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Abstract The mass density distribution of Newtonian self-gravitating systems is studied analytically in the

field theoretical method. Modeling the system as a fluid in hydrostatic equilibrium, we apply Schwinger’s

functional derivative on the average of the field equation of mass density, and obtain the field equation of

2-point correlation function ξ(r) of the mass density fluctuation, which includes the next order of nonlin-

earity beyond the Gaussian approximation. The 3-point correlation occurs hierarchically in the equation,

and is cut off by the Groth-Peebles ansatz, making it closed. We perform renormalization and write the

equation with three nonlinear coefficients. The equation tells us that ξ depends on the point mass m and

the Jeans wavelength scale λ0, which are different for galaxies and clusters. Applying this to large scale

structures, it predicts that the profile of ξcc for clusters is similar to ξgg for galaxies but with a higher am-

plitude, and that the correlation length increases with the mean separation between clusters, i.e., a scaling

behavior r0 ≃ 0.4d. The solution yields the galaxy correlation ξgg(r) ≃ (r0/r)
1.7 valid only in a range

1 < r < 10 h−1 Mpc. At larger scales the solution ξgg deviates below the power law and goes to zero

around ∼50h−1 Mpc, just as the observations show. We also derive the field equation of the 3-point cor-

relation function in the Gaussian approximation and its analytical solution, for which the Groth-Peebles

ansatz with Q = 1 holds.
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1 INTRODUCTION

Understanding the matter distribution in the universe on

large scales is one of the major goals of modern cosmol-

ogy. The large scale structure is determined by self-gravity

of matter. Since the number of galaxies as typical objects

is enormous, one needs statistics to study the distribution.

In this regard, the 2-point correlation function ξgg(r) of

galaxies and ξcc(r) of clusters serves as a powerful tool

(Bok 1934; Totsuji & Kihara 1969; Peebles 1980). It not

only provides the statistical information, but also contains

the underlying dynamics due to gravity. Observational sur-

veys have been carried out for galaxies and for clusters,

such as the Automatic Plate Measuring (APM) galaxy sur-

vey (Loveday et al. 1996), the Two-degree-Field Galaxy

Redshift Survey (2dFGRS) (Peacock et al. 2001), Sloan

Digital Sky Survey (SDSS) (Abazajian et al. 2009), etc. All

these surveys suggest that the correlation of galaxies has a

power law form ξgg(r) ∝ (r0/r)
γ with r0 ∼ 5.4 h−1 Mpc

and γ ∼ 1.7 in a range (0.1 ∼ 10)h−1 Mpc (Totsuji &

Kihara 1969; Groth & Peebles 1977; Peebles 1980; Groth

& Peebles 1986; Soneira & Peebles 1978). The correla-

tion of clusters is found to have a similar form: ξcc(r) ∼
20ξgg(r) in a range (5 ∼ 60)h−1 Mpc, with an amplified

magnitude (Bahcall & Soneira 1983; Klypin & Kopylov

1983). For quasars ξqq(r) ∼ 5ξgg(r) (Shaver 1988).

On the theoretical side, numerical computation is the

most used method and significant progress has been made

in study of the large scale structure. On the other hand,

analytical studies are also important in understanding the

physical mechanism underlying the clustering. Davis &

Peebles (1977) used the BBKGY method and got five

equations for five unknown functions, among which the

equation of the 2-point correlation was not in a closed
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form. Bernardeau et al. (2002); Crocce & Scoccimarro

(2006b,a) developed a perturbation theory for density field

and analyzed the nonlinear propagator. Matarrese et al.

(1998); Wang & Zhang (2017); Zhang et al. (2017) gave

the analytical solutions of 2nd-order density contrast and

metric perturbations during the matter-dominant stage, but

the equation of correlation was not given. Saslaw (1968,

1969, 1985, 2000) used macroscopic thermodynamic vari-

ables, such as internal energy, entropy, pressure, etc, for ad-

equate descriptions, whereby the power-law form of ξgg(r)

was used to calculate modifications to energy and pressure.

Similarly, de Vega et al. (1996b, 1998) used the grand par-

tition function of a self-gravitating gas to study a possi-

ble fractal structure of the correlation function of galaxies.

However, the field equation of ξ has not so far been given

in all these studies.

In Zhang (2007), we studied the mass density distri-

bution of self-gravitating systems in hydrostatic equilib-

rium by a field-theoretical method. The starting point is

the field equation of the mass density field ψ. We expand

the density field as ψ = ψ0 + δψ, where ψ0 = 〈ψ〉 is the

mean density and δψ is the fluctuation field. We employ the

technique of the generating functional Z[J ] as a path inte-

gral over the field ψ, where J is the external source. The

connected 2-point correlation function is G(2)(r1, r2) =

〈δψ(r1)δψ(r2)〉 = δ2 lnZ[J ]/δJ(r1)δJ(r2), also de-

noted by ξ(r) with r = |r1 − r2| (Zhang 2007; Zhang

& Miao 2009). By taking the functional derivative δ/δJ

of the equation of ψ0, the field equation of G(2) was de-

rived in Gaussian approximation with nonlinear terms of

δψ being neglected. The analytic solution of the correla-

tion function contains the Jeans wavelength as the unique

scale of self-gravitating systems, and, as a prominent prop-

erty, the amplitude of the correlation is proportional to the

mass of the particle. This feature naturally explains the ob-

servational fact that clusters have a correlation amplitude

higher than galaxies, and, similarly, richer clusters have a

correlation amplitude higher than poor ones. When apply-

ing this to large scale structure, the solution agreed qual-

itatively with the observed correlation of galaxies and of

clusters, however, at small scales of r < 3 h−1 Mpc, the

correlation is too low to account for what is observed.

To improve the Gaussian approximation, Zhang &

Miao (2009) considered nonlinear terms of density fluc-

tuation to the order of (δψ)2 and gave the nonlinear equa-

tion of G(2). Due to hierarchy, the equation contains the

3-point correlation G(3), which can be expressed as the

products of G(2) by the Kirkwood-Groth-Peebles ansatz

(Kirkwood 1935; Groth & Peebles 1977) leading to the

closed equation of G(2). After necessary renormalization

to absorb the quantities like G(2)(0), a nonlinear equation

is obtained. The correlation is enhanced at small scales

r = (0.3 ∼ 3)h−1 Mpc, substantially improving the

Gaussian result. However the treatment is not complete,

as a nonlinear term is not properly included.

This paper extends the previous preliminary work

(Zhang 2007; Zhang & Miao 2009) with a complete treat-

ment of all terms (δψ)2, and presents the detailed deriva-

tion of the field equation of G(2) and the renormalization

procedure. In addition, this paper also presents the field

equation of 3-point correlation G(3) in the Gaussian ap-

proximation. These will complete the work of Zhang &

Chen (2015), which listed only the brief results on G(2)

without details. With one set of fixed values of nonlinear

coefficients, the solution G(2) of the resulting field equa-

tion will confront the observational data of both galaxies

and clusters.

In Section 2, we derive the field equation of the den-

sity field ψ by hydrostatics, and write down the generat-

ing functional Z[J ]. Section 3 outlines the derivation of

the nonlinear field equation of ξ(r), using the functional

derivative technique. Section 4 gives the main predictions

by the equation on the properties of clustering.

In Section 5, we present the solution ξ(r) to con-

front with observations of galaxies, and also compare this

with numerical simulations. In addition, we give the pro-

jected correlation function. In Section 6, we apply the same

solution to the system of clusters with greater mass m.

Section 7 gives the 3-point correlation function G(3) in

the Gaussian approximation. Section 8 contains conclu-

sions and discussions. Appendix A gives the functional

Z[J ] of the many-body self-gravitating system in terms

of path integral over the gravitational field. Appendix B

presents the details of the derivation of the field equa-

tion of ξ(r), including the use of Kirkwood-Groth-Peebles

ansatz and the renormalization procedure. Appendix C

gives the derivation of the field equation of G(3) with

the Gaussian approximation (see Appendix A, B and C

at http://www.raa-journal.org/docs/Supp/

ms4263Appendix.pdf).

We use a unit in which the speed of light c = 1 and the

Boltzmann constant kB = 1.

2 FIELD EQUATION OF MASS DENSITY FOR A

SELF-GRAVITATING SYSTEM

Galaxies, or clusters, distributed in the universe can be

approximately described as a fluid at rest in the gravita-

tional field, i.e., as self-gravitating hydrostatics. This mod-
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eling is an approximation since the cosmic expansion is

not considered. The system of galaxies in the expanding

universe is in an asymptotically relaxed state, i.e., a quasi

thermal equilibrium (Saslaw 2000). In this paper, under

the approximation of hydrostatic equilibrium, we study

the system of galaxies within a small redshift range. Let

us examine how far this approximation is from the ac-

tual situation. The time scale of the cosmic expansion is

te ≡ 1/H0 =
√

3/8πGρ0, and the dynamical time for

galaxies moving in the background is td ∼
√

3/16πGρ0

(Binney & Tremaine 1987), and the two time scales are

roughly of the same order of magnitude, so the hydrostatic

equilibrium is not a bad approximation, as will be demon-

strated further in Section 5.

In general, a fluid is described by the continuity equa-

tion, the Euler equation and the Poisson equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ∇Φ, (2)

∇2Φ = −4πGρ. (3)

For the hydrostatic case, ρ̇ = 0 and v = 0, the Euler equa-

tion takes the form (Landau & Lifshitz 1987)

1

ρ
∇ρ =

1

c2s
∇Φ, (4)

with c2s ≡ ∂p/∂ρ being a constant sound speed, which

describes the mechanical equilibrium of the fluid. Taking

the gradient on both sides of this equation and using

Equations (3) and (4) lead to

∇2ρ− 1

ρ
(∇ρ)2 +

4πG

c2s
ρ2 = 0. (5)

We call Equation (5) the field equation of mass density for

the self-gravitating fluid system. For convenience, we in-

troduce a dimensionless density field ψ(r) ≡ ρ(r)/ρ0,

where ρ0 = mn0 is the mean mass density of the system.

Then Equation (5) takes the form

∇2ψ − 1

ψ
(∇ψ)2 + k2

Jψ
2 = 0, (6)

with kJ ≡ √
4πGρ0/cs being the Jeans wavenumber. This

is highly nonlinear in ψ as it contains 1/ψ. Equation (6)

also follows from δH(ψ)/δψ = 0 with the effective

Hamiltonian density

H(ψ) =
1

2

(∇ψ
ψ

)2

− k2
Jψ. (7)

To employ Schwinger’s technique of functional deriva-

tives (Schwinger 1951a,b), an external source J(r) is in-

troduced to couple with the field ψ

H(ψ, J) =
1

2

(∇ψ
ψ

)2

− k2
Jψ − Jψ, (8)

and the mass density field equation in the presence of J is

1

ψ2
∇2ψ − 1

ψ3
(∇ψ)2 + k2

J + J = 0.

When ψ 6= 0 and ψ 6= ∞, one has

∇2ψ − 1

ψ
(∇ψ)2 + k2

Jψ
2 + Jψ2 = 0. (9)

This is the starting equation which we shall use to derive

the field equation of 2-point correlation function G(2)(r).

When ψ 6= 0 and ψ 6= ∞, the generating functional for the

correlation functions of ψ is defined as

Z[J ] =

∫

Dψe−α
∫

d3rH(ψ,J), (10)

where α ≡ c2s/4πGm with cs being the sound speed and

m being the mass of a single particle. It is known that,

by coarse-graining procedures (Baumann et al. 2012), inte-

grating out short-wavelength nonlinear cosmological per-

turbations introduces additional effects into the dynamics

on large scales, and yields an effective fluid characterized

by a few parameters, such as pressure, viscosity and sound

speed.

By setting ψ(r) ≡ eφ(r), where φ ≡ Φ/c2s is the

gravitational potential, Equations (6) and (7) can also be

transformed into the well-known Lane-Emden equation

(Emden 1907; Ebert 1955; Bonnor 1956; Antonov 1962;

Lynden-Bell & Wood 1968)

∇2φ+ k2
Je
φ = 0, (11)

and the associated Hamiltonian

H(φ) =
1

2
(∇φ)2 − k2

Je
φ. (12)

In fact, Equation (12) derived from a hydrostatic model can

also be derived using the following approach. A universe

filled with galaxies and clusters can be modeled as a self

gravitating gas assumed to be in thermal quasi-equilibrium

(Saslaw 1985, 2000). Note that the universe is expand-

ing with a time scale ∼ 1/H0 = (3/8πGρ0)
1/2, and

the time scale of propagation of fluctuations ∼ λJ/cs ∼
1/(4πGρ0)

1/2, with both being of the same order of mag-

nitude. The thermal equilibrium is an approximation. For

such a system of N particles of mass m, the Hamiltonian

is

H =
N

∑

i=1

p2
i

2m
−

N
∑

i<j

Gm2

rij
(13)
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with rij = |ri − rj |, and the grand partition function is

Z =
∞
∑

N=0

zN

N !

∫ N
∏

i=1

d3pi d
3ri

(2π)3
e−H/T , (14)

where z is the fugacity. As shown in Appendix A, this can

be written as a path integral over the field φ

Z =

∫

Dφe−α
∫

d3rH(φ), (15)

where H(φ) is given in Equation (12) with c2s = T/m.

Thus, the hydrodynamic model gives the same result as

a self-gravitating gas in thermal equilibrium. In this pa-

per, we shall use Equations (6) and (7), which better suits

studying the mass distribution.

3 FIELD EQUATION OF THE 2-POINT

CORRELATION FUNCTION OF DENSITY

FLUCTUATIONS

In this section we outline the field equation of the 2-point

correlation function of density fluctuations, and the com-

prehensive details are attached in Appendix B. Consider

the fluctuation field δψ(r) ≡ ψ(r) − 〈ψ(r)〉, with mean

〈ψ(r)〉 =
1

Z

∫

Dψψe−α
∫

d3rH(ψ)

=
δ logZ[J ]

αδJ(r)
|J=0, (16)

where one sets J = 0 after taking the functional derivative.

In a general system, the mean density 〈ψ(r)〉 can vary in

space, but for the homogeneous and isotropic universe it is

a constant 〈ψ(r)〉 = ψ0. The 2-point correlation function

of δψ, i.e., the connected 2-point Green function, is given

by the functional derivative of logZ[J ] with respect to J

(Binney et al. 1992)

G(2)(r1, r2) ≡ 〈δψ(r1)δψ(r2)〉

= α−2 δ2

δJ(r1)δJ(r2)
logZ[J ]|J=0

= α−1 δ〈ψ(r2)〉J
δJ(r1)

|J=0 , (17)

where 〈ψ(r)〉J ≡ δ
αδJ(r) logZ[J ] before setting J = 0.

One can take G(2)(r1, r2) = G(2)(r12) for a homoge-

neous and isotropic universe. Analogously, the n-point cor-

relation function of δψ is

G(n)(r1, · · · , rn) ≡ 〈δψ(r1) · · · δψ(rn)〉

= α−n δn logZ[J ]

δJ(r1) · · · δJ(rn)
|J=0

= α−(n−1) δn−1〈ψ(rn)〉J
δJ(r1) · · · δJ(rn−1)

|J=0

(18)

for n ≥ 3. To derive the field equation ofG(2)(r), as is rou-

tine (Goldenfeld 1992), one takes the functional derivative

of the ensemble average of Equation (9) with respect to

J(r′),

δ

δJ(r′)

(

〈∇2ψ(r)〉J − 〈 1

ψ(r)
(∇ψ(r))2〉J

+ k2
J〈ψ(r)2〉J + J(r)〈ψ(r)2〉J

)

= 0 ,

(19)

and then sets J = 0. To systematically deal with the non-

linearity of 1/ψ, we expand ψ in terms of the fluctuation

δψ, up to second order (δψ)2. Then Equation (19) leads to

the following equation for G(2)

∇2G(2)(r) + k2
0ψ0G

(2)(r) +
1

2ψ2
0

∇2G(2)(0)G(2)(r)

−
( 1

2ψ0
∇2 + k2

J

)

G(3)(0, r, r) +
2

ψ2
0

∇G(2)(0) · ∇G(2)(r)

= − 1

α

(

ψ2
0 −G(2)(0)

)

δ(3)(r) ,

(20)

where the characteristic wavenumber k0 ≡
√

2kJ . (See

Appendix B for detailed calculations.) This equation is

of the same form as equation (4) in our previous paper

(Zhang & Miao 2009), except that we now keep −k2
JG

(3)

on the right hand side and 1
αG

(2)(0)δ(3)(r) in the source

on the left hand side. These new terms come from an im-

proved treatment which properly includes high order con-

tributions. Note that G(3) occurs in Equation (20). There

are various ways to cut off this hierarchy. One of them is to

use the Kirkwood-Groth-Peebles ansatz (Kirkwood 1935;

Groth & Peebles 1977)

G(3)(r1, r2, r3) = Q
(

G(2)(r12)G
(2)(r23)

+G(2)(r23)G
(2)(r31) +G(2)(r31)G

(2)(r12)
)

,
(21)

where Q is a dimensionless parameter. The observational

data of galaxy surveys have indicated that Q ≃ 1 ±
0.2, which is also supported by numerical simulations

(Peebles 1993). Here we adopt this ansatz. Substituting

Equation (21) into Equation (20), after a necessary renor-

malization to absorb the quantities like G(2)(0), ∇G(2)(0)

and ∇2G(2)(0), we obtain the field equation of the 2-point

correlation function

(1 − bξ)∇2ξ + k2
0(1 − cξ)ξ + (a − b∇ξ) · ∇ξ

= − 1

α
δ(3)(r) ,

(22)

where ξ(r) ≡ G(2)(r), a, b and c are three constant param-

eters. The special case of a = b = c = 0 is the Gaussian

approximation and Equation (22) reduces to the Helmholtz
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equation (B.9) Thus, the terms a, b and c represent the non-

linear contributions beyond the Gaussian approximation.

Equation (22) in the radial direction is

(1 − bξ)ξ′′ + ((1 − bξ)
2

x
+ a)ξ′ + ξ − bξ′ 2 − cξ2

= − 1

α

δ(x)k0

x2
,

(23)

where ξ′ ≡ d
dxξ, x ≡ k0r and k0 = (8πGmn)1/2/cs.

The effects of nonlinear terms b and c can enhance the

amplitude of ξ at small scales and increase the correlation

length. The term a plays the role of effective viscosity, and

a greater a leads to a strong damping of the oscillations of ξ

at large scales, as shown in Figure 1. The value of a should

be large enough to ensure 1+ξ(r) ≥ 0 for the whole range

0 < r <∞.

Taking the normalization that the nonlinear solution ξ

and the Gaussian solution ξgauss (Zhang 2007) are equal

(ξ/ξgauss = 1) at r = 10 h−1 Mpc as in Figure 2, the non-

linear terms enhance as follows

ξ/ξgauss ∼ 1.6 at r = 5 h−1 Mpc,

ξ/ξgauss ∼ 3 at r ≤ 1 h−1 Mpc.

Since the terms a, b, c reflect the nonlinearity of theory and

are universal to all specific systems, we use the same set of

values for (a, b, c) to account for both galaxies and clusters.

The solution is not very sensitive to the values of param-

eters in a range of a ∼ (1 ∼ 3), b ∼ (0.001 ∼ 0.008),

c ∼ (0.1 ∼ 0.7) in confronting the observational data

of galaxies and clusters. The solution is sensitive to the

boundary values of amplitude ξ and slope ξ′. At a fixed set

(a, b, c), we take k0 = 0.055 hMpc−1 and tune the bound-

ary amplitude and slope to fit various survey samples of

galaxies, and then we take k0 = 0.03 h Mpc−1 and fit

samples of clusters.

The solution ξ(r) will confront the observational data

of galaxies and clusters in Sections 5 and 6.

4 GENERAL PREDICTIONS OF FIELD

EQUATION

Inspection of Equation (22) already reveals its predictions

of the important properties of correlation.

(1) Equation (22) can apply to the system of galaxies,

as well as to the system of clusters, and the only

difference is their respective m and k0 contained in

the equation. Thus, the solutions of Equation (22) for

galaxies have a profile similar to that for clusters.

This explains the observational fact that the correla-

tion functions of galaxies and of clusters have the same

power-law form, ξgg , ξcc ∝ r−1.8, but different ampli-

tudes and ranges (Bahcall & Soneira 1983; Klypin &

Kopylov 1983).

(2) The δ(3)(r) source of Equation (22) is proportional

to 1/α = 4πGm/c2s, which determines the over-

all amplitude of a solution ξ. In fitting with observa-

tional data, the parameter 1/α corresponds to the am-

plitude of ξ at some r as the boundary value. As it

turns out, the resulting cs is roughly of order 102 ∼
103 km s−1, which is comparable to the peculiar ve-

locity of galaxies (Hawkins et al. 2003; Masters et al.

2006). Therefore, 1/α is essentially determined by m,

and a greater m will yield a higher amplitude

ξ(r) ∝ m. (24)

This general prediction naturally explains a whole

chain of observed facts: luminous galaxies are more

massive and have a higher correlation amplitude than

ordinary galaxies (Zehavi et al. 2005), clusters are

much more massive and have a much higher corre-

lation than galaxies and rich clusters have a higher

correlation than poor clusters (Bahcall & Soneira

1983; Kaiser 1984; Bahcall 1996; Einasto et al. 2002;

Bahcall et al. 2003).

(3) The power spectrum, as the Fourier transform of ξ(r),

is proportional to the inverse of the spatial number

density

P (k) ∝ 1/n0, (25)

(see Eq. (B.13)). The observed P (k) of clusters is

much higher than that of galaxies, which is explained

by Equation (25) as n0 of clusters being much lower

than that of galaxies (Bahcall 1996). Since a greater

m implies a lower n0 for a given mean mass den-

sity ρ0 = mn0, the properties (24) and (25) reflect

the same physical law of clustering from different per-

spectives.

(4) The characteristic length

λ0 = 2π/k0 =
(π

2

)1/2 cs√
Gρ0

∝ cs√
ρ0

appears in Equation (22) as the only scale and un-

derlies the scale-related features of the solution ξ(r).

Observations reveal that clusters have a longer “corre-

lation length” than galaxies. This can be explained by

the following. At a fixed λ0, ξcc(r) has a higher ampli-

tude and drops to its first zero at a larger distance, lead-

ing to an apparently longer “correlation length” than

ξgg(r). Another possibility may also contribute to this

effect: if ρ0 of the region covered by cluster surveys is
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Fig. 2 Comparison of the nonlinear solution with the Gaussian as a demonstration.

lower than that of galaxy surveys, λ0 for clusters will

be longer accordingly. As will be seen in the following

Sections 5 and 6, to use the solution to match the data

of both galaxies and clusters, one has to take a longer

λ0 for clusters than for galaxies (Collins et al. 2000;

Bahcall & Soneira 1983).

5 APPLYING TO GALAXIES

Now we give the solution ξgg(r) of Equation (23) for

a fixed set of parameters (a, b, c), and confront the ob-

served correlation from major galaxy surveys. We choose

ξgg(r0) > 0 and ξ′gg(r0) < 0 as the boundary condi-

tion at a certain point r0 ∼ 0.1 h−1 Mpc, correspond-

ing to cos(k0r)/r in Equation (B.10) for the Gaussian

case (Zhang 2007). This choice is similar to the choice of

the adiabatic mode in the initial condition of cosmic mi-

crowave background (CMB) anisotropies (Hu & Sugiyama

1995). We shall also convert ξgg(r) into its associated pro-

jected correlation function wp(rp) simultaneously.

First, we consider the correlation function ξgg(r).

For demonstration, we take the parameters (a, b, c) =

(1.2, 0.003, 0.1), though other values of (a, b, c) can be

also chosen. Figure 3 (left) shows the solution ξgg(r)

with k0 = 0.055 hMpc−1 and the observed ξgg(r) by

the galaxy surveys of 2dFGRS (Hawkins et al. 2003) and

SDSS (Zehavi et al. 2005) with a median z ∼ 0.1.

Figure 3 (right) also shows the data of SDSS Data

Release 9 (DR9) with a median redshift z ∼ 0.53, which

we have converted from the data of the projected correla-

tion function in Nuza et al. (2013). Since the samples in

the right and left have different z corresponding to differ-

ent evolutionary stages, we have accordingly chosen two
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different values k0 and boundary conditions ξgg(rb) and

ξ′gg(rb) to compare with the data. It is seen that the theo-

retical ξgg(r) matches the observational data. The power

law ξgg ∝ r−1.7 is valid only in r = (0.1 ∼ 10)h−1 Mpc,

and deviates from both data and solution on large scales.

Moreover, the solution predicts that ξgg(r) decreases to

zero and becomes negative around ∼ 70 h−1 Mpc, where

data are not available currently. On small scales r ≤
1 h−1 Mpc, the solution improves the Gaussian approxi-

mation (Zhang 2007), but is still lower than the data. This

insufficient clustering at r ≤ 1 h−1 Mpc is possibly due to

neglect of high-order nonlinear terms (δψ)3 in perturba-

tions. Note that Equation (22) has been derived assuming

δψ < 1, and extrapolating the solution ξgg down to smaller

scales is only an approximation.

Here we reexamine the assumption of hydrostatic

equilibrium in the quasi-linear regime in the expanding

universe. As is known, in the quasi-linear regime, the den-

sity fluctuation δψ ∝ a(t)0.3 approximately, where a(t) is

the scale factor in the present stage of accelerating expan-

sion. So, the time-evolving correlation function ξgg(r, t) =

〈δψδψ〉 ∝ a0.6(t) = 1/(1 + z)0.6. We have used the static

calculated ξgg(r) to compare with the observed correlation

function ξgg(r, t) in an expanding background. Let us esti-

mate the errors in doing this. Take the static ξgg(r) to cor-

respond to the observed ξgg(r, z = 0). Within the quasi-

linear regime, the ratio ξgg(r)/ξgg(r, t) ≃ (1 + z)0.6 ≃
1 + 0.6z for z ≪ 1, and the error is of order 0.6z. For

the sample of ∼ 200 000 galaxies of SDSS (Zehavi et al.

2005), the redshift range is z = (0.02 ∼ 0.167) with a

median z ∼ 0.1. Take its maximum z = 0.167 and the

ratio ξgg(r)/ξgg(r, t) ≃ (1+0.167)0.6 ∼ 1.097, giving an

error 0.6z ≃ 0.1. Thus, using the static ξgg(r) to describe

the time-evolving ξgg(r, t) of SDDS has a small error for

z ≪ 1. This analysis has also been supported by stud-

ies of numerical simulations. Hamana et al. (2001) have

simulated the time-evolving correlation for ΛCDM model

and demonstrated that ξgg(r, z) has changed by a small

amount during z = 0.4 ∼ 0. The profiles of ξgg(r, z = 0)

and ξgg(r, z = 0.4) are very similar on a whole range

r = (0.1 − 60)h−1 Mpc (and are also similar to our the-

oretical profile ξgg(r)), and the ratio
ξgg(r,z=0)
ξgg(r,z=0.4) ∼ 1.3

for r = (5 − 40)h−1 Mpc. Similar results are also found

in other numerical studies (Yoshikawa et al. 2001; Taruya

et al. 2001). Hence the hydrostatic assumption, as an ap-

proximation, can be applied to a system of galaxies with

z ≪ 1, causing only a small error.

In fact, the observed data of ξgg(r) are inevitably con-

taminated by redshift distortions to varying degrees. Since

our analytical solution ξgg(r) is given in real space, it is

more realistic to compare our result directly with those of

numerical simulations in real space that are free of distor-

tions.

Figure 4 shows that on scales r > 1 h−1 Mpc our solu-

tion ξgg(r) agrees very well with the simulated one given

by Hamana et al. (Hamana et al. 2001). Here the viscosity

parameter a = 2 or 3 has been taken, greater than a = 1.2

used in Figure 3. Similarly, the insufficiency of amplitude

on small scales r < 1 h−1 Mpc should be improved by in-

cluding higher order nonlinear terms.

Next, we consider the projected correlation function.

For sky surveys of galaxies and clusters, the measurement

of distances is through their cosmic redshift z. Galaxies

or clusters have peculiar velocities, causing redshift distor-

tion to the measured distance. To eliminate this distorting

effect, one integrates over the distance parallel to the line

of sight. This leads to the projected correlation function

(Peebles 1980)

Wp(rp) = 2

∞
∫

0

ξ
(√

r2p + y2
)

dy

= 2

∞
∫

rp

ξ(r)
rdr

√

r2 − r2p

, (26)

where rp is the separation of two points vertical to the line

of sight, not distorted by the peculiar velocities.

In Figure 5 (left) the theoretical Wp(rp) is converted

from the solution ξgg(r) in Figure 3 (left), and compares

the observational data of projected correlation function of

2dFGRS (Hawkins et al. 2003) and SDSS (Zehavi et al.

2005). In Figure 5 (right) the theoretical Wp(rp) with

k0 = 0.03 hMpc−1 compares the data of SDSS R9 (Nuza

et al. 2013) with a median redshift z ∼ 0.53. Overall, the

theoreticalWp(rp) traces the observational data well in the

range rp = (1 ∼ 40)h−1 Mpc, but is lower than the data

on small scales rp ≤ 1 h−1 Mpc, the same insufficiency

mentioned before.

6 APPLYING TO CLUSTERS

Clusters are believed to trace the cosmic mass distribution

on even larger scales, and the observational data cover spa-

tial scales that exceed those of galaxies. Now we apply the

solution with the same two sets of (a, b, c) as in Section 5 to

the system of clusters. Clusters have a greater massm than

that of galaxies, leading to a higher overall amplitude of

ξcc(r). In addition, to match the observational data of clus-

ters, a small value k0 = 0.03 hMpc−1 is required, which

is lower than that for galaxies.
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Fig. 3 Left: The solution ξgg(r) with k0 = 0.055 h Mpc−1 is compared with the data of galaxies by 2dFGRS having a median

redshift z ∼ 0.11 (Hawkins et al. 2003) and SDSS having a median z ∼ 0.1 (Zehavi et al. 2005); Right: The solution ξgg(r) with

k0 = 0.03 h Mpc−1 is compared with SDSS DR9 having a median z ∼ 0.53 (Nuza et al. 2013).
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Fig. 4 The solution ξgg(r) is compared with that of the simulations of Hanama et al. (Hamana et al. 2001). Here a = 2, 3 is taken

respectively, greater than that used in Fig. 3 for the survey data.

In Figure 6, two solutions ξcc(r) with different am-

plitudes are given, and are compared with two sets of

data with richness N > 10 and N > 16 from the

SDSS (Estrada et al. 2009). Interpreted by the field equa-

tion (22), the N > 16 clusters have a greater m than the

N > 10 ones. The solutions match the data available on

the whole range r = (18 ∼ 60)h−1 Mpc, and there is no

small-scale insufficiency of correlation that occurred for

the galaxy case. This means that the order of (δψ)2 in per-

turbations is accurate enough to account for the correla-

tion of clusters. Since k0 = 0.03 hMpc−1 for clusters and

k0 = 0.055 hMpc−1 for galaxies, it can be inferred that

the mean density ρ0 involved in this cluster survey is lower

by (0.03/0.055)2 ∼ 0.3 than that in the galaxy case.

Observations show that the cluster correlation scale in-

creases with the mean spatial separation between clusters

(Szalay & Schramm 1985; Bahcall & West 1992; Bahcall

1996; Croft et al. 1997; Gonzalez et al. 2002). For a power-

law ξcc = (r0/r)
1.8 fitting, the data indicate a “correlation

length”

r0 ≃ 0.4di, (27)

where di = n
−1/3
i and ni is the mean number density of

clusters of type i. For SDSS, the scaling can be also fitted

by r0 ≃ 2.6di
1/2 (Bahcall et al. 2003), and for the 2dF

galaxy groups, r0 ≃ 4.7di
0.32 (Zandivarez et al. 2003).
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give a flatter scaling r0 ≃ 0.3d, which seems to fit the data of APM clusters better (Bahcall et al. 2003).
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This kind of r0 − di empirical scaling has been a theoret-

ical challenge (Bahcall 1996), and was thought to be ei-

ther caused by a fractal phenomenon (Szalay & Schramm

1985), or by the statistics of rare peak events (Kaiser 1984).

Interpreted by our theory, the scaling behavior is com-

pletely contained in the solution ξcc(k0r), where the char-

acteristic wavenumber k0 ∝ ρ
1/2
0 ∝ d−3/2 appears to-

gether with r in the variable of the function ξcc. To comply

with the empirical power-law, we take the theoretical “cor-

relation length” as r0(d) ∝ ξ
1/1.7
cc , where ξcc is the solution

depending on d.

Figure 7 shows that the solution ξcc with k0 =

0.03 hMpc−1 gives the scaling r0(d) ≃ 0.4d, agreeing

well with the observation (Bahcall 1996). If a greater k0 =

0.055 hMpc−1 is taken, the solution ξcc would yield a flat-

ter scaling r0(d) ≃ 0.3d, which fits the data of APM clus-

ters better (Bahcall et al. 2003). Our solution ξcc(k0r) tells

us that a higher background density ρ0 corresponds to a

flatter slope of the scaling r0(d), and the scaling is natu-

rally explained.

Extended to very large scales, the observed ξcc(r) ex-

hibits a pattern of periodic oscillations with a characteris-

tic wavelength ∼ 120 h−1 Mpc (Einasto et al. 1997b,a). It

was originally found in the galaxy distribution in narrow

pencil beam surveys (Broadhurst et al. 1990), but also oc-

curs in the correlation function of galaxies (Tucker et al.

1997) and of quasars (Yahata et al. 2005). There have been

various interpretations. Our solution ξ(r) with small val-

ues (a, b, c) exhibits periodic oscillations with a damped

amplitude at increasing r (Zhang 2007). Although the data

from samples of a cylindrical volume show large ampli-

tude at r ∼ 400 − 600 h−1 Mpc, these high amplitude

cases would be damped in a full three-dimensional sam-

ple (Einasto et al. 2002).

7 3-POINT CORRELATION FUNCTION IN

GAUSSIAN APPROXIMATION

It is also interesting to consider the 3-point correlation

function G(3)(r, r′, r′′) in the Gaussian approximation in

our theory. As given in Appendix C, the field equation of

G(3) in the Gaussian approximation is

∇2
rG

(3)(r, r′, r′′) + 2k2
Jψ0G

(3)(r, r′, r′′)

− 2

ψ0
∇G(2)(r, r′′) · ∇G(2)(r, r′)

+ 2k2
JG

(2)(r, r′)G(2)(r, r′′)

+
2

α
ψ0δ

(3)(r − r
′′)G(2)(r, r′)

+
2

α
ψ0δ

(3)(r − r
′)G(2)(r, r′′) = 0 .

(28)

To look for its solution, let G(3) be in the form of the

Kirkwood-Groth-Peebles ansatz (21) with

Q = 1/ψ0. (29)

In fact, Q = 1 since ψ0 = 1 by 〈ρ〉 = ρ0.

Using Equation (B.9) for the 2-point function G(2) in the

Gaussian approximation and the property of δ-function,

the field equation (28) is satisfied automatically (see

Appendix C). Thus, at the Gaussian approximation of our

theory, the analytical solutions are

G(3)(r1, r2, r3) = G(2)(r12)G
(2)(r23)

+G(2)(r23)G
(2)(r31) +G(2)(r31)G

(2)(r12) ,
(30)

where the Gaussian 2-point correlation function (Zhang

2007)

G(2)(r) = A1
Gm

c2s

cos(k0r)

r
+A2

Gm

c2s

sin(k0 r)

r
, (31)

with the coefficients satisfying A1 + A2 = 1. This result

proves that the Kirkwood-Groth-Peebles ansatz (21) with

Q = 1 holds exactly in the Gaussian approximation. As for

the nonlinear field equation of G(3) beyond the Gaussian

approximation, it will be much more involved, and will be

studied in the future.

8 CONCLUSIONS AND DISCUSSION

We have presented a field theory of density fluctuations of

a Newtonian self-gravitating system, derived the nonlinear

field equation of the correlation function of second order

of perturbations, and applied it to systems of galaxies and

clusters in the universe.

As a starting point, we have obtained the field equa-

tion (6) of the mass density field ψ under the condition of

hydrostatic equilibrium. It is better suited for studying the

mass distribution than the Lane-Emden equation of gravi-

tational potential. In dealing with the high nonlinearity, the

mass density field is expanded as ψ = ψ0 + δψ, where

the mean density ψ0 is a constant for the background of

the universe and in this paper, the fluctuation is kept to the

order (δψ)2. This approach can also be applied to other fi-

nite self-gravitating systems, in which a given background

density ψ0 varies in space. As the main result, the field

equation (22) of 2-point correlation function G(2) of den-

sity fluctuation has been derived, whereby the Kirkwood-

Groth-Peebles ansatz is adopted to cut off the hierarchy

and renormalization is performed. As for the 3-point cor-

relation G(3), it is very revealing to find that its field equa-

tion in the Gaussian approximation is automatically sat-

isfied when the Kirkwood-Groth-Peebles ansatz is used
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with Q = 1. Thus the ansatz holds as an exact relation

between G(2) and G(3) at Gaussian level in our theory.

The equation of G(2) is Helmholtz-like and nonlinear up

to order (G(2))2, with three parameters (a, b, c) represent-

ing nonlinear effects beyond the Gaussian approximation.

Notably, the Jeans wavelength λ0 occurs as the only scale,

and the mass m appears as the magnitude of the source.

The result simultaneously explains several seemingly un-

related features of the large scale structure of the universe,

such as the profile similarity of ξcc for clusters to ξgg for

galaxies, the differences in amplitude and in correlation

length of ξcc and ξgg respectively, the r0 − d scaling, and

the pattern of periodic oscillations in ξcc with a wavelength

λ0 ∼ 120 h−1 Mpc. With the same set of (a, b, c), the solu-

tion ξgg agrees with observations of galaxies over a range

(1 ∼ 50)h−1 Mpc, and the solution ξcc of larger m and

λ0 matches observations of clusters over the whole range

(4 ∼ 100)h−1 Mpc. Thus, our theory sheds light on un-

derstanding the large scale structure of universe.

There are several possible improvements that can be

made to the present work. To improve the correlation at

small scales r ≤ 1 h−1 Mpc, higher order fluctuations are

needed, and this can be carried out systematically by per-

turbation. To include the evolution effects, the field equa-

tion of correlation should be extended to the case of cosmic

expansion. Finally, our formulation of perturbation can be

systematically used to derive the nonlinear field equations

of G(3) beyond Gaussian approximation, as well as other

improvements. These would need more studies.
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