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Abstract A new method based on the parameters iteration technique has been developed to determine

the optimal subreflector position for shaped Cassegrain antennas, that are distorted by gravity, to improve

their electromagnetic (EM) performance. Both the features of shaped surface and the relationship between

optical path difference (OPD) and far field beam pattern are employed. By describing the shaped dual-

reflector surface as a standard discrete parabola set, we can utilize the optical features of the standard

Cassegrain system in the classical OPD relationship. Then, the actual far field beam pattern is expressed

as the synthesis of ideal beam and error beam by decomposing subreflector adjustment parameters using a

mechanical-electromagnetic-field-coupling-model (MEFCM). Furthermore, a numerical method for deter-

mining optimal subreflector position is presented. The proposed method is based on the iteration technique

of subreflector adjustment parameters, and the optimal far field pattern is used for the iteration. The numeri-

cal solution of optimal adjustment parameters can be obtained rapidly. Results for a 25 m shaped Cassegrain

antenna demonstrate that the adjustment of the subreflector to the optimal position as determined by the pro-

posed method can improve the EM performance effectively.
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1 INTRODUCTION

Structural deformation in a large reflector antenna is in-

evitable in operating conditions due to exterior loads such

as gravity, temperature and wind, which will result in an-

tenna gain loss and pointing error caused by beam dis-

tortions. The mechanical-electromagnetic-field-coupling-

model (MEFCM) (Duan & Wang 2009; Lian et al. 2015;

Wang et al. 2018) is widely applied to analyze the influence

of structural deformation on the electromagnetic (EM) per-

formance of reflector antennas. It can be used to rapidly an-

alyze the influence of different types of errors on a far field

beam pattern, such as surface random errors and structural

deformation errors (Wang et al. 2007). In MEFCM, a key

step is to obtain the aperture field phase error (PE) or op-

tical path difference (OPD), especially for dual-reflector

antennas (Ban et al. 2017).

Many researchers have investigated the influence of

structural errors on OPD and EM performance of reflec-

tor antennas. Duan & Wang (2009) studied the influence of

surface random errors and systematic errors on EM perfor-

mance and established the optimization model for the in-

tegrated mechanical-electromagnetic performance. Baars

(2007) examined the influence of different types of struc-

tural deformation on OPD for primary-focus antennas,

such as axial and lateral feed defocus errors. Ruze (1969)

explored the influence of different types of structural de-

formation on the EM performance for dual-reflector anten-

nas and derived the relationship between different types of

structural errors and OPD for a dual-reflector, such as feed

displacement, subreflector translation, rotation offsets, etc.

To realize high gain and favorable beam pattern

for large-aperture and high-frequency reflector antennas,

many researchers have focused on the active compensation

technique through feed or subreflector adjustment. Song

and Zhang (Song et al. 2009; Zhang et al. 2018) proposed

a computational model for analyzing the effect of both re-

flector errors and phase center errors on a far field pattern
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to find the optimal phase center. A method for describing

the relationship between far field and aperture field by the

aperture field integration method was presented in Lian

et al. (2014) and the amount of feed adjustment was de-

termined from the far pattern by the proposed method. In

these studies, the researches mainly focused on the cor-

rection of the feed position and pose based on deforma-

tion of the primary reflector surface. However, for dual re-

flector antennas, the feeds are difficult to adjust frequently

because they are located on the secondary focus near the

primary reflector vertex, which is large and heavy. In fact,

adjustment of the subreflector position would be an eas-

ier way to improve aperture efficiency. For the problem

of EM performance degradations caused by primary re-

flector deformation, the group of approximate paraboloids

was used to fit the deformed surface in Wang et al. (2013).

The new subreflector position was obtained by utilizing an

optimal geometric match to compensate the primary sur-

face deformation. In Doyle (2009), the subreflector or feed

was moved to compensate the effect of antenna structural-

thermal deformation. The common premise in Wang et al.

(2013) and Doyle (2009) was information on deforma-

tion of the primary reflector in most working conditions.

Nevertheless, the environment of antenna work was very

complicated, including gravity, thermal and wind loads,

and it was not easy to obtain the actual shape of the an-

tenna surface quickly. Generally, the surface deformation

of the antenna can be measured by industrial photogram-

metry, but the measurement needs to use a crane for assis-

tance and it only works at night, and the operation is dif-

ficult and needs a long time to complete the measurement,

so the deformed surface shape within the scope of all ele-

vations cannot be obtained in a short time. Therefore, it is

desirable to correct the antenna deformation by adjusting

the subreflector, which is quick and simple. In this way,

the EM performance of the antenna is acquired directly

from the receiver and terminal of the radio telescope an-

tenna, and the real-time subreflector position adjustment

can be realized based on electromechanical coupling the-

ory to improve the antenna efficiency.

In electromechanical coupling theory, the relationship

between antenna structural deformation and OPD should

be used in MEFCM to analyze the influence of structural

errors on far field beam pattern. However, these relation-

ships (Ruze 1969; Baars 2007; Duan & Wang 2009) are

only suitable for standard reflectors, which can be accu-

rately described by a closed-form expression, and they can-

not be directly applied for shaped reflectors. In this pa-

per, the shaped surface described by a discrete standard

parabola set is adopted and a new method for optimal sub-

reflector position determination based on the iteration tech-

nique is proposed, which aims to obtain the optimal EM

performance. The optimal parameters of the subreflector

position can be calculated rapidly by an efficient numer-

ical iterative algorithm, generating a fast numerical so-

lution. Numerical computation results for a 25 m shaped

Cassagrain antenna indicate that the reduction of EM per-

formance caused by gravity deformation can be substan-

tially compensated by adjustment of subreflector position

and the adjustment parameters obtained by the iteration ap-

proach are effective and appropriate.

2 OPTICAL PATH DIFFERENCE OF A SHAPED

DUAL-REFLECTOR ANTENNA

To enable MEFCM to be applied in the analysis of

structural deformation influence for shaped reflectors, we

present a method for the description of the shaped reflec-

tor surface in this paper, which is based on a standard dis-

crete parabola set. The method mainly deals with electro-

mechanical coupling analysis of shaped dual-reflector an-

tennas. To obtain high aperture efficiency and low sidelobe

levels, the reflector shaping design is adopted to obtain

the desired aperture field distribution. The shaping design

should satisfy three conditions (Milligan 2005): conserva-

tion of power, equality of path-length and law of reflection.

Shaped reflectors can spread spherical waves into a desired

pattern based on geometric optics. A schematic diagram of

the shaped Cassegrain dual-reflector antenna is shown in

Figure 1, where a spherical wave from the focal point F

is changed into an equal phase plane wave from reflection

by the primary reflector and subreflector. With the shaping

design, generatrices of the primary and secondary reflector

are not standard parabola or hyperbola, respectively, and

cannot be accurately described by a closed form equation.

The shaped surfaces do not satisfy the geometric relation-

ship of classical Cassegrain systems, and thus the classi-

cal dual-reflector OPD relationships (Ruze 1969) cannot

be directly employed. To apply Ruze’s OPD relationships,

we express the shaped dual-reflector surface based on the

standard discrete parabola set in this paper.

2.1 Formulation Expression of the Shaped

Dual-Reflector

A diagram of the proposed description method for the dual-

reflector surface is shown in Figure 2, and the research

topic in the paper is the shaped Cassegrain antenna. The

point set of the surface generatrix for the shaped primary

reflector is written as a discrete set of points from different
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ˆ in
Fig. 1 Schematic diagram illustrating the shaped Cassegrain

dual-reflector.
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Fig. 2 Description of shaped surface by standard discrete

parabola set.

parabolic equations, which is expressed as follows

x2

i = 4fi(zi − hi) , (1)

where hi signifies the offset of the z direction for

parabola i and fi denotes focal length of parabola i.

The point set of the shaped dual-reflector is described as

L = {P1, · · · , Pn} for the primary surface and Q =

{S1, · · · , Sn} for the secondary surface, and there is a one-

to-one correspondence between the points Pi(xpi, zpi) and

Si(xsi, zsi). The slopes of points on a shaped primary sur-

face, which are expressed as ki, can be obtained by discrete

point difference or mean weighted by areas of adjacent tri-

angles. According to the characteristics of the parabola, ki

is described by

ki = xi/(2fi) = tan(ϕi/2) . (2)

As shown in Table 1, the relative parameters of a

shaped dual-reflector can be obtained, where ϕi and θi are

the full angle between the incident and reflected rays and

the angle between symmetry axis and ray from the subre-

flector to the feed, respectively.

2.2 Formulation for Expression of Optical Path

Difference

This paper is focused on the influence of antenna structure

distortion on OPD and far field beam pattern. Because the

errors caused by primary reflector surface distortion and

subreflector displacement are generally not large, they be-

long to the small deformation errors compared with aper-

ture size and focal length. Furthermore, as the displace-

ment errors of reflector surface are always very small, the

influence of the errors on the amplitude distribution of the

aperture surface can be ignored and only the influences on

the phase distribution need to be considered.

δp, δs and δf represent OPDs caused by deformation

of the primary reflector, offset of subreflector and displace-

ments of the feed, respectively, and δ represents their sum.

The OPD δp due to deformation of the primary reflector is

expressed as follows

δp(ri, φi) = cpi · upi , (3)

where upi = (∆xpi, ∆ypi, ∆zpi) is the displacement vec-

tor of the primary surface. The components of cpi are

cpi1 = −2nxinzi, cpi2 = −2nyinzi and cpi3 = −2n2

zi,

and nxi, nyi, nzi signifies the components of the unit nor-

mal vector. The OPD δf of the displacements of the feed is

expressed as follows

δf (ri, φi) = cfi · uf , (4)

where uf = (∆xf , ∆yf , ∆zf) is the displacement vec-

tor of the feed. The components of cfi are cfi1 =

− sin θi cosφi, cfi2 = − sin θi sinφi and cfi3 = 1 −

cos θi. The OPD δs for the offset of the subreflector is ex-

pressed as follows

δs(ri, φi) = csi · p , (5)

where p = [∆xs, ∆ys, ∆zs, ∆γx, ∆γy]
T

is the offset

vector of the subreflector. The components of csi are

csi1 = (sin θi − sin ϕi) cosφi, csi2 = −(sin θi −

sinϕi) sin φi, csi3 = −(cosϕi + cosφi), csi4 =

−(ci − ai)(sin θi + Mi sin ϕi) sin φi and csi5 = −(ci −

ai)(sin θi + Mi sinϕi) cosφi.

3 MECHANICAL-ELECTROMAGNETIC-FIELD-

COUPLING-MODEL

In this paper, the aperture field method is adopted to cal-

culate the far field radiation pattern of reflector antennas.

This method can obtain the aperture field distribution from

radiation field of the feed by geometrical optics. According

to the Fourier transform relationship between aperture field
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Table 1 Relative Parameters of Discrete Normal Parabola Set

Parameter Expression Parameter Expression

Main-focal length (m) fi = xi/(2 tan(ϕi

2
)) Offset (m) hi = zi −

x2

i

4fi

Magnification Mi = tan(ϕi

2
)/ tan( θi

2
) Eccentricity ei = Mi+1

Mi−1

Sub-focal length (m) 2ci = xsi

tan(ϕi)
+ xsi

tan(θi)
Semi-major axis distance (m) ai = ci

ei

and far field, the MEFCM of a standard reflector (Fig. 3) is

expressed as follows

T1(θ
′, φ′) =

∫∫

A

F (r, φ) exp[jkr sin θ′ cos (φ′ − φ)]

× exp(j∆ϕ1)rdrdφ ,
(6)

and the sum of discrete segments for the shaped surface is

written as follows

T1(θ
′, φ′) =

m∑

i=1

F (ri, φi) exp[jkri sin θ′ cos (φ′ − φi)]

× exp(jkδi)∆si ,
(7)

where F (r, φ) is the aperture field distribution function of

the standard reflector on the aperture surface A; (θ′, φ′)

are coordinates of the observation direction in far field and

(r, φ) are coordinates of the point in aperture plane; k is

the free space wave constant, k = 2π/λ; λ is the working

wavelength. ∆ϕ1 is PE distribution function in the aperture

plane and ∆ϕ1 = k · δ where δ is the total aperture OPD.

The Gauss integration method can be adopted to solve the

MEFCM.

4 DETERMINATION OF THE ADJUSTED

POSITION OF THE SUBREFLECTOR

4.1 Additional Error Beams

Because the antenna structure deformation is only a small

displacement, a low order Taylor series expansion is

adopted and Equation (6) can be derived as follows

T1 (θ′, φ′) =

∫∫

A

F (r, φ) exp [jkr sin θ′ cos (φ′ − φ)]

× (1 + j∆ϕ1) rdrdφ

=T0 (θ′, φ′) + T ′ (θ′, φ′) ,
(8)

where T0 signifies the ideal beam pattern and T ′ represents

the error beam pattern, and the equations can be expressed

as follows

T0(θ
′, φ′) =

∫∫

A

F (r, φ)

× exp[jkr sin θ′ cos (φ′ − φ)]rdrdφ ,

(9)

T ′(θ′, φ′) =

∫∫

A

F (r, φ) exp[jkr sin θ′ cos (φ′ − φ)]

× (j∆ϕ1)rdrdφ .
(10)

According to Equation (8), the beam pattern T1 caused

by structure deformation could be understood as the syn-

thesis of far field ideal beam T0 and error beam T ′. For

practical antennas, the ideal beam can be calculated by the

radiation integral of designed aperture distribution function

and expressed as T̂0; T1 can be obtained by total power

measurement of the strong radiation source, such as an ar-

tificial satellite, and expressed as T̃1. Then, Equation (8)

can be written as

T̃1(θ
′, φ′) = T̂0(θ

′, φ′) + T ′(θ′, φ′) . (11)

The error beam can be expressed as

T ′(θ′, φ′) = T̃1(θ
′, φ′) − T̂0(θ

′, φ′) . (12)

The subreflector adjustment will cause additional OPD

and additional error beam. After the subreflector adjust-

ment, the far field beam pattern can be written as

T2(θ
′, φ′) = T̃1(θ

′, φ′) + T̂ ′′(θ′, φ′) . (13)

Let the parameter vector of subreflector adjustment be

expressed as p. Then, the additional error beam is written

as T̂ ′′(θ′, φ′, p) and can be calculated by Equation (10).

According to Equation (5), the additional PE is expressed

as

∆ϕ1 = g (p) = k · csi · p . (14)

4.2 Iterative Approach for Subreflector Adjustment

Parameters

It is obvious that the EM performance of a perfect reflector

is optimal; that is to say, the gain is the maximum and the

beam is symmetric, representing an ideal beam pattern. For

Equation (13), both sides are subtracted by T̂0, resulting in

T2(θ
′, φ′) − T̂0(θ

′, φ′) =T̃1(θ
′, φ′) − T̂0(θ

′, φ′)

+ T̂ ′′(θ′, φ′, p) ,
(15)

and let beam deviation be

L = T̃1(θ
′, φ′) − T̂0(θ

′, φ′) + T̂ ′′(θ′, φ′, p) . (16)
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Fig. 3 Geometric diagram of a dual-reflector antenna.

Fig. 4 Schematic diagram of antenna performance improvement based on subreflector adjustment parameters iteration.

Note that Equation (15) can be understood as devi-

ation between beam pattern after subreflector adjustment

and ideal beam pattern. Consequently, it is considered that

numerical iterative techniques can be adopted to determine

the optimal parameter of the subreflector position. Thus,

the parameter iteration method can be adopted to improve

the EM performance and minimize deviation. The devia-

tion can be expressed as

Vl = ‖T̃1(θ
′, φ′) − T̂0(θ

′, φ′) + T̂ ′′(θ′, φ′, p)‖ , (17)

where ‖ · ‖ is the operator of the pattern vector. Generally,

the infinity norm can be used.

When the antenna points at a radio source at an el-

evated angle, the backup structure will be distorted due

to gravity, and then surface errors in the primary reflec-

tor and displacement of the subreflector will be produced,

which will lead to degradation of the EM performance of

the antenna. A schematic diagram of antenna performance

improvement based on iteration of subreflector adjustment

parameters is shown in Figure 4. The beam pattern could

be gradually improved by repeating the adjustment proce-

dure and progressively iterating the process.

The performance improvement process based on sub-

reflector adjustment and parameters iteration is shown in

Figure 5, and can be described as follows:

(1) Set the initial value for the iterations as p0;

(2) According to Equation (14), the additional OPD and

PE ∆ϕ1 can be calculated;

(3) According to Equation (10), the additional error beam

T̂ ′′(θ′, φ′, p) can be calculated;
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Fig. 5 Flow chart for iteration procedure.

Fig. 6 The image of a 25 m shaped Cassegrain antenna.

(4) According to Equation (16), the beam deviation after

subreflector adjustment can be obtained;

(5) According to Equation (17), the iterative objective

function L can be calculated and a judgment will be

made according to the expression Vl 6 ε, where ε is

the relative boundary. Through a large number of sim-

ulations, we think that the ε may be generally less than

or equal to 1 dB.

If the expression cannot be satisfied, the subreflector

adjustment parameter vector p will be modified by

pi = pi−1 + ∆pi−1, and the process returns to step

(2).

If the expression can be satisfied, the iteration process

terminates and the current parameter p is the optimal

parameter p∗.
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Fig. 7 Subreflector equipped with a Stewart platform.

Fig. 8 Aperture field distribution. Fig. 9 Shaped Cassegrain antenna generatrix.

Fig. 10 Antenna reflector FE model.

5 EXAMPLE AND DISCUSSION

An example of a 25 m shaped Cassagrain antenna has been

analyzed. In the example, the antenna is used for radio as-

tronomical observation with C band as the main operat-

ing wave band (wavelength 6 cm, frequency 4.8 GHz). The

25 m shaped Cassagrain antenna is shown in Figure 6, and

a Stewart platform with 6 degrees of freedom (DoF) has

been installed in the quadrapod to adjust subreflector po-

sition, which is shown in Figure 7. For the Stewart plat-

form, 5 DoF were used primarily to adjust the subreflector

in real-time and the adjustment ranges are given in Table 2.
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Fig. 11 Iteration processes for adjustment parameters, (a) for 40◦ elevation angle, (b) for 70◦ elevation angle.

Table 2 Subreflector Adjustment Ranges

Parameter ∆xs (mm) ∆ys (mm) ∆zs (mm) ∆γx(◦) ∆γy(◦)

Range 6 50 6 50 6 80 6 5 6 5

The basic normal parameters of the 25 m shaped Cassegain

antenna are given in Table 3 and the aperture field distri-

bution is shown in Figure 8, which will be substituted into

the MEFCM as F (r, φ).

5.1 Shaped Surface and Structural Analysis

The surface of the shaped Cassegrain antenna is described

by a discrete standard parabola set and the generatrices of

the main reflector and subreflector are both composed of

7604 discrete points, which are obtained by Equations (1)–

(2) and shown in Figure 9. Relative parameters of a dis-

crete normal parabola set are derived by expressions given

in Table 1, and OPD and far field beam pattern can be com-

puted by Equations (3)–(5) and Equation (7).

To obtain an antenna’s far field beam due to structural

deformation, a finite element (FE) model of the antenna re-

flector’s structure was established, as shown in Figure 10.

In addition, the gravitational-structural deformations at el-

evation angles of 40◦ and 70◦ were analyzed. The node

displacements of backup structure and quadrapod structure

were obtained and then the reflector surface distortion and

subreflector rigid displacement were computed by interpo-

lation and coordinate transformation.

5.2 Parameter Iteration Results

A numerical computation has been generated based on the

theoretical developments presented above to achieve pa-

rameters iteration and beam pattern calculation. To rapidly

obtain the global optimum solution, a constraint condition

is added to the iteration process; that is, the pointing error

should be less than 0.1*HPBW (Half Power Beam Width),

and the interior-point method is adopted in the iteration

process. The numerical computation has been performed

based on the FE model. The iteration processes in the cases

of elevation angles of 40◦ and 70◦ are shown in Figure 11.

In the cases of elevation angles of 40◦ and 70◦, the op-

timal values are obtained after 107 and 214 iterations, and

the optimal parameters are p∗=[0.5793, –0.2229, –9.9038,

–0.0007, 0.0019] and p∗=[0.1223, –5.6443, –3.0728, –

0.0019, 0.0002], respectively.

The effect of subreflector position adjustment based

on optimal parameter p∗ is shown in Figure 12. These

figures demonstrate that after the subreflector adjustment,

the beam pattern is close to the ideal beam pattern.

Furthermore, from Figure 12(a) and (c), representing a 0◦

cut plane (azimuth scan), the beam patterns, after the ad-

justment, almost coincide with the ideal beam pattern, in-

dicating that reflector gravitational-structural deformations

in the azimuth direction have been fully compensated. In

Figure 12(b) and (d), representing a 90◦ cut plane (eleva-

tion scan), the shapes of the beam pattern after adjustment

approximate the ideal one, but they are just slightly dif-

ferent in terms of the beam center and sidelobes, which

indicate that reflector gravitational-structural deformation

in the elevation direction has also been well compensated.

The OPD distributions in the aperture plane for subreflec-

tor adjustment are displayed in Figure 13. It can be seen

that the OPD after subreflector adjustment has been de-

creased significantly.

The results indicate that for the 25 m shaped

Cassegrain antenna, the gravitational-structural deforma-

tions of the main reflector are almost homologous, that

is, the main reflector is almost deformed into an approx-
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Fig. 12 Far field beam patterns for subreflector adjustment. (a) 0◦ cut plane for 40◦ elevation angle, (b) 90◦ cut plane for 40◦ elevation

angle, (c) 0◦ cut plane for 70◦ elevation angle and (d) 90◦ cut plane for 70◦ elevation angle.

Fig. 13 OPD distributions in aperture plane for subreflector adjustment. (a) pre-adjustment for 40◦ elevation angle, (b) after-adjustment

for 40◦ elevation angle, (c) pre-adjustment for 70◦ elevation angle and (d) after-adjustment for 70◦ elevation angle.
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Table 3 Basic Nominal Parameters of the 25 m Shaped Cassegrain Antenna

Parameter Value Parameter Value

Main reflector diameter (m) 25 Subreflector diameter (m) 3

Half-angle subtended by main reflector (◦) 79.61 Half-angle subtended by subreflector (◦) 14.43

Main reflector focal length (m) 7.8 Hyperboloid focal length (m) 0.530

Eccentricity 1.358 Magnification 6.583

imate parabolic shape. A significant loss of beam pattern

may occur as a result of subreflector position misalign-

ment. Furthermore, the distortion in beam pattern of the

25 m shaped Cassegrain antenna may be substantially com-

pensated by suitable adjustments in the position of the sub-

reflector and the parameter is effective and appropriate.

6 CONCLUSIONS

A new method to determine the optimal subreflector po-

sition for shaped Cassegrain antennas has been presented.

This method is based on parameters iteration of subreflec-

tor adjustment to compensate the effect of structural de-

formation in the reflector. Considering the particularity of

the shaped reflector antenna, we accurately describe the

shaped dual-reflector surface as a discrete normal parabola

set and utilize the features of a classical Cassegrain system

in the OPD relationship. By decomposing the subreflec-

tor adjusting parameters with MEFCM, such an iteration

method for adjusting parameters can be adapted to improve

the antenna EM performance, and the optimal adjustment

parameters can be rapidly obtained by numerical compu-

tation. An example of a 25 m shaped Cassegrain antenna

has been provided, and the results indicate that the meth-

ods proposed in this paper are effective and can be used in

engineering practice.
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