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Abstract The Advanced Space-based Solar Observatory (ASO-S) mission aims to explore the two most

spectacular eruptions on the Sun: solar flares and coronal mass ejections (CMEs), and their magnetism.

For the study of CMEs, the payload Lyman-alpha Solar Telescope (LST) has been proposed. It includes a

traditional white-light coronagraph and a Lyman-alpha coronagraph which opens a new window to CME

observations. Polarization measurements taken by white-light coronagraphs are crucial for deriving fun-

damental physical parameters of CMEs. To make such measurements, there are two options for a Stokes

polarimeter which have been applied by existing white-light coronagraphs for space missions. One uses a

single or triple linear polarizer, the other involves both a half-wave plate and a linear polarizer. We find that

the former option is subject to less uncertainty in the derived Stokes vector propagating from detector noise.

The latter option involves two plates which are prone to internal reflections and may have a reduced trans-

mission factor. Therefore, the former option is adopted as our Stokes polarimeter scheme for LST. Based on

the parameters of the intended linear polarizer(s) colorPol provided by CODIXX and the half-wave plate 2-

APW-L2-012C by Altechna, it is further shown that the imperfect maximum transmittance of the polarizer

significantly increases the variance amplification of Stokes vector by at least about 50% when compared

with the ideal case. The relative errors of Stokes vector caused by the imperfection of colorPol polarizer

and the uncertainty due to the polarizer assembly in the telescope are estimated to be about 5%. Among

the considered parameters, we find that the dominant error comes from the uncertainty in the maximum

transmittance of the polarizer.
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1 INTRODUCTION

The energies of solar flares and coronal mass ejections

(CMEs) are believed to originate from the solar mag-

netic field. The simultaneous observations of the mag-

netic field, flares and CMEs, and research on the rela-

tionships between them, are therefore of particular im-

portance. Aiming for this major scientific objective, the

Chinese solar physics community proposed the Advanced

Space-based Solar Observatory (ASO-S) mission (Gan

et al. 2015). ASO-S would carry three payloads: the Full-

disc vector MagnetoGram (FMG), the Lyman-alpha Solar

Telescope (LST) and the Hard X-ray Imager (HXI) to

observe the vector photospheric magnetic field, CMEs

and flares, respectively. The mission has been in phase-B

since September 2017, and is scheduled to be launched in

2022 around the 25th solar activity maximum with a Sun-

synchronous orbit (SSO) at an altitude of 720 km.

LST is dedicated to observations of the early evolu-

tion of CMEs. CME observations have often been taken by

various white-light coronagraphs since the era of Orbiting

Solar Observatory 7 (OSO 7) in the 1970s. For white-light

coronagraphs, polarization measurements are required to

compute Stokes parameters, and further compute the total

brightness (tB), polarized brightness (pB), etc. Based on

these polarization measurements and Thomson scattering

theory for the white-light corona, physical quantities, e.g.,

mass, density and three dimensional locations can be de-
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rived (e.g., Feng et al. 2015a,b; Lu et al. 2017). With LST

we can not only observe the CMEs in white light but also in

Lyman-alpha. Their combination allows us to derive more

quantities related to CMEs, e.g., their thermal properties.

Nevertheless, the white-light coronagraph observations are

still key ingredients in the physical diagnostics of CMEs.

To make polarization measurements, a Stokes po-

larimeter needs to be included in a telescope. For space-

based white-light coronagraphs, a Stokes polarimeter can

be three linear polarizers mounted on a rotating filter

wheel as designed for the Large Angle Spectroscopic

Coronagraph (LASCO) with three polarizers oriented at

0◦, 60◦ and −60◦ (Brueckner et al. 1995). Instead of us-

ing three polarizers, an alternative method is to mount a

linear polarizer in a hollow-core motor and rotate the po-

larizer to various angles as designed for the COR1 and

COR2 white-light coronagraphs. With the 144-step motor

design, the polarizing optic can be positioned in 2.5◦ in-

crements. During normal observing operations, the polar-

izer mechanism will rotate 120◦ with an angular repeata-

bility of better than 30′′ (Howard et al. 2008). Besides

linear polarizers, the Stokes polarimeter unit of white-

light coronagraphs can also include other optical elements.

For instance, the polarimeter assembly of the Ultraviolet

Coronagraph Spectrometer (UVCS) in white light channel

consists of a rotatable half-wave plate and a fixed linear

polarizer (Kohl et al. 1995).

In this paper, in Section 2 we first briefly introduce

the LST aboard ASO-S, and its two possible options of

the Stokes polarimeter for the white-light coronagraph. In

Section 3, through analyzing the effect of detector noise on

the Stokes vector, we evaluate the two options of the Stokes

polarimeter. In Section 4, for the selected Stokes polarime-

ter scheme, we estimate the relative errors of the Stokes

vector due to uncertainties in the polarizer parameters. The

final section is a conclusion and outlook.

2 WHITE-LIGHT CORONAGRAPH ABOARD

ASO-S

2.1 Overview of the Lyman-alpha Solar Telescope

aboard ASO-S

LST consists of three instruments: Solar Disk Imager

(SDI), Solar Corona Imager (SCI) and White-light Solar

Telescope (WST). SDI observes the Sun up to 1.2 RS in

the Lyman-alpha line with a waveband of 121.6± 7.5 nm.

SCI has a field of view (FOV) from 1.1 to 2.5 RS and is a

coronagraph in both the Lyman-alpha (121.6±10nm) and

white-light (700 ± 40 nm) wavebands. WST has the same

FOV as SDI but in the waveband of 360.0± 2.0 nm.

The white-light and Lyman-alpha coronagraphs are

equipped in the same telescope. A beam splitter is in-

stalled. The transmitted light feeds the white-light chan-

nel of SCI and goes through the Stokes polarimeter.

The reflected light feeds the Lyman-alpha channel and

goes through the corresponding filter. The coronal images

in both the white-light and Lyman-alpha wavebands are

recorded by cameras with charge coupled device (CCD) or

complementary metal oxide semiconductor (CMOS) sen-

sors.

2.2 Mueller Matrices for the Stokes Polarimeter of the

White-light Coronagraph

Several calculi have been developed for analyzing polar-

ization, including those based on the Jones matrix, co-

herency matrix, Mueller matrix and other matrices. Among

these matrices, the Mueller matrix is mostly used to char-

acterize the polarization state change when a light beam

passes a polarization element. A polarization state is usu-

ally defined by a Stokes vector S = (SI , SQ, SU , SV ).

For white-light coronagraphs, only linear polarization is

involved. Therefore, we only consider the first three com-

ponents, that is, S = (SI , SQ, SU ). From the Stokes vec-

tor, the following physical quantities can be obtained with

polarimetric coronagraph measurements:

Total brightness (tB)

tB = SI . (1)

Polarized brightness (pB)

pB =
√

S2
Q + S2

U . (2)

Degree of linear polarization (DOLP)

DOLP =
pB

tB
=

√

S2
Q + S2

U

SI

. (3)

In the following two subsections, the Mueller matrices

for the two aforementioned schemes of Stokes polarimeter

are discussed. One only consists of a single rotatable linear

polarizer or three fixed linear polarizers orientated at three

different angles, the other consists of a rotatable half-wave

plate and a fixed linear polarizer. Note that all the Mueller

matrices in this article are mostly adopted or slightly mod-

ified from Bass & Optical Society Of America (1994).

2.2.1 Linear polarizer

A linear polarizer is a device which produces a beam of

light whose electric field vector is oscillating primarily in

one plane, but still has a small component in the perpen-

dicular plane, when it is placed in an incident unpolarized
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light. The most basic Mueller matrix for a linear polarizer

is the matrix for an ideal linear polarizer orientated at zero

degrees. In this case, the maximal intensity transmittance

tmax is along the zero degree axis, and the minimal inten-

sity transmittance tmin is zero along a perpendicular axis.

The corresponding Mueller matrix is shown below

Mpol(0) =
1

2









1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0









.

However, a real linear polarizer usually has tmax < 1 and tmin > 0. The Mueller matrix for the generalized case is

Mpol(0) =
1

2









tmax + tmin tmax − tmin 0 0

tmax − tmin tmax + tmin 0 0

0 0 2
√

tmaxtmin 0

0 0 0 2
√

tmaxtmin









.

The contrast or extinction ratio, transmittance and diattenuation of a linear polarizer are defined as tmax/tmin, tmax + tmin

and (tmax − tmin)/(tmax + tmin), respectively. If we write the matrix in terms of transmittance τp and diattenuation p, we

obtain

Mpol(0) =
τp

2









1 p 0 0

p 1 0 0

0 0
√

1 − p2 0

0 0 0
√

1 − p2









.

As we will see in the next section, for white light coronagraphs using linear polarizers, the polarizer has to be rotated

to three different positions to deduce a Stokes vector S = (SI , SQ, SU ). This can be fulfilled either by mounting three

polarizers orientated at three different positions on a filter wheel or rotating a polarizer with a hollow-core motor. When

we rotate a linear polarizer or some other polarization element by an angle θ, the corresponding Mueller matrix is obtained

with the relationship M(θ) = RM(θ)M(0)RM(−θ), where RM(θ) is

RM(θ) =









1 0 0 0

0 cos 2θ − sin 2θ 0

0 sin 2θ cos 2θ 0

0 0 0 1









,

and the linear polarizer at a position angle θ is derived accordingly with Mpol(θ) = RM(θ)Mpol(0)RM(−θ), that is,

Mpol(θ) =















t+ t− cos 2θ t− sin 2θ 0

t− cos 2θ t+ cos2 2θ +
√

t2+ − t2− sin2 2θ (t+ −
√

t2+ − t2−) cos 2θ sin 2θ 0

t− sin 2θ (t+ −
√

t2+ − t2−) cos 2θ sin 2θ t+ sin2 2θ +
√

t2+ − t2− cos2 2θ 0

0 0 0
√

t2+ − t2−















,

where t± = (tmax±tmin)/2.

The polarizer that we are going to use for the white light coronagraph of LST is a colorPol polarizer from the German

CODIXX company. The product parameters are presented in Figure 1. Our white-light coronagraph works in the waveband

of 700±40nm. As read from the red and black curves, the transmittance for the selected waveband is in the range of about

0.78 to 0.82, and the contrast from 5.2 × 105 to 2.0 × 104. Such transmittance and contrast values yield the maximum

transmittance tmax from about 0.78 to 0.82, and the minimum transmittance tmin from 1.5 × 10−6 to 4.0 × 10−5. The

derived tmax and tmin ranges will be further utilized in Sections 3 and 4.

2.2.2 Half-wave plate and linear polarizer

The combination of a rotatable half-wave plate and a fixed linear polarizer is another option for the Stokes polarimeter

for white light coronagraphs. A waveplate or retarder is an optical device that is used to alter the polarization state of

an incident beam. A half-wave plate shifts the polarization direction of linearly polarized light, specifically, it flips the
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direction around its fast axis (del Toro Iniesta 2003; Collett 2005). The retardance δ of a half-wave plate should ideally be

δ = π. For an ideal half-wave plate with its fast axis at zero degrees, the corresponding Mueller matrix is

MHWP(φ = 0, δ = π) =









1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1









.

In general cases with the fast axis at an angle of φ and a retardance of δ, the Mueller matrix is

MHWP(φ, δ) =









1 0 0 0

0 cos2 2φ + sin2 2φ cos δ sin 2φ cos 2φ(1 − cos δ) − sin 2φ sin δ

0 sin 2φ cos 2φ(1 − cos δ) sin2 2φ + cos2 2φ cos δ cos 2φ sin δ

0 sin 2φ sin δ − cos 2φ sin δ cos δ









.

For the combination of a rotatable half-wave plate and a fixed linear polarizer, the resultant Mueller matrix M(φ, δ, θ)

can be derived by M(φ, δ, θ) = Mpol(θ)MHWP(φ, δ). As it becomes very lengthy, we only write down the first row of

M(φ, δ, θ). We will see in Section 3 that to derive the Stokes vector, only the first row is involved in the calculation.

M11(φ, δ, θ) = t+

M12(φ, δ, θ) = t− cos 2θ(cos2 2φ + sin2 2φ cos δ) + t− sin 2θ sin 2φ cos 2φ(1 − cos δ)

M13(φ, δ, θ) = t− cos 2θ sin 2φ cos 2φ(1 − cos δ) + t− sin 2θ(sin2 2φ + cos2 2φ cos δ)

M14(φ, δ, θ) = 0

The half-wave plate that we have investigated is the 2-APW-L2-012C product from the Altechna company. Usually

for a birefringent crystal, the retardance of a waveplate is denoted as δ = (ne − no)d 2π/λ, and retardation as δ/2π =

(ne − no)d/λ, where d is the thickness of the waveplate, ne and no are refractive indices of extraordinary and ordinary

rays respectively, and λ is the wavelength. From Figure 2, we find that the retardation in the waveband of 700± 40 nm is

in the range from 0.4925 to 0.51 in units of λ. Therefore, the corresponding retardance δ is from 0.985π to 1.02π. For the

fixed linear polarizer, the parameters tmax and tmin in t+ and t− are the same as those in Section 2.2.1.

2.3 Modulation and Demodulation Matrices

Mueller matrices are used to describe the change of polarization states for incident and exiting light beams when they

pass through a polarization element. However, we cannot use them directly to derive the Stokes vectors that quantify the

polarization states. For intensity-measuring instruments, the SI component of a Stokes vector of the exiting light beam

can be directly measured. To derive the Stokes vector (or some of its components) of the incident light beam, we usually

let the incident beam go through a polarization element with altering parameters to produce a series of measurements SI

for the exiting beams. As only SI of the exiting beams are involved, merely the first row of the Mueller matrix enters the

calculations. One example is an incident light beam with polarization state S = (SI , SQ, SU ) which goes through a linear

polarizer with three altering position angles θ1, θ2, θ3. This process can be described by





Sθ1

I

Sθ2

I

Sθ3

I



 =





t+ t− cos 2θ1 t− sin 2θ1

t+ t− cos 2θ2 t− sin 2θ2

t+ t− cos 2θ3 t− sin 2θ3









SI

SQ

SU



 = O1S. (4)

The matrix on the right side is called the modulation matrix (del Toro Iniesta & Collados 2000). By using the modu-

lation matrix, we can set up a system of linear equations allowing a solution to the unknown S = (SI , SQ, SU ) in terms

of the measured intensity I = (Sθ1

I , Sθ2

I , Sθ3

I ). If we denote the modulation matrix as O, we have I = OS. The inverse

matrix of O is called the demodulation matrix. If we designate it as D, the unknown S of the incident light beam can be

obtained as S = DI . To discriminate the two Stokes polarimeter schemes, i.e., only linear polarizer(s) versus a half-wave

plate plus a linear polarizer, we indicate the modulation and demodulation matrices as O1 and D1 for the former scheme,

and O2 and D2 for the latter scheme respectively.



L. Feng et al.: Error Analyses of Polarization Measurements 59–5

In an ideal case, t+ = t− = 1/2. For the three polarizers of LASCO mounted on a filter wheel, θ1 = −60◦, θ2 = 0◦

and θ3 = 60◦. Also in the case of the single polarizer of SECCHI/COR mounted on a hollow-core motor, θ1 = 0◦,

θ2 = 120◦ and θ3 = 240◦. Using LASCO as an example, we have

SI =
2

3
(S−60

I + S0
I + S60

I ),

SQ =
2

3
(−S−60

I + 2S0
I − S60

I ),

SU =
2

3
(−

√
3S−60

I +
√

3S60
I ).

The total brightness (tB) and polarized brightness (pB) that we often use for further analyses then can be derived

using Equations (1) and (2). Consequently,

tB =
2

3

(

S−60
I + S0

I + S60
I

)

,

pB =
4

3

√

[

(

S−60
I + S0

I + S60
I

)2 − 3
(

S−60
I S60

I + S0
I S60

I + S−60
I S0

I

)

]

,

which are often seen in the references related to LASCO polarization analyses (e.g. Moran & Davila 2004; Lu et al. 2017).

When using the combination of a rotatable half-wave plate and a fixed linear polarizer as the Stokes polarimeter, the

modulation matrix can be similarly derived







Sφ1

I

Sφ2

I

Sφ3

I






=





M11(φ1, δ, θ0) M12(φ1, δ, θ0) M13(φ1, δ, θ0)

M11(φ2, δ, θ0) M12(φ2, δ, θ0) M13(φ2, δ, θ0)

M11(φ3, δ, θ0) M12(φ3, δ, θ0) M13(φ3, δ, θ0)









SI

SQ

SU



 = O2S, (5)

where φ1, φ2 and φ3 are the orientation angles of the half-wave plate fast axis and θ0 is the position angle of the linear

polarizer. For the white-light coronagraph of LST, θ0 is set to zero. As we mentioned before, a half-wave plate is able to

mirror the polarization vector about its fast axis. For an identical incident beam, to have equivalent effects for the linear

polarizer oriented at −60◦, 0◦ and 60◦, and the fast axis of the half-wave plate is rotated to −30◦, 0◦ and 30◦, respectively.

Given such conditions, the corresponding ideal modulation scheme is







Sφ1

I

Sφ2

I

Sφ3

I






=





0.5 −0.25 −
√

3/4

0.5 0.5 0

0.5 −0.25
√

3/4









SI

SQ

SU



 . (6)

The unknown S = (SI , SQ, SU ) can be derived analogously by inverting the modulation matrix. More generally, if we

set θ0 = 0 and δ = π in Equation (5) we have







Sφ1

I

Sφ2

I

Sφ3

I






=





t+ t− cos 4φ1 t− sin 4φ1

t+ t− cos 4φ2 t− sin 4φ2

t+ t− cos 4φ3 t− sin 4φ3









SI

SQ

SU



 = O2S. (7)

The equivalent situation with θ = 2φ in O1 of Equation (4) and in O2 of Equation (7) can be derived. Note that due to the

fourth zero element in the first row of all the Mueller matrices above, we shrink the dimension of the modulation matrices

from 4 × 4 to 3 × 3 and only calculate the first three components of the Stokes vector.

3 EFFECT OF DETECTOR NOISE ON STOKES

VECTOR

In this section, we compare the two aforementioned op-

tions of Stokes polarimeter for the white-light coronagraph

of LST/SCI in terms of the effect of detector noise on the

derived Stokes vector. For the first option, the linear polar-

izer(s) of SCI are positioned at −60◦, 0◦ and 60◦, respec-

tively. For the second option, an equivalent configuration is

a rotatable half-wave plate orientated at −30◦, 0◦ and 30◦

and a fixed linear polarizer orientated at 0◦. In both cases,

we make three measurements Sp
I at three different angles

of p = [−60◦, 0◦, 60◦] or p = [−30◦, 0◦, 30◦]. These three

measurements have respective means 〈Sp
I 〉 and variances

σ2
p due to detector noise. As shown in Section 2, the Stokes

vector can be derived with S = DI . The error propagation
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Fig. 1 The transmittance and contrast as a function of wave-

length for the linear polarizer product colorPol VIS BC5 are

shown by red and black curves, respectively (adopted from

https://www.codixx.de/en/vis-visible/vis-visible-polarizer.html).

Fig. 2 Retardation as a function of wavelength for the half-

wave plate product 2-APW-L2-012C from the Altechna company

(adopted from https://www.altechna.com/products/achromatic-

broadband-waveplates/).

Fig. 3 The condition number and variance amplification in

the first (upper panels) and second (lower panels) modulation

schemes and the error bars are derived from ±3σ of 500 Monte-

Carlo calculations. All the angles have a uniformly random dis-

tribution within ±1◦ of their supposed values.

to the variances of Stokes components σ2
q(q = I, Q, U)

can be estimated accordingly.

σ2
I = D2

11σ
2
p1 + D2

12σ
2
p2 + D2

13σ
2
p3

σ2
Q = D2

21σ
2
p1 + D2

22σ
2
p2 + D2

23σ
2
p3

σ2
U = D2

31σ
2
p1 + D2

32σ
2
p2 + D2

33σ
2
p3

If we assume variances measured at three angles are the

same, that is σ2
p1 = σ2

p2 = σ2
p3 = σ2

p , then the amplifi-

cation of the detector noise induced in the Stokes compo-

nents can be simplified by the sum of the squared elements

in each row of the demodulation matrix D. In the cases

of an ideal linear polarizer and an ideal half-wave plate in

the two modulation schemes, we find that σ2
I = 4/3 σ2

p

and σ2
Q = σ2

U = 8/3 σ2
p for both D1 ideal and D2 ideal.

Therefore, the amplification factor for SI is 4/3, and that

for SQ and SU is 8/3.

Besides using the norm of the row sum d2
q = Σp(D

2
qp)

where q = I, Q, U is a measure for the variance amplifi-

cation, another measure is based on the condition numbers

of the modulation matrices cond(O1) and cond(O2) (Tyo

2002). Actually, the accuracy of the solution S to the lin-

ear equations I = OS depends on the condition number

of the matrix O. If O is well-conditioned, the computer-

ized solution tends to be accurate. What we often use is

the 2-norm for the condition number, that is, cond2(O) =

λmax/λmin where λmax and λmin are the maximal and

minimal eigenvalues of O respectively. In the ideal cases

of O1 ideal and O2 ideal, we find that cond2(O1 ideal) =

cond2(O2 ideal) =
√

2.

However, in real cases an ideal linear polarizer and

an ideal half-wave plate are almost impossible to obtain.

The key parameters of the products that we use for the

white light coronagraph of LST/SCI are introduced in

Figure 1 and 2, respectively. Before using the specific prod-

uct parameters, we have studied the variations of the con-

dition number and amplification factors as a function of

the key parameters, e.g., the minimum transmittance tmin

of a Stokes polarimeter. The upper and lower two pan-

els of Figure 3 present the condition number and variance

amplification for the first and second Stokes polarimeter

schemes, respectively. The calculations are made under the

assumption that tmax = 1− tmin for the linear polarizer(s),

and the uncertainty in all the orientation angles is ±1◦. In

the first case, the three angles of the linear polarizer(s) are

centered at p = [−60◦, 0◦, 60◦], and with 500 uniformly

distributed numbers in the interval [p − 1◦, p + 1◦]. The

resultant error bars in the upper panels of Figure 3 are de-

rived accordingly as the 3σ of these 500 calculations. We

can see that the condition number and the amplification

factors for SI , SQ and SU start with the ideal numbers
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Fig. 4 Condition numbers and variance amplifications as a function of tmin and tmax for using linear polarizer(s) as the Stokes

polarimeter of LST/SCI. Panels (a–d) and (e–h) are the results for a function of tmin × 105 and tmax respectively. Panels (a) and

(e) present the results of the condition number. Panels (b) and (f), (c) and (g), and (d) and (h) demonstrate the variance amplification of

SI , SQ and SU respectively. In panels (a–d), the solid and long dashed lines represent the results for tmax = 0.78 and 0.82 respectively.

In panels (e–h), the solid and long dashed lines represent the results for tmin = 1.5 × 10−6 and 4 × 10−5 respectively.

√
2, 4/3, 8/3, 8/3 at tmin = 0, and increase nonlinearly.

In the second case, the half-wave plate is rotated to three

different positions centered at p = [−30◦, 0◦, 30◦] in the

interval [p − 1◦, p + 1◦], and the linear polarizer is fixed

at zero degree with an uncertainty of ±1◦. The retardance

of the half-wave plate is π by default. Similarly we have

made 500 calculations, and the error bars in the lower pan-

els are also ±3σ of these 500 calculations. The comparison

of the condition number and amplification factors between

the two schemes shows that they have similar mean val-

ues, but the uncertainties in the second scheme are more

than two times larger than those in the first scheme.

To evaluate the effect of the detector noise on the

Stokes vector when using our selected linear polarizer and

half-wave plate products displayed in Figures 1 and 2 for

LST/SCI respectively, we have computed the condition

numbers and amplification factors by setting the linear po-

larizer tmin in the interval [1.5 × 10−6, 4.0 × 10−5], tmax

in the interval [0.78, 0.82] and half-wave plate retardance δ

in the interval [0.985π, 1.02π]. For LST/SCI, the precision

of the position angles is estimated to be up to ±0.1◦.

In Figures 4 and 5, we present the condition numbers

and variance amplifications as a function of tmin and tmax

for the aforementioned two Stokes polarimeter schemes.

Panels (a-d) are the results as a function of tmin × 105, and

panels (e-h) are the results as a function of tmax. Panels (a)

and (e) present the results of the condition number. Panels

(b) and (f), (c) and (g), and (d) and (h) demonstrate the

variance amplification of SI , SQ and SU , respectively. In

panels (a-d) of Figure 4, the solid and long dashed lines

represent the results for tmax =0.78 and 0.82, respectively.

In panels (e-h) of Figure 4, the solid and long dashed lines

represent the results of tmin = 1.5×10−6 and 4×10−5, re-

spectively. Due to the very small interval of tmin, the solid

and long dashed lines overlap each other. Concerning the

second scheme with the half-wave plate and the linear po-

larizer, the designations of the lines and panels in Figure 5

are almost the same as those in Figure 4. The only differ-

ence is that for solid and long dashed lines, additionally the

retardance of the half-wave plate δ is set to be π, and for

dashed lines, δ = 1.02π, tmax = 0.78 or tmin = 4× 10−5.

Because the ±0.1◦ precision of the polarizer and the half-

wave plate orientation angles are very high, the consequent

error bars are nearly invisible, and are therefore not in-

cluded in Figures 4 and 5.

The linear polarizer to be used by SCI has very small

tmin. Thus by comparing Figures 4 and 5 and the ideal val-

ues in Figure 3, we can evaluate the effects of tmax and δ

on the condition numbers and variance amplifications. The

lower tmax decreasing from unity to [0.78, 0.82] lifts the

condition number from
√

2 to about 1.416, and the imper-

fection of the half-wave plate with δ = 1.02π further in-

creases the condition number to about 1.417. The elevation

of variance amplifications is more prominent. The ideal

numbers for SI , SQ and SU are 4/3, 8/3 and 8/3 respec-

tively. After considering the imperfect tmax and δ, these

numbers increased significantly. For instance, the amplifi-

cation factor for SI increases from 4/3 to the interval [1.98,

2.19], and for SU and SQ elevates from 8/3 to the inter-

val [3.97, 4.39]. The increment of the amplification factors

ranges from 49% to 65%.

Actually according to Equations (4) and (7), the errors

introduced by uncertainties in the assembly parameters in

these two schemes differ. φ has a factor 4 so it must be

twice as good as the polarizer angle θ. In addition, the half-

wave plate assembly has one more parameter. The retarda-
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tion δ in Equation (5) could be an additional source of un-

certainty. Moreover, there is an additional disadvantage of

the half-wave plate assembly. It needs two plates which are

prone to internal reflections and may have a reduced trans-

mission factor. Therefore, for LST/SCI we tend to adopt

the first scheme with only linear polarizers involved.

4 ERRORS OF STOKES VECTOR DUE TO THE UNCERTAINTIES IN THE POLARIZER PARAMETERS

This section is dedicated to the calculation of errors of Stokes vector due to uncertainties in the polarizer parameters:

tmax, tmin and θ for LST/SCI. Because ∆tmax = 0.04, ∆tmin = 4 × 10−5 and ∆θ = 1◦ = 0.0017 rad are small, we can

linearize (Tyo 2002)

dS

dtmax

=
d

dtmax

D1





S−60
I

S0
I

S60
I



 ,
dS

dtmin

=
d

dtmin

D1





S−60
I

S0
I

S60
I



 ,
dS

dθ
=

d

dθ
D1





S−60
I

S0
I

S60
I



 . (8)

Then the variance in Sq(q = I, Q, U) due to uncertainties ∆tmax, ∆tmin and ∆θ can be calculated by

σ2
q =

(

dSq

dtmax

∆tmax

)2

+

(

dSq

dtmin

∆tmin

)2

+

(

dSq

dθ
∆θ

)2

. (9)

Because we cannot obtain the derivatives of D1 analytically, we reformat it as the derivative of O1. For instance, the

derivative with respect to θ can be rewritten as

dS

dθ
=

d

dθ
D1





S−60
I

S0
I

S60
I



 =
d

dθ
(D1)O1S = −D1

d

dθ
(O1)S . (10)

Deriving the derivatives of O1 is straightforward. The results are

d

dtmax





t+ t− cos 2θ1 t− sin 2θ1

t+ t− cos 2θ2 t− sin 2θ2

t+ t− cos 2θ3 t− sin 2θ3



 =
1

2





1 cos 2θ1 sin 2θ1

1 cos 2θ2 sin 2θ2

1 cos 2θ3 sin 2θ3



 , (11)

d

dtmin





t+ t− cos 2θ1 t− sin 2θ1

t+ t− cos 2θ2 t− sin 2θ2

t+ t− cos 2θ3 t− sin 2θ3



 =
1

2





1 − cos 2θ1 − sin 2θ1

1 − cos 2θ2 − sin 2θ2

1 − cos 2θ3 − sin 2θ3



 , (12)

d

dθ





t+ t− cos 2θ1 t− sin 2θ1

t+ t− cos 2θ2 t− sin 2θ2

t+ t− cos 2θ3 t− sin 2θ3



 =





0 −2t− cos 2θ1 2t− sin 2θ1

0 −2t− cos 2θ2 2t− sin 2θ2

0 −2t− cos 2θ3 2t− sin 2θ3



 . (13)

In Figure 6 we plot the sum of the squared elements in

any row of D1
d

dtmax

(O1), D1
d

dtmin

(O1), D1
d
dθ

(O1) for

tmin in the interval [1.5 × 10−6, 4.0 × 10−5], tmax in the

interval [0.78, 0.82] and θ in the interval [−60◦, 0◦, 60◦]±
0.1◦ respectively. In panels (a) and (b), the solid lines

and dashed lines represent the Σp(D1dO1/dtmax)
2
qp,

Σp(D1dO1/dtmin)
2
qp as a function of tmin × 105 for

tmax = 0.78 and tmax = 0.82 respectively. In the very

small range of tmin, we find that both sums for different

q = I, Q, U are identical and have almost no variation,

and there is only a 12% difference between the results

for tmax = 0.78 and tmax = 0.82. In panel (c), the un-

certainty Σp(D1dO1/dθ)2qp in θ depends neither on tmin

nor tmax, as the solid lines and dashed lines are super-

imposed onto each other and there is no variation along

tmin. However, the uncertainties for q = Q, U and for

q = I are quite different. Note that when we increase ∆θ

from 0.1◦ to 10◦ or even some larger numbers, Figure 6

has almost no change. Therefore, a deviation of the polar-

izer orientations from the correct angles does not seem to

enhance Σp(D1d O1/dtmax)
2
qp, Σp(D1d O1/dtmin)

2
qp or

Σp(D1d O1/dθ)2qp. An estimate of the induced maximum

relative uncertainty in the Stokes parameters is obtained by

multiplying the polarizer parameter errors to the respec-

tive ordinate value in Figure 6. For given ∆tmax = 0.04,

∆tmin = 4 × 10−5 and ∆θ = 0.0017 rad, according

to Equation (9), we find that the relative errors σI/SI ≈
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Fig. 5 Condition numbers and variance amplifications as a function of tmin and tmax using a half-wave plate and a linear polarizer

as the Stokes polarimeter of LST/SCI. Panels (a–d) and (e–h) illustrate the results as a function of tmin × 105 and tmax respectively.

Panels (a) and (e) present the results of the condition number. Panels (b) and (f), (c) and (g), and (d) and (h) demonstrate the variance

amplification of SI , SQ and SU respectively. In panels (a–d), the solid and long dashed lines delineate the results for tmax = 0.78 and

0.82 respectively, with δ = π. The dashed lines represent the results for tmax = 0.78 and δ = 1.02π. In panels (e–h), the solid and

long dashed lines delineate the results for tmin = 1.5 × 10−6 and 4 × 10−5 respectively, with δ = π. The dashed lines represent the

results for tmin = 4 × 10−5 and δ = 1.02π.

Fig. 6 The sum of the squared elements in each row of D1
d

dtmax
(O1), D1

d

dtmin
(O1), D1

d

dθ
(O1) as a function of tmin × 105. The

solid and dashed lines correspond to the results for tmax = 0.78 and tmax = 0.82 respectively.

Fig. 7 Projected orientation angles from −60◦, 0◦, 60◦ measured in the plane defined by the pitch and yaw angles onto the plane with

zero pitch and yaw angles.
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σQ/SQ ≈ σU/SU ≈ 5% and the major error comes from

∆tmax.

The last but not least error source to consider is the

pitch and yaw angles of the linear polarizer mounted on a

filter wheel or a hollow-core motor. We assume the max-

imal pitch and yaw angles are 2◦ and project the polar-

izer orientation angle measured in the plane defined by the

pitch and yaw angles onto the plane with zero pitch and

yaw angles. Note that the designed three orientation an-

gles are intended to be −60◦, 0◦, 60◦ in the plane defined

by the pitch and yaw angles. The projected orientation an-

gles as a function of pitch and yaw angles are displayed

in Figure 7. The upper and lower panels show the results

as a function of pitch angle and yaw angle respectively.

We find that in the projected plane with zero pitch and

yaw angles, the maximal deviations from −60◦, 0◦, 60◦

are 0.015◦, 0◦, 0.015◦ respectively. Therefore, the errors

induced by the pitch and yaw angles with a maximum of

2◦ can be negligible.

5 CONCLUSIONS AND OUTLOOK

For studies of CMEs in the corona above the solar limb,

ASO-S carries a white-light and Lyman-alpha coronagraph.

This paper is dedicated to the polarization measurements

taken by the white-light coronagraph. There are two op-

tions for Stokes polarimeter which are often implemented

for white-light coronagraphs. One consists of either a sin-

gle rotatable linear polarizer mounted on a hollow-core

motor or three fixed linear polarizers with different orien-

tation angles mounted on a filter wheel. The other consists

of a rotatable half-wave plate and a fixed linear polarizer.

For these two schemes of Stokes polarimeter, we have cal-

culated their corresponding Mueller, modulation and de-

modulation matrices for further analyses.

We have compared the effect of detector noise on the

Stokes vector in terms of the condition number of mod-

ulation matrix and the amplification factor of the mea-

surement variance to the variance of Stokes vector. It

shows that both options for Stokes polarimeter have sim-

ilar mean condition number and amplification factors, but

the scheme using only linear polarizer(s) is subject to less

uncertainty caused by the imperfection of orientation an-

gles. Moreover, the latter option involves two plates which

are prone to internal reflections and may have a reduced

transmission factor. Therefore, we intend to adopt the

first scheme for the white-light coronagraph of LST/SCI.

Within the first scheme, we find, after experimenting in

the lab, that applying three linear polarizers oriented at

three different angles installed in a filter wheel is more re-

liable than implementing a single rotatable linear polarizer

mounted in a hollow-core motor.

We further calculate the effect of detector noise on the

Stokes vector using the parameters of the linear polarizer

product from CODIXX and the half-wave plate product

from Altechna. The minimum transmittance tmin is close

to the ideal situation, whereas the maximum transmittance

tmax is significantly reduced. Such a decrease slightly in-

creases the condition number and greatly elevates the am-

plification factors by at least 50% from their ideal levels.

The additional imperfection of the retardance of the half-

wave plate introduces only a slight further increment to the

amplification factors.

Finally we estimate the relative errors of Stokes vec-

tor due to uncertainties in the polarizer parameters for the

first scheme of the Stokes polarimeter which will be used

by LST/SCI. It is found that the relative errors are about

5% and the major error comes from the large uncertainty

in tmax. tmin and θ have very limited contributions. The er-

ror induced by the assembling pitch and yaw angles of the

linear polarizer(s) within 2◦ is evaluated to be negligible.

The current calculations are based on the product parame-

ters provided by the company. In the future, these parame-

ters will be measured in the laboratory which may narrow

down the error estimate of our polarization measurements.
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