clear matter predicted by various approaches give a large

scatter (Li et al. 2008; Chen et al. 2009b). In order to pro-

duce continuous K0 and L, we vary the parameters Al(x),

Au(x), B, Cl and Cu to mimic different EOSs. For sim-

plicity, we fix parameters σ = 4/3 and Λ = 1.0k0
f to en-

sure a unique value for each parameter though this is not

true for different interactions (Das et al. 2003). The pre-

dictions of basic properties of asymmetric nuclear matter

with the different sets of parameters should be consistent

with the observations in terrestrial laboratories and the con-

straints from pulsars.

The critical properties at saturation density of nuclear

matter are:

ρ0 = 0.16 fm−3, E0 = −16 MeV,

K0 = (220 ± 20) MeV, Esym = 31 MeV,

L = (60 ± 20) MeV, mLandau/mn ≤ 1 ,

(3)

where K0 = 9ρ2
0

∂2E0(ρ)
∂ρ2 |ρ=ρ0

is the incompressibility of

symmetric nuclear matter and L = 3ρ0
∂Esym(ρ)

∂ρ |ρ=ρ0
is

the slope of symmetry energy. mLandau = k(dk/dǫk)|k=kf

is defined to be the Landau mass, where ǫk is the nu-

cleon single-particle energy (Jeukenne et al. 1976; Negele

& Yazaki 1981). The range of parameter L is consistent

with the experimental constraints discussed in Lattimer &

Prakash (2016). The range of incompressibility of the sym-

metric nuclear matter is given from giant monopole reso-

nances (Blaizot 1980; Shlomo et al. 2006). Moreover, the

Landau mass is widely discussed in both nuclear physics

and astrophysics (especially for neutron stars and super-

novae) (Cooperstein 1985; Jeukenne et al. 1976; Negele &

Yazaki 1981; Farine et al. 2001). Jeukenne et al. (1976);

Negele & Yazaki (1981); Farine et al. (2001) discuss the

issue that mLandau/mn should be less than 1. However,

for some parameters, mLandau/mn will exceed 1 as exhib-

ited in Figure 2. We exclude those parameters to ensure

mLandau/mn is below 1. We choose mn = 939 MeV in

this work.

3 THE OBSERVATIONS OF NEUTRON STARS

3.1 Mass-radius Relation of Neutron Stars

The observations of masses and radii of neutron stars can

be used to constrain the EOS. Due to the lack of precise

measurements of radii, the constraints are really weak. The

observations of J1614–2230 (Demorest et al. 2010) and

J0348+0432 (Antoniadis et al. 2013) yield 2-solar-mass

neutron stars. These observations can place lower bounds

on the stiffness of the EOS.

In neutron stars, β-equilibrium and a charge neutral

condition should be taken into consideration. For npe mat-

ter, one has

µn − µp = µe, (4)

ρp = ρe, (5)

where µn, µp and µe denote the chemical potential of the

neutron, proton and electron respectively. The parabolic

approximation of the EOS is used here

µe ≈ 4(1 − 2xp)Esym, (6)
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Fig. 1 The symmetry energy of MDI(1), MDI(0) and MDI(−1).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

 

 

 mn
Landay

kF(fm
-1)

 mp
Landau

=0.8

=0.5

 mn
Landau

 

 

m
La

nd
au

/m
n(
M
eV

)

 mp
Landau

 

 

 

 mn
Landau

m
La

nd
au

/m
n(
M
eV

)

kF(fm
-1)

 mp
Landau

=0.5

 mn
Landau

 

 

 mp
Landau

=0.8

Fig. 2 mn

Landau and mp

Landau
denote the neutron and proton Landau mass, respectively. The Landau masses for neutrons and protons

in the different panels have different parameters. The upper panels display the Landau mass with parameters K0 = 213 MeV and

L = 61 MeV . The lower panels feature the Landau mass with parameters K0 = 230 MeV and L = 60 MeV.

where xp = 1−δ
2 is the fraction of protons. With the calcu-

lations of Equations (1) and (2), the EOS can be obtained

ǫtotal(ρ, δ) = ρ[E0(ρ) + Esymδ2] + ρm + ǫe(ρ, δ), (7)

Ptotal(ρ, δ) = ρ2(E′

0(ρ) + E′

sym(ρ)δ2) + Pe(ρ, δ), (8)

where δ = (1− 2xp), and ǫtotal and Ptotal denote the total

density energy and the total pressure respectively. ǫe(ρ, δ)

and Pe(ρ, δ) can be calculated using a non-interacting

Fermi gas model. m and ρ denote baryon mass and total

baryon density respectively. Chen et al. (2009b) pointed

out that this model cannot be applied in the low pressure

region due to instability. When we refer to neutron stars,

the Skyrme force (Douchin & Haensel 2001) is introduced

to describe the crust.

In order to obtain the mass-radius relations for non-

rotating neutron stars, we substitute ǫtotal and Ptotal into
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Fig. 3 The mass-radius relations for MDI(0), MDI(−0.2) and

MDI(−0.4). K0 is fixed at 213 MeV.

the Tolman-Oppenheimer-Volkoff equation

dP (r)

dr
= −G(ε + P )(M + 4πr3P )

r(r − 2GM)
, (9)

dM(r)

dr
= 4πr2ε. (10)

In Figure 3, we plot the mass-radius relations of x = 0,

x = −0.2 and x = −0.4 with the parameters in Chen et al.

(2005, 2009b). The corresponding values of L are 61 MeV,

70 MeV and 79 MeV. The maximum mass of MDI(0) is

1.92 M⊙ which is incompatible with 2-solar-mass obser-

vations (Demorest et al. 2010; Antoniadis et al. 2013).

When x ≤ −0.2, the maximum mass exceeds 1.97 M⊙.

Since a change of x keeps the same incompressibility, only

the symmetry energy is responsible for the differences in

mass-radius relations in Figure 3. The maximum masses

of different x vary slightly while the radii change obvi-

ously. The same conclusion was made by Li et al. (2008)

that the radius is more sensitive to symmetry energy than

maximum mass.

Moreover, we examine the parameter space of K0 and

L when x is fixed to be 0. From Figure 4, we deduce that

the larger values of K0 and L lead to stiffer EOSs which

are compatible with 2-solar-mass observations (Demorest

et al. 2010; Antoniadis et al. 2013). It can be found that

the allowed parameters are exhibited by the solid line

of 1.97 M⊙ and the dash-dotted line signifies the correct

Landau mass. Small values of L which may lead to nega-

tive pressure are fully excluded. The minimum L is about

64 MeV. We also examine the ranges of parameters with

different σ which varies in different interactions. The al-

lowed parameters are changed. For σ = 3/2, the mini-

mum allowed L is below 56 MeV. However, in the follow-

ing work, we discuss the case of σ = 4/3 as an example.
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Fig. 4 The range of parameters K0 and L when x is fixed to be 0.

The parameters under the dotted line are not suitable for describ-

ing neutron stars because of the small or negative L (Rikovska

Stone et al. 2003) which may lead to negative pressure that is for-

bidden physically. Here we should notice that the central densities

of the neutron stars with maximum masses are around 7−8ρ0. We

choose L ≥ 0 MeV at 12ρ0 to ensure the pressure can be calcu-

lated. This constraint is conservative. The solid lines signify the

contours representing maximum masses of 1.97 M⊙, 2.04 M⊙

and 2.10 M⊙. The parameters under the dash-dotted line would

produce mn

Landau/mn which exceeds 1. The gray lines give a

range of allowed parameter space with σ = 3/2 mentioned in

Eq. (1) and Eq. (2). Color online.

3.2 Maximum Glitches in Neutron Stars

A glitch in a neutron star is believed to offer a unique

glimpse into its interior physics. Many studies have been

concerned with the average rate of angular momentum

transfer. Observations of glitches can give a lower limit

for the crustal fraction of the moment of inertia ratio

(∆I/I = 0.14) (Link et al. 1999). Some researches re-

lated to the EOS also treat this as a strong constraint (Chen

et al. 2009b; Li et al. 2008). When the entrainment is taken

into account, the moment of inertia associated with the an-

gular momentum reservoir is severely reduced (Andersson

et al. 2012; Chamel 2013). The conflict between observa-

tion of a glitch and the associated theory inspired the study

of crust-core coupling (Newton et al. 2015). In Ho et al.

(2015), only the SFB model out of nine superfluid models

can account for observations of the Vela glitch. Moreover,

the masses of glitching neutron stars are estimated. In

their work, only a neutron superfluid in the singlet-state

is considered. In the core of a neutron star, neutrons may

be in a superfluid triple-state (3P2). The rapid cooling of

Cassiopeia A is treated as evidence for the existence of
3P2 (Page et al. 2011; Shternin et al. 2011). In our work,

we adopt continuous vortex lines through the core of a neu-

tron star neglecting the interface of 1S0 and 3P2 (Antonelli
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−3.

& Pizzochero 2017; Pizzochero et al. 2017). The reduction

to a rigid model was discussed in Antonelli & Pizzochero

(2017). A large reservoir of angular momentum which

can account for the glitch of Vela is obtained. Based on

Antonelli & Pizzochero (2017), Pizzochero et al. (2017)

proposed a new method to measure the masses of glitching

pulsars. Instead of considering the average rate of angular

momentum transfer, the maximum glitch was studied.

The maximum lag between superfluid neutrons and

normal matter can be calculated by balancing the pinning

force and the Magnus force

ωcr(x) =
FP(x)

κxb(x)
, (11)

where κ = π~/mn is the quantum of circulation. The total

pinning force can be calculated by integrating the pinning

per unit length fP(x) which is plotted in Figure 5 (Seveso

et al. 2016) along the straight vortex lines

FP = 2

∫ z(x)

0

fP(r)dz , (12)

b(x) = 2

∫ z(x)

0

dz
ρn(r)

1 − ǫn(r)
, (13)

where ρn(r) = xn(r)ρ(r) and z(x) =
√

R2 − x2, and

x is the distance from the rotational axis. (It is different

from the x in Section 2.) xn(r) plotted in Figure 6 is the

superfluid neutron fraction and ǫn(r) is the entrainment.

Entrainment should be included in the multi-fluid problem.

We use the studies of superfluid entrainment by Chamel for

the crust (Chamel 2012) and the core (Chamel & Haensel

2006). We utilize the definition of effective mass m∗
n in

Chamel & Haensel (2006) to parameterize the entrainment
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Fig. 6 The neutron fraction xn. The solid line is the neutron frac-

tion of the inner crust. The gray region is the range of neutron

fraction in the core with different K0 and L permitted by 2-

solar-mass observations and basic nuclear physics discussed in

the previous section. The dashed line is the crust-core interface at

0.47ρ0.

with the form ǫn = 1 − m∗
n/mn. The range of effective

masses is plotted in Figure 7 with the different parameters

describing the core. We infer that the parameters make lit-

tle difference to the entrainment in the core. The range of

m∗
n/mn is from 0.96 ∼ 0.99. The most important part of

the entrainment is in the inner crust derived from Chamel

(2012). The above calculations assume parallel straight

vortex lines pinned only to the inner crust. According to

angular momentum conservation, the maximum permitted

glitch can be obtained.

∆Ωmax =
Iν

I
〈ωcr(x)〉 . (14)

Iν =
8π

3

∫ R

0

drr4 ρn(r)

1 − ǫn(r)
, (15)

I =
8π

3

∫ R

0

drr4ρ(r). (16)

Iν and I denote the moment of inertia of component n and

the total moment of inertia in the Newtonian approxima-

tion respectively. Both Iν and ωcr are related to the en-

trainment. They finally cancel out analytically during the

calculation of maximum glitch.

As mentioned in Pizzochero et al. (2017), there is a

general inverse correlation between the size of the max-

imum glitch and the pulsar mass. Figures 8 and 9 illus-

trate that larger values of L and K0 lead to larger max-

imum permitted glitches, and thus larger upper limits of

masses for glitching neutron stars. This upper limit is ro-

bust. For different x in the MDI model, L changes when
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observations and basic nuclear physics discussed in the previous

section.
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Fig. 10 The mass ranges of J1709–4429 and Vela. For the pa-

rameters of the EOS, K0 and L assume the values 227 MeV and

71 MeV respectively with x = 0. The observation data of J1709–

4429 and Vela are listed in table 1 in Pizzochero et al. (2017).

the incompressibility is fixed. The trend is similar to what

is displayed in Figure 8.

An additional assumption should be added if we want

to calculate the lower limit of the mass of a glitching neu-

tron star. Pizzochero et al. (2017) assume that the maxi-

mum glitch depletes the whole available reservoir of an-

gular momentum stored since co-rotation. This will give a

minimum mass for a glitching neutron star. The nominal

lag ω∗
pre can be obtained

ω∗

pre = tpre × |Ω̇| (17)

where tpre represents the waiting time between the maxi-

mum observed glitch and the previous one, and |Ω̇| is the

spin-down rate.

In this partial filling situation, the accumulated lag

reads

ωt(x) = min[ωcr(x), ω∗

pre] . (18)

From this reservoir, we can derive the angular momen-

tum which is depleted during a glitch. According to con-

servation of angular momentum

∆Ωt =
Iν

I
〈ωt(x)〉 . (19)

This result is obviously related to the entrainment. Due to

the similarity between Equation (14) and Equation (19),

changes in the trend with K0 or L are the same.

Once the microphysical input is fixed, the range of

mass for a glitching star can be obtained by calculating

Equation (14) and Equation (19).

Figure 10 shows the different ranges for J1709–4429

and Vela. If the nominal lag is large, the constraint on

the mass of the glitching pulsar will be tighter. Although
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Fig. 11 The proton fraction with different L. The dotted line is

the direct Urca threshold.

we can obtain the different masses of 17 objects listed

in Pizzochero et al. (2017) with various parameters, there

is no mass measurement for a glitching neutron star. The

slope of symmetry and incompressibility of the EOS can-

not be constrained only by the observations of maximum

glitches.

3.3 Thermal Observations

The cooling of neutron stars depends on the properties

of dense matter. Since the last century, several candidates

for thermally-emitting neutron stars have been discovered

(Pavlov et al. 2002). Neutrino cooling dominates for at

least the first thousand years after its birth. Photon emis-

sion eventually exceeds neutrino emission when the inter-

nal temperature has sufficiently dropped. Many theoretical

studies have simulated neutron star cooling with fully rel-

ativistic non-isothermal cooling code (Gnedin et al. 2001;

Yakovlev et al. 2001, 2002; Levenfish & Yakovlev 1996;

Yakovlev et al. 1999; Kaminker et al. 2002). In the absence

of hyperons and quarks, the dominant neutrino processes

are modified and direct Urca processes and bremsstrahlung

processes appear. The emissivity of direct Urca is more ef-

ficient than that of modified Urca. For a neutron star made

of protons, neutrons and electrons, the critical proton frac-

tion of the direct Urca threshold is about 11%.

From Figure 11, the critical density (ρD) when the di-

rect Urca process appears decreases with larger L. It is

similar for different x in the MDI model. The smaller x

indicates earlier occurrence of direct Urca. We deduce that

the proton fraction is closely related to the symmetry en-

ergy while being almost independent of incompressibility

K0 according to Equation (6). In non-superfluid neutron

stars, a sharp transition from slow (modified Urca) to fast

(direct Urca) cooling takes place.

In Kaminker et al. (2002), the cooling of middle-aged

neutron stars can be divided into three types: (I) slowly

cooling NSs where the direct Urca process is forbidden or

strongly suppressed by the superfluid protons; (II) moder-

ately cooling NSs where the direct Urca process is sup-

pressed by the superfluid protons; and (III) fast cooling

NSs where the direct Urca process is weakly suppressed

by the superfluid protons. Both slowly cooling NSs and

fast cooling NSs are not sensitive to the EOS. However,

Vela and J1709–4429 can be attributed to the moderately

cooling stars which are intimately related to the EOS. The

authors of Kaminker et al. (2002) obtained simple esti-

mates of the mass ranges for moderately cooling stars. MI

is the mass when Tcp(ρc) = T I
cp(ρc), where Tcp(ρc) is

the critical temperature of superfluid protons in the center

of a neutron star. A simple estimation of T I
cp(ρc) is 5.5T

for ρ ≤ ρD, and 17T for ρ ≥ ρD. Similarly, MII is the

mass when Tcp(ρc) = T II
cp (ρc), where T II

cp (ρc) is 3T . T is

the internal temperature of a neutron star. We choose TVela

equal to 1.2× 108 K and TJ1709−4429 equal to 0.7× 108 K

(Ho et al. 2015). The mass of a moderately cooling star

satisfies the relation MI ≤ M ≤ MII. We use these ranges

to characterize the masses of Vela and J1709–4429 from

cooling observations.

In this work, we apply the parametrization of the criti-

cal temperature of proton superfluid (1p)

Tcp = T0
(kfp − k0)

2

(kfp − k0)2 + k2
1

(kfp − k2)
2

(kfp − k2)2 + k2
3

for k0 < kp < k2; and Tc = 0 for kp ≤ k0 or

kp ≥ k2, where T0 = 2.029 × 1010 K, k0 = 0 fm−1, k1 =

1.117 fm−1, k2 = 1.241 fm−1 and k3 = 0.1473 fm−1 in

the 1p model, and T0 = 1.7 × 1010 K, k0 = 0 fm−1, k1 =

1.117 fm−1, k2 = 1.329 fm−1 and k3 = 0.1179 fm−1 in

the 2p model. kfp can be determined from the density and

proton fraction according to kfp = ~(3π2xpρ)1/3.

The ranges of masses evaluated from both the max-

imum glitch and cooling with the 1p and 2p models are

displayed in Figures 12 and 13. The parameter sets satisfy

the 2-solar-mass observations and basic nuclear properties.

Some common properties can be deduced: (I) The criti-

cal mass of direct Urca (MD) decreases with increasing L.

This can be explained as the early onset of direct Urca with

large L. (II) The values of MI and MII decrease with in-

creasing L. This is because the value of kfp of the critical

temperature is fixed. According to kfp = ~(3π2xpρ)1/3, ρ

will be smaller for larger L due to the larger xp. Though

the larger L will lead to a stiffer EOS, the effect can
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glitch and cooling with different parameters.

be neglected. (III) As mentioned in the previous section,

the ranges of masses obtained from maximum glitches in-

crease with L. The inverse relationships (II) and (III) en-

sure the constraint of the EOS. From Figure 12, for the

1p model with the parameters K0 = 220 MeV, L =

64.5 MeV and K0 = 220 MeV, L = 80 MeV, the masses

obtained by the maximum glitch and cooling behavior can-

not overlap. That means that for Vela, the masses predicted

by the maximum glitch and by cooling are different. When

the superfluid model is fixed, only the EOS is responsible

for this discrepancy. The two sets of parameters should be

excluded. For the fixed incompressibility K0 = 220 MeV,

the slope of symmetry energy has both an upper limit and

a lower limit. For J1709–4429, the lower limit L disap-

pears but the upper limit is lower. For a special K0, the

lowest L is determined by max[MGlitch] = MI for Vela

while the highest L is determined by min[MGlitch] = MII

200 210 220 230 240
40

48

56

64

72

80

200 210 220 230 240
40

48

56

64

72

80

200 210 220 230 240
40

48

56

64

72

80

200 210 220 230 240
40

48

56

64

72

80

200 210 220 230 240
40

48

56

64

72

80

200 210 220 230 240
40

48

56

64

72

80

200 210 220 230 240
40

48

56

64

72

80

 Correct Behavior
          of mLandau

L(
M

eV
)

K0(MeV)

L>0 at  12 0

 

 

1.97Msun

1p Allowed

2p Allowed

Fig. 14 The restricted parameters are in the shaded regions.

for J1709–4429, and MGlitch is the range of masses ob-

tained in Section 3.2. For the 2p model, both Vela and

J1709–4429 give the lower boundary of L for fixed K0.

The minimum L is 79 MeV, which will be excluded by the

observation of GW170817 in the next section. The param-

eters constrained by the method are shown in Figure 14.

It can be deduced that the lower limits of K0 and L cor-

respond to 215 MeV and 67 MeV respectively in the 1p

model. Moreover, we can find the relationship between

K0 and L for the 1p model: 6.173 MeV + 0.283K0 ≤
L ≤ 7.729 MeV + 0.291K0. We also examine the EOS of

MDI(-0.2) with the parameters derived from the Gogny in-

teraction (Chen et al. 2005, 2009b). The ranges of masses

predicted by maximum glitch and cooling of J1709–4429

are 1.530− 1.663 M⊙ and 1.451− 1.495 M⊙ respectively

in the 1p model. MDI(-0.2) will be ruled out due to the

inconsistency of the masses. As was stated in Section 3.1,

x ≤ −0.2 ensures a consistent result with 2-solar-mass ob-

servations. However, with smaller x, the mass predicted by

the cooling of J1709–4429 will be smaller while that pre-

dicted by the maximum glitch will be larger. Therefore, the

MDI EOS based on the Hartree-Fock calculation using the

Gogny interaction is excluded.

Moreover, the masses of Vela and J1709–4429 can

also be restricted to narrow ranges due to overlap of the

two constraints. The masses of Vela and J1709–4429 are

1.45 M⊙ ∼ 1.55 M⊙ and 1.53 M⊙ ∼ 1.62 M⊙ respec-

tively. The constrained masses are generally smaller than

those predicted in Ho et al. (2015). It is easy to compre-

hend that Ho et al. (2015) assume only the inner crust ac-

counts for the glitch. In this case the neutron star should

be more massive to store enough angular momentum. The

direct measurements of glitching pulsars may help us to

judge which sections participate during the glitch.
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Fig. 15 The ranges of k2 with different parameters.

3.4 Tidal Deformability Constrained by GW170817

On 2017 August 17, the Advanced LIGO and Virgo net-

work detected a gravitational-wave signal from a binary

neutron star merger. During the late inspiral, the phase evo-

lution of gravitational waves will be affected by tidal ef-

fects, which is related to the EOS (Hinderer et al. 2010).

The tidal deformability allowed by the event GW170817

gives another constraint on the EOS. The tidal deformabil-

ity parameter λ describes the ratio of each star’s induced

quadrupole to the tidal field of its companion. It is related

to a dimensionless quantity k2, called the Love number:

λ = 2/(3G)k2R
5. With the restricted EOS, we can calcu-

late k2.

From Figure 15, we can figure out that larger values

of K0 and L lead to larger k2. In order to compare with

the observation of GW170817, Figure 16 shows the pre-

dictions of the higher limit with x = 0 that we can ob-

tain in this work together with the 90% and 50% proba-

bilities of the observation constraint (The LIGO Scientific

Collaboration et al. 2018). We can figure out that the pre-

diction of the restricted EOS (1p model) is inside the 90%

probability region for the low-spin prior, while the lower

limit of the 2p model is excluded by GW170817.

With the leading order for Λ1 and Λ2, the weighted

average Λ̃ can be obtained

Λ̃ =
16

13

(m1 + 12m2)m
4
1Λ1 + (m2 + 12m1)m

4
2Λ2

(m1 + m2)5
.

(20)

In the low-spin case, Λ̃ ≤ 800 with 90% probability. For

the EOSs allowed in the previous sections, Λ̃ ≤ 603. This

result is consistent with the observation.

Moreover, the associated electromagnetic emission of

GW170817 suggests that the merger did not result in a

prompt collapse (Kasen et al. 2017; Metzger 2017). In
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Fig. 16 The ranges of Λ1 and Λ2 for the higher limit with

x = 0. Λ1 and Λ2 denote the dimensionless tidal deformabil-

ity parameters of m1 and m2 respectively. The dotted line indi-

cates the Λ1 = Λ2 boundary. The dashed lines signify the 90%

and 50% contours constrained for the observation of GW170817

with the low-spin prior. The parameters of the upper limit are

K0 = 231.8 MeV, L = 75.2 MeV for the 1p model, while those

of the lower limit are K0 = 211.5 MeV, L = 79 MeV for the

2p model.

Bauswein et al. (2017), the radius of a neutron star can

be constrained if the merging neutron stars can result in an

at least transiently stable neutron star. They put lower lim-

its of 10.68+0.15
−0.04 km on non-rotating neutron stars with a

mass of 1.6 M⊙ and 9.60+0.14
−0.03 km on non-rotating neutron

stars with the maximum mass. If we assume the EOSs we

used in this paper satisfy the simulations in Bauswein et al.

(2013), we can investigate the radius obtained in our work.

With x = 0, the radii range from 12.15 km/10.41km to

12.636 km/10.659km for non-rotating neutron stars with a

mass of 1.6 M⊙/maximum mass. Both of them are consis-

tent with the radius constraint.

4 DISCUSSION AND OUTLOOK

We attempt to constrain the EOS of cold, dense nuclear

matter from the observations of neutron stars. The slope

of symmetry energy L and the incompressibility of sym-

metric nuclear matter K0 are crucial to the EOS. A phe-

nomenological approach is used in our work. We base this

on the fact that multiple observations of a neutron star will

predict the same mass. The observations used in this pa-

per are the maximum glitches and cooling of neutron stars.

The MDI interaction based on the Hartree-Fock calculation

using the Gogny interaction will be ruled out. When we ex-

tend the parameters when x is fixed to zero, we obtain the

lower limit of K0 = 215 MeV and L = 67 MeV from

the observations of 2-solar-mass neutron stars (Demorest

et al. 2010; Antoniadis et al. 2013). Moreover, a linear rela-
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tionship between L and K0 can be deduced: 6.173 MeV+

0.283K0 ≤ L ≤ 7.729 MeV + 0.291K0. The ranges for

the masses of Vela and J1709–4429 are restricted to narrow

ranges of 1.45 M⊙ ∼ 1.55 M⊙ and 1.53 M⊙ ∼ 1.62 M⊙

respectively. The constrained EOSs are consistent with the

recent observation of GW170817.

We investigate the ranges of masses for glitching

pulsars using the method proposed by Pizzochero et al.

(2017). In their work, they assume parallel straight vortex

lines, pinned only in the crust but threading the whole star.

When we refer to the pinning force in the inner crust, only

the 1S0 neutrons are taken into consideration. We exam-

ine the validity of this assumption. We consider the con-

ventional temperature of the outer core to be 2 × 108 K.

It can be deduced that in the inner crust, the critical tem-

perature of 3P2 is below 8 × 107 K, which is smaller than

the temperature of the outer core. Moreover, the discon-

nected vortices are neglected. We claim that the superfluid

neutrons will disappear if internal temperature is above the

critical temperature of 3P2. There will be a critical mass

above which the vortex lines cannot be treated as con-

nected lines. The critical masses of different parameters

range from 1.7 M⊙ to 2 M⊙, thus a lower limit of maxi-

mum glitch amplitude (around 1 × 10−4 rad s−1) can also

be obtained. We also neglect the pinning force in the core

due to the 1S0 protons because it is still under debate.

In this work, we only use the observations of Vela

and J1709–4429. As listed in Ho et al. (2015); Pizzochero

et al. (2017), there are glitch and interior temperature data

for J0537–6910, Vela, J1048–5832 (B1046–58), J1341–

6220 (B1338–62), J1709–4429 (B1706–44), J1801–2451

(B1757–24), J1803–2137 (B1800–21) and J1826–1334

(B1823–13). However, J0537–6910 cannot be assigned a

lower limit due to the lack of ω∗
pre. Moreover, B1046–58,

B1757–24 and B1823–13 only have an upper limit of T

and the uncertainty of B1800–21 is too large. B1338–62

has a maximum ∆Ω which equals 1.00 × 10−4rad s−1.

With some parameters, the masses obtained will exceed the

critical mass at which the superfluid neutrons disappear in

the center.

In this paper, we fixed x = 0 when we use the obser-

vations of glitch and cooling to constrain incompressibil-

ity and the slope of the symmetry energy. When x < 0,

the ranges of parameters grow larger, and the ranges con-

strained by glitch and cooling will also grow larger. We

should notice that the radius will be obviously larger with

negative x and thus produce a larger tidal deformability pa-

rameter. In a future study, we will use GW170817 together

with the observations of glitch and cooling of glitching pul-

sars to constrain the EOS with x 6= 0.

The proton superfluid is fixed in our work (1p). The

evaluations of MI and MII change severely if we use the

2p proton superfluid model. The values of MI and MII

will be larger, and thus both the upper limit and the lower

limit of L will be larger. The restricted masses of Vela and

J1709–4429 will also be larger. However, the restricted L

is not consistent with the observation of GW170817. We

will discuss more general EOSs to find out if the 2p model

could be totally excluded in future research.

Direct measurements of the masses of glitching pul-

sars are expected to constrain both the EOS and superflu-

idity in neutron stars. The degeneration of the EOS and the

superfluid model is a serious problem that should be inves-

tigated in further work. However, we provide a new method

to examine the EOSs. EOSs which lead to masses incon-

sistent with those obtained from observations of glitches

and cooling should be excluded.
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Trippa, L., Colò, G., & Vigezzi, E. 2008, Phys. Rev. C, 77,

061304

Tsang, M. B., Zhang, Y., Danielewicz, P., et al. 2009, Physical

Review Letters, 102, 122701

Wambach, J., Ainsworth, T. L., & Pines, D. 1993, Nuclear

Physics A, 555, 128

Watanabe, G., & Pethick, C. J. 2017, Physical Review Letters,

119, 062701

Welke, G. M., Prakash, M., Kuo, T. T. S., Das Gupta, S., & Gale,

C. 1988, Phys. Rev. C, 38, 2101

Yakovlev, D. G., Gnedin, O. Y., Kaminker, A. D., & Potekhin,

A. Y. 2002, in Neutron Stars, Pulsars, and Supernova

Remnants, ed. W. Becker, H. Lesch, & J. Trümper, 287
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