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Abstract Detecting supernova remnant (SNR) candidates in the interstellar medium is a challenging task

because SNRs have weak radio signals and irregular shapes. The use of a convolutional neural network is

a deep learning method that can help us extract various features from images. To extract SNRs from astro-

nomical images and estimate the positions of SNR candidates, we design the SNR-Net model composed of

a training component and a detection component. In addition, transfer learning is used to initialize the net-

work parameters, which improves the speed and accuracy of network training. We apply a T-T plot (of the

different brightness temperatures of map pixels at two different frequencies) to calculate the spectral index

of SNR candidates. To accelerate the scientific computing process, we take advantage of innovative hard-

ware architecture, such as deep learning optimized graphics processing units, which increases the speed of

computation by a factor of 5. A case study suggests that SNR-Net may be applicable to detecting extended

sources in the images automatically.
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1 INTRODUCTION

Detecting interesting objects in astronomy (e.g., stars,

galaxies, solar system objects, and extragalactic super-

novae) is a routine task. With the development of digital

sky surveying, an ever-increasing deluge of data has been

generated in astronomy in recent decades (Laureijs et al.

2012). Astronomical radiation in the radio band is very

weak and prone to disturbances.

Compared with the expected rate of supernova produc-

tion from OB star counts, pulsar creation rates, iron abun-

dance and observations of supernovae in other galaxies,

Li et al. (1991) believe that there should be over 1000 su-

pernova remnants (SNRs) detectable in the Galactic plane.

However, there are only ∼250 SNRs that have been found

despite an increasing number of surveys of the region

(Blair et al. 1981). SNRs in the Andromeda galaxy are

mainly detected in optical (e.g., Dodorico et al. 1980;

Dennefeld & Kunth 1981; Blair et al. 1981) and com-

bined optical and radio (Braun & Walterbos 1993) studies.

Using optical data from the Local Group Galaxy Survey,

Sasaki et al. (2012) searched for optical counterparts of

the X-ray SNRs and candidates showing optical Hα, [SII],

and [OIII] emission from the radiative shock. Hollitt &

Johnston-Hollitt (2012) explored the response of the cir-

cle Hough transform to a representative sample of dif-

ferent extended circular or arc-like astronomical objects,

e.g., SNRs. However, Hough transform is unable to iden-

tify more details of SNRs. Beaumont et al. (2011) applied

support vector machines (SVMs), a machine learning algo-

rithm, to the task of classifying structures in the interstel-

lar medium (ISM). Their study suggests that SVMs can

be applied to classify an SNR that lies behind the M17

molecular cloud. In research into deep learning, Charnock

& Moss (2017) apply deep recurrent neural networks that

are supervised learning algorithms, to classify supernovae.

However, the performance of the network is highly sensi-

tive to the amount of training data. At present, researchers
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have relied on the manual identification of features in the

detection of SNRs. At the same time, the spectral index

(Tian & Leahy 2005) is an important feature of SNRs and

its values range from 0 to 1.

Deep learning (Yu & Deng 2010; Schmidhuber 2015;

Sainath et al. 2015; Lecun et al. 2015; Ding et al. 2015;

Jaderberg et al. 2014) is also known as deep structured

learning, hierarchical learning, and deep machine learn-

ing. It is a branch of machine learning based on a set of

algorithms that attempt to model high-level abstractions

in data. Such an algorithm can automatically extract the

features of a target object and detect the location of the

target (Cheng & Han 2016). SNRs often mix with bright

objects, which makes them difficult to extract. However,

Convolutional Neural Networks (CNNs) can learn rich fea-

ture representations for a wide range of SNR images, and

thus are powerful feature extractors.

In this paper, we design the SNR-Net model consisting

of two parts: a training component and a detection com-

ponent. In the training phase, we use datasets of SNRs

and non-supernova remnants (N-SNRs) to train the clas-

sifier in the SNR-Net, so that the classifier has an ability

to classify SNRs and N-SNRs. In the detection phase, we

first transform the size of the test image and then use the

trained model to get a feature map of the SNR. Moreover,

all points on the feature map are traversed and the possible

regions are identified as candidates for SNRs. The SNR-

Net model detects candidates of SNRs according to their

morphology. Using radio signal only it is sometime impos-

sible to distinguish the remnant from the ISM background,

so we need multi-band further identification of SNRs. We

then employ the T-T plot method (Leahy & Tian 2005) to

compute the spectral index of candidate SNRs. It should

be noted that we identify the candidate SNRs only from

radio data. Our collection of SNRs is derived from radio

data. The main work of the present paper is to obtain SNR

candidates according to their shape in the radio wavelength

band, and the spectral index of candidate SNRs.

Our paper is structured as follows. The datasets are

described in Section 2. In Section 3, we describe details

of the relevant classification algorithms and the proposed

method. Section 4 discusses experimental results obtained

from SNR-Net using data from Section 2. Finally, conclu-

sions are presented in Section 5.

2 DATA

We use a dataset from the Multi-Array Galactic Plane

Imaging Survey (MAGPIS), the NRAO Very Large Array

(VLA) Sky Surveys (NVSS), the Molonglo Observatory

Synthesis Telescope (Rucinski et al. 2003) and the

Canadian Galactic Plane Survey (CGPS). The MAGPIS

database includes a wide dynamic range of high-sensitivity

VLA images for the region 5◦ < ℓ < 48.5◦, | b | < 0.8◦

(Giveon et al. 2005). NVSS is a radio continuum survey

covering the sky north of −40◦ declination (Condon et al.

1998). The central frequency and bandwidth of the CGPS

are 1420 MHz and 408 MHz, respectively (Taylor et al.

2003). At present, there are three types of SNR. If a rem-

nant has a ‘shell’ or ‘filled-center’ structure, it belongs to

type ‘S’ or type ‘F’, respectively. If it has a ‘composite’

(or ‘combination’) radio structure with a combination of

shell and filled-center characteristics, it belongs to type

‘C’. Figure 1(a)–(c) illustrate the three types of SNR. We

do not distinguish pulsar wind nebulae in this paper.

Many samples are needed to train the network, so we

collect diverse types of SNR from the catalog of galactic

SNRs listed in Green (2004) and crop 290 images of SNRs

from the dataset. In the present study, we first select 108

SNRs from 290 SNRs, which include SNRs of type C, S

and F. We then extend the 108 SNR samples (C-type:16, F-

type:2, S-type:90) to 15 000 samples by rotating, mirroring

and shifting. The augmentation part of the SNR sample is

implemented by calling the image processing package in

the Keras framework. Image rotation is achieved by set-

ting various rotation angles of the image. Image shifting

includes horizontal and vertical shifts. We also set the frac-

tion of total height of the image in the Keras framework to

realize image shift transformation. The mirror operation of

the image is achieved using the vertical flip parameter of

the image set in the Keras framework. The remaining ob-

jects are used to test the classifier. The data augmentation

results are shown in Figure 2. At the same time, we col-

lect 15 000 N-SNRs, which are cropped from areas near

the SNR images (e.g., see (d)–(f) in Fig. 1).

3 RELEVANT CLASSIFICATION ALGORITHMS

AND THE PROPOSED METHOD

3.1 Relevant Algorithms

In order to understand the application domain of this paper,

we now discuss two relevant algorithms: Random Forest

(RF) (Breiman 2001) and Support Vector Machine (SVM)

(Cortes & Vapnik 1995).

RF is developed by Breiman (2001) and integrates

multiple trees based on the idea of integrated learning. Its

basic unit is a decision tree. RF uses a bagging approach

and classification and regression trees (CART). In bagging,

each classifier is built individually by working with a boot-
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Various types of SNR. (a) (G54.1+0.3), (b) (G184.6–5.8), (c) (G1.9+0.3) represent SNRs of type C, F, and S respectively. (d)–(f)

represent N-SNRs.

(a) (b)

(c) (d)

Fig. 2 Sample expansions of an image. (a) Original image (G130.7+3.1). (b) Results after mirroring. (c) Results after rotation. (d)

Results after shifting.

strap sample of the input data (Alam & Vuong 2013). In

CART, Gini index is used as the evaluation criterion for

the selection attributes of the CART tree and is defined as

Gini(D) = 1 −

c
∑

i

P 2
i , (1)

where c is the number of classes in the target variable and

pi is the ratio of this class. If the selected attribute is A, the

formula for the Gini index of the split dataset D is

GiniA(D) =

k
∑

j=1

|Dj |

|D|
Gini(Dj) , (2)

where K indicates that the sample D is divided into k parts.

The number of datasets D splitting into the Dj dataset is

K . We use the Gini index gain value as the basis for the

selection of the decision tree:

∆Gini(A) = Gini(D) − GiniA(D) . (3)



42–4 W. Liu et al.: A Deep Learning Approach for Detecting Candidates of Supernova Remnants

When the attribute is selected by the decision tree, the max-

imum value of the Gini index should be considered as the

condition of the split node. At each node, the selected fea-

tures are searched for best split. For new datasets, each

case of the datasets is passed down to each of the decision

trees. The forest chooses the class having the most output

of votes.

SVM constructs a hyperplane in a high-dimensional

space, which aims to determine the location of decision

boundaries that produce the optimal separation of classes

(Cortes & Vapnik 1995). Given a dataset of n points of the

form

(xk, yk) k = 1, 2, . . . , n, (4)

where the yk are either 1 or −1, each indicating the class

to which the point xk belongs. The hyperplane is defined

as

w · x + b = 0 , (5)

where w is the normal vector to the hyperplane and b is the

offset. In order to ensure data points lie on the correct side

of the margin, the constraints state can be defined as

yi(w · x) − b ≥ 1, i = 1, . . . , n . (6)

Assuming the training data are not linearly separable, we

introduce the hinge loss function:

max(0, 1 − yi(w · xi − b)) . (7)

The classifier is constructed by optimizing the following

function:
[

1

n

n
∑

i=1

max(0, 1 − yi(w · xi − b))

]

+ λ||w||2 , (8)

where λ represents the parameter which determines the

tradeoff between increasing the margin-size and ensuring

that xi lie on the correct side of the margin.

3.2 SNR-Net

This section describes the algorithm of SNR-Net. Figure 3

describes the structure of the algorithm, which includes

the designs of SNR-Net. This convolutional structure is in-

spired by the AlexNet (Cheng et al. 2015) image classifica-

tion system. Recent studies (Herbert 2016, Cheng & Han

2016) have illustrated that stacking many convolutions as

AlexNet did can better capture object locations. SNR-Net

consists of an input layer and an output layer, as well as

multiple hidden layers. The hidden layers of SNR-Net con-

sist of convolutional layers, pooling layers and fully con-

nected layers as shown in Figure 4. The convolutional layer

is the core building block of SNR-Net. The parameters of

each layer consist of k learned filters (or kernels), which

have a small receptive field. In this work, each filter is con-

volved across the width and height of the input volume,

computing the dot product between the entries of the filter

and the input, and then producing an activation map of that

filter:

y =

k
∑

i=1

Wi ∗ x + b , (9)

where W are the weights, ∗ is a convolution operator, b is a

bias parameter, and y is the output feature map. The input x

in our method is an image of SNRs, so we adjust the typical

CNN structure to meet the demands of SNR classification.

The Rectified Linear Unit (ReLU) layer promotes the per-

formance of the nonlinear decision function. In our work,

we the select ReLU as the activation function of SNR-Net.

The formula for the ReLU is as follows:

f(x) = max(0, x) . (10)

The pooling layer is used to gradually reduce the size

of the representation space, the number of parameters,

and the computation time in the network and also pre-

vents over-fitting. The output of the network is classifier

Softmax. A subset of features is selected as the input vec-

tor of Softmax for training and recognition.

SNR-Net essentially maps from input layer to output

layer. By training SNR-Net with the known patterns, the

network can map between input and output pairs. SNR-

Net adopts a multi-layer feed-forward neural network and

uses the back-propagation algorithm. In the forward propa-

gation process of SNR-Net, the probability of the category

to which the input belongs is calculated (Chen et al. 2016).

Y l
i = f(W l−1

i ∗ xl−1
i + b) , (11)

where Y stands for the result of the activation function, f

denotes the activation function ReLu, l represents the layer

number, i denotes the ith feature map, and x represents

input of the layer l − 1.

In this back propagation process, a gradient descent al-

gorithm is used to optimize the network parameters, which

is prevalent in the field of optimization algorithms (Chen

et al. 2016). Thus, the optimization object becomes

J(θ) =

N
∑

i=1

(

1

2
‖Y (xi, θ) − γ‖2

)

+ λ

L
∑

l

∑

(‖θ(l)‖2) ,

(12)

where Y denotes the result of the network and γ denotes

the target output. The second item on the right is a regular-

izer. λ controls the strength of preference for weights, and
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Fig. 3 Project structure of SNR-Net.
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Fig. 4 Convolution architecture for SNR recognition. This is the main structure of the convolutional networks. We show the size and

quantity of the convolution kernel of the convolution layer and the pooling layer.

l indexes the layer number. We try to minimize J(θ) as a

function of θ.

3.3 How to Train SNR-Net

The training process for SNR-Net includes two steps: a

feed forward propagation and back propagation pass. In

the process of back propagation, the algorithm of gradi-

ent descent is used to adjust the weights of each layer. The

original SNR and N-SNR dataset is divided into a train-

ing set and a test set, the training set is used to train the

SNR-Net, while the test set is used to test the model re-

sults. In the training phase, we use the training set to train

the SNR-Net model and save the well-trained model. The

performance of well-trained model is tested and verified

through the test set. SNR-Net is a network with large lay-

ers containing input, hidden and output layers. Details of

the algorithm are given in Algorithm 1.

4 EXPERIMENTAL ANALYSIS

4.1 Datasets and Experimental Setting

We run our program with the Caffe framework and train

our model on a TitanX graphics processing unit. Training

the CNN requires a lot of data. Our dataset consists of two

categories of object, SNRs and N-SNRs, and each category

has a total of 15 000 images. We label the 30 000 images

as described in Section 2. The training dataset and the val-

idation dataset are both involved in the training process,
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Algorithm 1 The convolution neural network training process

Input:
The number of training set (labeled spectra), Nlabel;
The number of test set (unlabeled spectra), Ntest;
The number of samples taken from the training set for each training, batchsize;
The number of training times in the full sample of the training set, epoch;
The learning rate of stochastic gradient descent, lr;
Output:

classification result, C;

1: for The loop count < epoch do
2: Choose batchsize samples from training set.
3: Save 1-D CNN model.
4: Save weights and parameters.

5: Test trained neural network.
6: return C.

and they are different datasets including different objects.

The 30 000 training samples are divided into the training

dataset and the validation dataset (and there is no intersec-

tion between them). A total of 22 500 images are randomly

selected from the sample for training and the remaining

images are reserved as a validation set to verify whether

our network has over-fitting. We extend the remaining 182

(a total of 290 samples, 108 as in the training set) SNR

sample images in the same way (i.e., rotation, mirroring,

shifting) to 4065 samples as a positive sample of the test

dataset. In the model testing phase, we collect 4096 nega-

tive samples of N-SNRs (not participating in model train-

ing) as the model test dataset.

The details of convolution networks described in

Section 3 are shown in Table 1. The input of the network is

an image with 227×227. Conv1 and Conv2 denote the con-

volution operation, and MaxPooling represents the pooling

operation. The kernel size of the Conv1 layer is 11 × 11,

and the pooling layer is 3×3. After the convolution op-

eration, the number of feature maps of the network out-

put is 256. FC denotes the fully connected layer, and its

kernel size is 1024. The last layer of the network is the

Softmax function, which is used to identify which class the

input belongs to. We apply the dropout technique to pre-

vent over-fitting. The main idea of dropout is to randomly

drop units (along with their connections) from the neural

network during training and the parameter of dropout is

0.5. Output of the SNR-Net model is trained by the im-

ages with the SGD method (Jin et al. 2014) after 30 epochs

and the learning rate is set to 0.01. The ReLU layer pro-

motes the performance of the nonlinear decision function.

It is recommended that ReLU be used, because it makes

the neural network training speed several times faster than

those previously achieved (Krizhevsky et al. 2012). We use

the Softmax function as a classifier. Based on the outputs

of the classifier, the samples are classified into different

classes.

An image pyramid is a multi-scale representation of an

image, such that the SNR detection is scale-invariant. We

adopt a sliding window for SNR detection. When we are

training the network, the target image has been converted

to 227×227 pixels. For the test image, therefore, we ap-

ply a 227×227 window to the model for classification and

slide the window across the test image. We finally find the

candidates for SNRs. However, the SNR candidates are not

necessarily 227×227 in size, and thus we need to make a

multi-scale transform. We resize the input image down to

or up to the specified size. The size after transformation is

a maximum of twice the dimensions of the input image,

and decreases from this input image in multiples of 0.79

until the input image dimension is less than 227×227 pix-

els. In this way, we get many enlarged or reduced images

and use all the images as the set of inputs for SNR can-

didates. We apply the pre-trained parameters to initialize

the networks rather than randomly set parameters (Cheng

et al. 2015). Models based on CNNs are popular because

they accelerate the learning process.

The experimental environments include an Intel Core

i5-4590 3.3-GHz CPU, 20-GB random access memory,

and a Titan X GPU.

4.2 Experimental Results and Analysis

In this section, we give the visualized results generated by

SNR-Net. Our proposed method is compared with SVM

and RF which are widely used as supervised learning tech-

niques in astronomical classification tasks. In this paper,

we used principal component analysis (PCA) (Cheng &

Han 2016) to reduce the dimensions of the features in order

to improve the speed of the classifier, and then we utilized

SVM and RF to classify the processed results. Moreover,

the experimental results show that the proposed algorithm

can obtain higher classification accuracy.
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Table 1 The Structure and Setting Parameters for Convolution
Networks

No. Layer Kernel Feature Activation

size map function

1 input 227 × 227 0 –

2 Conv1 11× 11 96 ReLU

3 MaxPooling1 3× 3 96 –

4 Conv2 1× 16 256 ReLU

5 MaxPooling2 3× 3 256 –

6 Conv3 3× 3 384 ReLU

7 Conv4 3× 3 384 ReLU

8 Conv5 3× 3 256 ReLU

9 MaxPooling3 3× 3 256 –

10 FC 1× 1024 – ReLU

11 output 1× 2 – Softmax

Figure 5 gives the visualized results generated by

SNR-Net in the training phase. It can be seen from the ex-

perimental results that SNR-Net can extract detailed fea-

tures from the image of SNRs. In other words, we get a

well-trained SNR-Net model, which is beneficial for SNR

classification in the next steps.

During the training process, we choose a suitable train-

ing method (i.e., a variable learning rate method) adaptive

to the system to improve the accuracy as shown in Figure 6.

We use classification accuracy to justify the effect of data

augmentation on network classification performance.

Figure 7 shows the classification accuracy of the net-

work for SNRs and N-SNRs without data augmentation

operation. As can be seen from Figure 7, it is obvious that

the network causes over-fitting. Due to a lack of sufficient

training data used in classification modeling, its initialized

weights and threshold are difficult to determine, requiring

repeated training to determine the network structure and

various parameters, easily causing the over-fitting and af-

fecting the network generalization ability. We apply three

techniques to prevent over-fitting: data augmentation, reg-

ularization, and dropout.

Figure 8 shows the classification results of SNR-Net

using data augmentation. In the training phase, the accu-

racy of our model reaches 99.68% and the loss value drops

to 0.01.

To speed up the convergence, we first pre-train each

layer using face datasets (Rothe et al. 2016) to initial

weights, and then fine tune the weights with SNR and N-

SNR datasets. The experimental results in Table 2 show

that pre-trained neural networks (SNR-Net) achieve higher

training accuracy than neural networks that are not pre-

trained (SNR-Net1). In addition, we use the 8161 images

that are not used in the training as the test data set. The

accuracy and loss of SVM, RF, SNR-Net and SNR-Net1

Table 2 Comparison of different methods. Accuracy and Loss

represent the training accuracy and training loss in the SVM, RF,

SNR-Net and SNR-Net1 training process, respectively. Test ac-

curacy represents the classification results on the test dataset ob-

tained using the well-trained model.

Algorithm Accuracy (%) Loss Test accuracy (%)

SVM 87.34 0.81 83.63

RF 96.23 0.08 94.16

SNR-Net 99.68 0.01 98.45

SNR-Net1 99.48 0.05 98.16

on the dataset are respectively shown in Table 2, which

presents the performance of SVM, RF, SNR-Net and SNR-

Net1 in SNR and N-SNR classification. The results in

Table 2 show that the test accuracy of SNR-Net is 98.45%.

The accuracy of the dataset is defined as:

accuracy =
1

N

N
∑

i=1

I (yi = f(xi)) , (13)

where I is an indicator function and N represents the num-

ber of samples, i.e., the I function value is 1 when the pre-

dicted value of f(xi) is equal to the label value yi, and

zero otherwise. A higher value of accuracy indicates a bet-

ter ability to identify SNRs. The confusion matrices for the

classification results are shown in Figure 9.

In Figure 9, the confusion matrix shows that false

positives are more than false negatives. The reason for

this is that the morphology of the ionized hydrogen zone

is very similar to that of SNRs. A Receiver Operating

Characteristic (ROC) curve is a plot of the true positive

rate against the false positive rate, which is commonly used

for evaluating binary classification. In order to compare the

performance of different methods, we show the ROC of

SNR-Net, RF and SVM in Figure 10. Furthermore, we use

the T-T plot method to calculate the spectral index of the

candidates to improve the classification accuracy, because

the spectrum index values of SNRs generally range from 0

to 1. We take the spectrum index as an important feature of

SNRs.

The trained neural network can distinguish candidate

SNRs in the ISM. However, because of errors in the neural

network, there are a lot of blurred results that are approxi-

mately right or wrong near the candidates for SNRs. In or-

der to get the best result, we apply the probability threshold

method to handle the network outputs; i.e., we choose the

regions where the probability is greater than a threshold as

the SNR candidates.

The data source we select is the Canadian Galactic

Plane Survey (Taylor et al. 2003) (82.2◦ < ℓ < 87.3◦,
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Fig. 5 Convolution architecture for SNR recognition. This is the main structure of the convolutional networks. We show the size

and quantity of the convolution kernel of the convolution layer and the pooling layer. The second line shows the visual results of the

convolution and pooling operations, as well as the process of extracting features from the network.
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Fig. 8 Accuracy and loss values for different iteration times. The training loss and validation loss both decrease, so it effectively avoids

over-fitting.

Fig. 9 Confusion matrix. The classification results are obtained by the trained classifier. In this confusion matrix, of the 4065 actual

SNRs, the system predicted that 4062 were SNRs, and of the 3096 N-SNRs, it predicted that 123 were SNRs and 2973 were N-

SNRs. For 4065 SNR samples, the classifier correctly classified 4062 images and incorrectly classified three images. For 4096 N-SNRs

samples, the classifier correctly classified 3973 images and incorrectly classified 123 images.
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Fig. 10 ROC comparison of different methods. The ROC of SNR-Net, RF and SVM are respectively shown in orange, blue and red.
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Fig. 11 The image shows the CGPS map at 1420 MHz (82.2◦

< ℓ < 87.3◦ , −3.5◦

< b < 1.4◦). Six candidate SNR areas are predicted

by the SNR-Net model according to morphology. The probabilities of candidate SNR regions (1–6) predicted by the SNR-Net model

are 0.953, 0.946, 0.937, 0.923, 0.916, and 0.913, respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 12 T-T plots of SNR candidates at 408 MHz and 1420 MHz. (a)–(f), respectively, represent the T-T plots of areas 1–6 in Fig. 11.

−3.5◦ < b < 1.4◦). We set the probability threshold at 0.9

and obtain the candidate regions predicted by the SNR-Net

model, as shown in Figure 11. We use the T-T plot method

to calculate the spectral index. The principle of the T-T

plot method is that spectral indices (Tν = T◦ν
−β) are cal-

culated from a fit of a linear relation to the T1–T2 values of

all pixels within a given map region (Leahy & Tian 2005).
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Table 3 Comparison of different methods. Accuracy and Loss

represent the accuracy and loss in the CNN training process, re-

spectively. Test accuracy represents the classification results on

the test dataset obtained using the CNN trained model.

Area β α

1 2.33 0.33

2 1.91 –0.09

3 2.21 0.21

4 1.91 –0.09

5 1.84 –0.16

6 2.02 0.02

The flux density spectral index α (Sν∝ν−α) is related to β

by β = α + 2.

In this paper, T1 is the brightness temperature of a map

pixel at 1420 MHz and T2 is that at 408 MHz. Through

the T-T plot method, we obtain the spectral index of the

SNR candidates as shown in Figure 11. The probabilities

refer to the scores of the SNR candidates, which are de-

rived from the trained classifier. It is the final layer of the

network that yields the actual probability scores for each

class label. The SNR-Net model predicts that the candidate

SNR areas contain three SNRs (candidates of SNRs 1, 3, 6

in Fig. 11) in the Green Catalogue of Galactic Supernova

Remnants (G84.2–0.8, G85.9–0.6, G83.0–0.3). Candidate

area 5 contains part of an SNR (G85.4+0.7). These six re-

gions (Fig. 11) yield the T-T plots, as shown in Figure 12.

We use all the pixels at 408 MHz and 1420 MHz in each

SNR candidate region to fit the slope. Subplots (a)–(f) in

Figure 12 represent the spectral indices of SNR candidates

1–6 in Figure 11. Table 3 gives the spectral indices of SNR

candidates.

5 CONCLUSIONS

We introduced a deep learning method for feature extrac-

tion from radio images. Our developing SNR-Net model

consists of two components: network training and target

object detection. We first train a network using datasets that

cover three SNR types. The algorithm trains the network

parameters to learn features of the input images, which can

be fed to a simple classifier. In the detection phase, SNR-

Net is combined with a size transformation algorithm. As

a result, SNR-Net can identify SNR candidates of various

size and report a probability for the SNR position. In this

paper, we used a deep learning algorithm and a T-T plot al-

gorithm to build a model for searching for SNR candidates.

The advantage of using CNNs for feature extraction is that

users do not have to worry about specific features. CNNs

are powerful feature extractors, capable of automatically

learning complex features for object recognition and pro-

vide features superior to hand-crafted features (Ng et al.

2015). We have listed the software at the Astrophysics

Source Code Library (http://ascl.net/code/v/1742).
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