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Abstract We present a new method to derive line-of-sight acceleration observables from spacecraft radio

tracking data. The observables can be used to estimate the mass and gravity of a natural satellite as a space-

craft flyby. The corresponding observation model adapts to one-way and two/three-way tracking modes. As

a test case for method validation and application, we estimated the mass and degree two gravity field for

the Martian moon Phobos using simulated tracking data when the spacecraft Mars Express flew by Phobos

on 2013 December 29. We have a few real tracking data during flyby and they will be used to confirm raw

data simulation. The main purpose of this paper is to demonstrate the method of line-of-sight acceleration

reduction from raw tracking data and the feasibility to estimate mass and gravity of a natural satellite us-

ing this type of observable. This novel method is potentially applicable to planet and asteroid gravity field

studies combined with Doppler tracking data.
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1 INTRODUCTION

Line-of-sight (LOS) acceleration data have been used since

the early stages of space exploration to derive local models

of the gravity fields of the Moon and planets. Making use

of the LOS acceleration generated from the radio tracking

data of the Lunar Orbiter, Muller & Sjogren (1968) cal-

culated the gravity anomaly distribution on the lunar near-

side and thus first identified the lunar mascons. Barriot &

Balmino (1992) were the first to generate a local grav-

ity field model of Venus using LOS gravity data from

Pioneer Venus Orbiter, and later on cycles 5 and 6 of

the Magellan mission. More recently, based on two-way

Doppler tracking data from the Lunar Prospector (LP) mis-

sion, Sugano & Heki (2004) derived the LOS accelera-

tion values and produced a lunar nearside gravity anomaly

map. Han (2008) deployed the spectrum method to gen-

erate a high-resolution lunar nearside gravity field model

(up to degree and order 2000), based on similar LP LOS

acceleration data. For the Chang’E-3 mission, Sun et al.

(2013) also used LOS acceleration of LP mission to in-

vestigate the local gravity field structure of the Chang’E-3

landing site, Sinus Iridum. The LOS acceleration method

mentioned in these papers builds on the algorithm devel-

oped for lunar mass concentrations by Muller & Sjogren

(1968). This acceleration is actually “residual LOS accel-

eration” generated from a numerical differentiation (cubic-

spline) of Doppler residuals. The “residual LOS accelera-

tion” unveils local gravity anomalies in a celestial body,

such as can be associated with lunar mass concentrations.

The data processing method adopted was a standard ob-

servation type, Line of Sight Acceleration Profile Data

Records (LOSAPDR) adopted in several deep space mis-
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sions such as Magellan and the Lunar Prospector. The pre-

cision of Lunar Prospector LOSAPDR data is about several

mgal, that is, in the magnitude of 10−5 m s−2 (Han 2008).

Instead of retrieving residual LOS acceleration val-

ues from Doppler data, we present a method to compute

the “total LOS acceleration” directly from the raw track-

ing data. The total LOS acceleration method measures

the instantaneous change rate of frequency at station us-

ing Taylor series fitting to raw data phase. The instanta-

neous change rate of frequency contains information of

LOS acceleration of spacecraft and can infer small bod-

ies’ dynamic parameters such as the mass and gravity field

while the spacecraft is flying by small bodies. In our Mars

Express (MEX) tracking test case, the total LOS acceler-

ation precision was about 1.5 × 10−6 m s−2 (0.15 mgal,

under constraint of 20 dB of real tracking signal-to-noise

ratio), which represents an improvement of about six times

the magnitude over the traditional LOS acceleration ap-

proach. In our proposed method, a precise reference orbit

is needed in theoretical LOS computation. The amount of

computation for raw data reduction is very large. Instead

of the implication of special computing equipment such

as ASIC (Application Specific Integrated Circuit) used by

the traditional Doppler process, we use a GPGPU (General

Purpose Computing on Graphics Processing Unit) device

to process LOS raw data. In this work, we use the NVIDIA

company produced GTX580 graphic card which has 196

Gflops (double precision) computation ability to acceler-

ate the computation. Every data block has 400 K raw data

points and process time for one block is about 5 s. Real-

time data processing could be achieved with faster profes-

sional computing cards such as Tesla K80.

This paper is arranged in this way: in Section 2 we in-

troduce the raw data process and theoretical model of LOS

acceleration. In Section 3 we describe the observation data

and their error sources; in Section 4 we present a solution

for Phobos mass and low degree and order gravity field

coefficients. In Section 5 we present results and analysis

based on the simulation of MEX Phobos flyby; and con-

clusions are drawn in Section 6.

2 MEASUREMENT AND THEORETICAL MODEL

OF THE LOS ACCELERATION

This section introduces the zero-level tracking data process

and force models considered in total LOS acceleration ob-

servation.

2.1 One-way Mode Data Processing

By ignoring orders higher than 1
c2

terms and gravitational

delay effect, the relation of down-link frequency to space-

craft transponder frequency can be expressed as (Moyer

1971),

fr

ft
=1 +

1

c
(v2 − v3) · e23 +

1

c2

[

(v2 · e23)
2

− (v2 · e23)(v3 · e23) +
1

2
(|v3|

2 − |v2|
2)

+ (φ3 − φ2)
]

,

(1)

in which fr is the received frequency of the down-link sta-

tion, ft is the transmitted frequency of spacecraft. The sub-

scripts 2 and 3 denote the spacecraft and the down-link sta-

tion, c is the speed of light, and v2 and v3 are the inertial

velocity of spacecraft and the station relative to the Sun.

e23 is the unit vector from the spacecraft to station; and φ3

and φ2 are the gravitational potential at down-link station

and spacecraft position. Thus, the received frequency at the

station can be written as

fr = ft

(

1 +
v

c

)

+ δ

(

ft

c2

)

, (2)

where v is the LOS velocity of the spacecraft relative to

the ground station. The first term of Equation (2) shows

the linear relationship between fr and v. The second term

is much smaller than the first one and has order of ft

c2
. By

differentiating Equation (2) the LOS acceleration (ignor-

ing any variation of the transmitting frequency) can be ex-

pressed as

alos =
dv

dt
=

c

ft

dfr

dt
−

c

ft

d

dt

[

δ

(

ft

c2

)]

, (3)

where t is the down-link station atomic time. The full ex-

pansion of Equation (3) can be found in supplementary

material A. The observed LOS acceleration includes two

terms. The first is relative to the variation of observed fre-

quency and extracted from radio tracking data. The second

term is relative to the differential of the higher order term

mentioned in Equation (2). This term is added as a calibra-

tion factor in post processing. By ignoring the second term

of Equation (2), the relation between the LOS acceleration

and frequency derivative is expressed as

alos =
c

ft

dfr

dt
. (4)

In the tracking data process, the typical raw data block

span we use is 2 s. If the LOS acceleration is expanded

linearly as

ãlos ≈ k1 + k2t . (5)
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The truncated error of Equation (4) is

|alos − ãlos| =
h

2
|ä(ξ)|, ξ ∈ {−1, 1} . (6)

Normally the second derivative of LOS acceleration

is very small. Figure 1 shows the details of the second

derivative of LOS acceleration variation near the flyby

point. The maximum absolute value of 1.7 × 10−6 m s−2

in Figure 1 corresponds to the closest flyby time. From

Equation (6) and Figure 1 we can see that during the

MEX flyby Phobos the remaining error is no more than

8×10−7 m s−2. Because the observable precision of MEX

is around 2×10−6 m s−2 and the maximum remaining er-

ror is smaller than the observable precision, a linear ap-

proximation as shown in Equation (5) is acceptable for

computing LOS acceleration. In some other cases orders

of Taylor series can be adapted to the magnitude of trun-

cated error. From Equations (4) and (5), the deviation of

the received frequency can be expressed linearly as

df(t)

dt
= a + bt , (7)

where a is the constant term at the data block center and

b is the slope. Based on Equation (7), the signal frequency

and phase within one data block are expressed as

fr(t) =c4 + c5t + c6t
2 ,

Φ(t) =c0 + c1t + c2t
2 + c3t

3 .
(8)

where

fr =
dΦ

dt
,

c1 = c4, c5 = 2c2, c6 = 3c3 .

(9)

Thus, the received signal s(t) at a station can be written as:

s(t) = Amp × cos(c0 + c1t + c2t
2 + c3t

3) . (10)

The coefficients ci(i = 0, 1, 2, 3) and amplitude are ob-

tained by fitting Equation (10) to the narrow-band tracking

signal. From Equations (4), (5) and (10) the LOS acceler-

ation alos of the spacecraft relative to the station is

alos(t) = −
c

ft
(2c2 + 6c3t) . (11)

Our discrete LOS observable is defined as the acceleration

at the block center

alos = −
c

ft
2c2 . (12)

Of course, as each block is separately defined, we have to

ensure that no large jumps of the LOS acceleration will

occur from block to block. The jumps of LOS acceleration

can be detected by the fitting coefficients which are related

to each other. Thus, the jumps of acceleration can be de-

tected by the discontinuity of modulo phase at the block

border which is influenced by white noise and the polyno-

mial truncation error expressed in Equation (6). Details of

phase continuity can be found in the supplementary mate-

rial B.

2.2 Two (three)-way Mode Data Processing

In two (three)-way tracking modes, the received frequency

can be expressed as:

fr = ftM
(

1 +
v21 + v32

c

)

+ δ
(ft

c2

)

, (13)

and the corresponding frequency derivative is

dfr

dt
= ftM

a
up
los + adown

los

c2
+

d

dt
δ

(

ft

c2

)

, (14)

where M is the transponder ratio on spacecraft, a
up
los is up-

link LOS accelerations (up-link station to spacecraft) and

adown
los is down-link LOS accelerations (spacecraft to down-

link station), and atotal
los is the total acceleration which is

expressed as

atotal
los =

c

ftM

dfr

dt
−

c

ftM

d

dt

[

δ
(ft

c2

)]

. (15)

The tracking data process of two (three)-way mode is

the same as one-way mode. The first term of Equation (14)

is extracted from tracking data and the second term added

in the post process as calibration factor will be discussed

in Section 3.

2.3 Computation of the Theoretical LOS Acceleration

To illustrate our approach, we consider an MEX Phobos

flyby case. The acceleration of the spacecraft relative to

the down-link station is

asta3sat2 = asat2 − asta3 . (16)

For discussion convenience mark 2 indicates the time of

signal transmission by spacecraft and 3 defines the receiv-

ing time at the down-link station. In Equation (16) asat2

is the acceleration of the spacecraft relative to SSB (solar

system barycenter) at the signal transmission time. asta3

is the acceleration of the station relative to SSB at the re-

ceiving time. The J2000 coordinate system is employed for

asat2 and asta3 . If introducing intermediate objects, such

as Mars and the Earth into Equation (16), it becomes
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asta3sat2 = asat2 − asta3

= aMars2 + aMars2sat2 − (a⊕3 + a⊕3sta3)

= aMars2sat2 + a⊕3Mars2 − a⊕3sta3 .

(17)

In Equation (17) ⊕ denotes Earth and Mars is Mars. The

equation shows that the acceleration of a spacecraft relative

to station includes three parts: the first is the acceleration

of spacecraft relative to Mars mass center; the second is

the acceleration of Mars mass center relative to the Earth

mass center; and the third part is the acceleration of the

station relative to Earth. The first part of Equation (17) is

expressed as

aMars2sat2 =a
Mars
twobody + aPM + MMars

N,J,ψ,I,φ∆UMars

+ MPhobos
α,β,w ∆UPhobos + asrp ,

(18)

in which the right-hand terms represent the two-body ac-

celeration (time reference is 2) by central body Mars, the

third body perturbation by other planets, the gravity ac-

celeration by Mars non-sphere gravity field, the Phobos

second order gravity acceleration, and acceleration by

solar radiation pressure, respectively. In Equation (18)

MMars
N,J,ψ,I,φ is a transformation matrix between Mars-fixed

coordinates to inertial coordinates given by Konopliv et al.

(2006), and UMars is Mars gravity field potential. Using

five parameters Folkner et al. (1997) define the transforma-

tion matrix. The MRO110c model was selected as Martian

gravity model (http://pds-geosciences.wustl.edu/mro/mro-

m-rss-5-sdp-v1/mrors 1xxx/data/shadr/). MPhobos
α,β,ω is the

IAU-defined transformation matrix from Phobos-fixed co-

ordinates to J2000 inertial coordinates system (Archinal

et al. 2011). The coefficients α and β are the right ascen-

sion and declination of the north pole of Phobos relative

to the J2000 frame, and w specifies the ephemeris position

of the prime meridians. The conversion from a Phobos-

fixed coordinate system to J2000 inertial coordinate sys-

tem is shown in Figure 2. The final term in Equation (18)

is the solar radiation pressure (SRP). Because no detailed

information about the optical properties of the spacecraft is

available, a simple SRP model as shown in Equation (19)

Andert et al. (2010) was used

asrp = −k
qs

c

r2
0

r2
⊙

Aexp

msc
e⊙ . (19)

It is assumed that the normal solar array surface direc-

tion always points in the direction of the Sun, while k is

a scaling factor which accounts for the variation of solar

flux, qs is the solar flux at 1 AU distance which is about

1367 W m−2, c is the speed of light, r0 is the distance of

1 AU, and r⊙ is the distance from the Sun to the spacecraft.

The value
Aexp

msc
is the area-mass ratio of the spacecraft and

e⊙ is the unit vector in the direction of the Sun. In param-

eter estimation, k
Aexp

msc
is set as one parameter to be solved.

Because the Martian atmosphere is extremely thin and the

height of Phobos flyby was about 6000 km to the surface

of Mars, atmosphere drag force is ignored.

The second part of Equation (17) is the acceleration of

Mars to Earth. A simple way to compute this term is to dif-

ferentiate the velocity of Mars to the Earth from ephemeris,

however, the precision is not guaranteed. A direct approach

with higher precision computes the gravitational accelera-

tion of Mars and Earth in the SSB reference frame (Moyer

1971) is

a⊕3Mars2 = aMars2 − a⊕3

=
10
∑

i=1
i6=4

GMi

|rMars,i|2
rMars,i

|rMars,i|
+

2
∑

j=1

GMj

|rMars,j |2
rMars,j

|rMars,j|

−







10
∑

i=1
i6=3

GMi

|r⊕,i|
2

r⊕,i
|r⊕,i|

+
GMMoon

|r⊕,Moon|
2

r⊕,Moon

|r⊕,Moon|






.

(20)

In Equation (20) rMars,i is the coordinate vector from

Martian mass center to the ith planet in the solar system.

The value r⊕,i is the coordinate vector from the Earth

mass barycenter to the ith planet in the solar system. The

mark j denotes the two Martian satellites, Phobos and

Deimos. Because we consider the mass center of Mars and

the Earth rather than their system barycenter, the influence

of the Martian satellite and the Earth satellite are consid-

ered separately.

The third part of Equation (17) is the acceleration of

the station relative to the Earth mass center in the J2000

frame. Considering the transformation of the station coor-

dinates from an earth body fixed frame to the J2000 frame

rj2000(sta3) = M[itrf−icrf]rfixed(sat3) , (21)

in which M[itrf−icrf] is the transformation matrix from

Earth body-fixed frame to the J2000 frame at the signal

receiving time including precession, nutation, rotation, and

polar motion, and rj2000(sta3) is the coordinate vector from

the Earth center to the station in the J2000 frame and

rfixed(sat3) is the geocentric coordinate of station. Ignoring

tidal influence the corresponding acceleration of station

relative to the Earth mass center is
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a⊕3sta3 =
d2M(t)

dt2
rfixd(sta3) . (22)

By combining Equations (18), (19), (20) and (22) with Equation (17) the theoretical one-way LOS acceleration can

be written as

alos =asta3sat2 ·
rsat2 − rsta3

|rsat2 − rsta3 |

=
[

a
Mars
twobody + aPM + MMars

N,J,ψ,I,φ∆UMars + MPhobos
α,β,w ∆UPhobos + asrp

+
10
∑

i=1
i6=4

GMi

|rMars,i|2
rMars,i

|rMars,i|
+

2
∑

j=1

GMj

|rMars,j|2
rMars,j

|rMars,j |
−

( 10
∑

i=1
i6=3

GMi

|r⊕,i|
2

r⊕,i
|r⊕,i|

+
GMMoon

|r⊕,Moon|
2

r⊕,Moon

|r⊕,Moon|

)

−
d2M(t)

dt2
rfixd(sta3)

]

· elos ,

(23)

where vector elos =
r
sat2

−r
sta3

|r
sat2

−r
sta3

| define the vector of LOS direction from down-link station to spacecraft. Corresponding

two (three)-way LOS accelerations can be written as (up-link part)

a
up
los =asat2sta1 ·

rsta1 − rsat2

|rsta1 − rsat2 |
=

[

d2M(t)

dt2
rfixd(sta3)+

10
∑

i=1
i6=3

GMi

|r⊕,i|
2

r⊕,i
|r⊕,i|

+
GMMoon

|r⊕,Moon|
2

r⊕,Moon

|r⊕,Moon|
−

( 10
∑

i=1
i6=4

GMi

|rMars,i|2
rMars,i

|rMars,i|
+

2
∑

j=1

GMj

|rMars,j|2
rMars,j

|rMars,j |

)

− (aMars
twobody + aPM + MMars

N,J,ψ,I,φ∆UMars + MPhobos
α,β,w ∆UPhobos + asrp)

]

· eup
los ,

(24)

and the down-link part (same as one way)

adown
los =asta3sat2 ·

rsat2 − rsta3

|rsat2 − rsta3 |

=
[

a
Mars
twobody + aPM + MMars

N,J,ψ,I,φ∆UMars + MPhobos
α,β,w ∆UPhobos + asrp+

10
∑

i=1
i6=4

GMi

|rMars,i|2
rMars,i

|rMars,i|
+

2
∑

j=1

GMj

|rMars,j|2
rMars,j

|rMars,j |
−

( 10
∑

i=1
i6=3

GMi

|r⊕,i|
2

r⊕,i
|r⊕,i|

+
GMMoon

|r⊕,Moon|
2

r⊕,Moon

|r⊕,Moon|

)

−
d2M(t)

dt2
rfixd(sta3)

]

· edown
los .

(25)

In Equation (23), the direction of the unit LOS vec-

tor is from the up-link station to the spacecraft, while in

Equation (25) the direction of unit LOS vector is from the

spacecraft to down-link station. In the present work, we

did not include small perturbations such as the Martian

tidal force and general relativity. These force models are

the topic of future work.

3 TRACKING DATA SIMULATION AND

PROCESSION

On 2013 December 29, MEX conducted a flyby of Phobos

at a minimum distance of 58 km. This distance was the

closest with respect to previous flybys (459 km for the

flyby on 2006 March 23 and 275 km on 2008 July 17,

respectively). In tracking data simulation Chinese VLBI

(Very Long Baseline Interferometry) Sheshan station near

Shanghai is the receiving station and New Norcia ESA

station is the up-link station. The receiving frequency is

approximately 8420.15 MHz. The signal-to-noise ratio is

about 20 dB. The formula applied in the raw data simula-

tion process is

φ(t) =

∫ t

t0

[

ftM
(

1 +
v21 + v32

c

)

+ δ
( ft

c2

)

]

ds ,

S(t) =Amp cos[φ(t) + φ0] + N (µ, σ2) .

(26)
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In this formula φ(t) is the received signal phase of the

down-link station, ft is the transmission frequency of up-

link station with a value of 7166.69 MHz, and M is the

transponder ratio onboard MEX which value is 880/749 at

X band, and v21 is the LOS velocity of the up-link station

relative to MEX and v32 is the velocity of Mex relative

to down-link station (all the velocities are from the recov-

ered orbit of MEX); δ( ft

c2
) is the second term introduced in

Equation (2). S(t) is the simulated signal. The initial phase

φ0 is set to zero. The amplitude of the signal is set as the

real tracking signal level at the elevation of 20 degrees ig-

noring amplitude variation. N (µ, σ2) is white noise with

µ = 0 and σ ≃ 20 dB. Raw data sampling rate is set to

200 kHz.

The differential evolution (DE) algorithm is used in

raw data reduction. We have tried this algorithm for

Doppler extraction in an earlier Chinese Lunar mis-

sion (Jian et al. 2009). The DE algorithm is a global

optimization estimator and is designed to solve non-

linear problems. There are two reasons to select the

DE algorithm for parameters estimation in LOS ob-

servable computation. Firstly, the driver of the DE al-

gorithm can be paralleled coded that is feasibility in

huge raw data processing; Secondly, the performance

of the DE algorithm has good stable convergence suc-

cess used in these kinds of applications (Price et al.

2006). Detail information can be found at the web-

site (http://www1.icsi.berkeley.edu/ storn/code.html). The

down-link signal in tracking data block (2 s) can be ex-

panded at block center as (mentioned in Eq. (10))

S̃(t) =(c4 + c5t) cos(c0 + c1t + c2t
2 + c3t

3)

+ N (µ, σ2) .
(27)

where c0 to c3 are the coefficients of Taylor polynomial

from the expansion of signal phase. c4 and c5 are the am-

plitude with linear slope. The slope is not considered in our

simulation but in real data procession would be considered.

The objective function in DE fitting process is defined as

χmin =

4×105

∑

i=1

[S(i) − S̃(i)]2 . (28)

After raw data reduction we can get the coefficients

which can be used to form the LOS observables. We use

GPGPU to accelerate the computation speed. The compu-

tation speed is increased by 4 ∼ 5 times compared with

an Intel E5-2620 platform with eight kernels. One data

block procession time is about 5 s. It needs to be noted

that during our observation simulation, we do not make

use of a priori Phobos gravity field information. We only

Table 1 The a Priori Values of the Parameters

Parameter Value Reference

GMPhobos 708754 m3 s−2 Acton (1996)

R0 11270 m Willner et al. (2010)

C20 –0.05121 Pätzold et al. (2014)

C22 0.00387 Pätzold et al. (2014)

use the MEX precise ephemeris to generate the observa-

tion through Equation (26). Thus, it is possible to retrieve

Phobos gravity information to validate the effectiveness of

this algorithm.

4 SOLUTION OF THE MASS AND

GRAVITATIONAL FIELD OF SMALL

CELESTIAL BODIES

The parameters to be solved included GMPhobos (product

of the gravitational constant and the mass) and low degree

gravity field coefficients of a small body. The observation

Equation (21) is written in a parametric form as

alos =
[

MPhobos
α,β,w F (GMPhobos, Cnm, Snm)

+ F others

]

· elos ,
(29)

where F (GMPhobos, Cnm, Snm) is the Phobos grav-

ity acceleration, and F others includes the effect of all

other forces but the gravity of Phobos. The parame-

ters GMPhobos, Cnm, Snm are solved using conventional

least-square method with a proper linearization.

In our computation the inertial ellipsoidal coordinates

of Phobos were used, and the non-zero gravity field coeffi-

cients to be solved were C20 and C22 (Andert et al. 2010).

5 RESULTS AND ANALYSIS

All the external forces acting on the spacecraft during the

flyby are summarized in Figure 3. At the nearest point,

the Phobos gravity reached a magnitude of 10−4 m s−2.

Among these items, the perturbation of the Sun, the solar

radiation pressure (SRP) and the Phobos gravity field are

at the same order of magnitude.

The observation geometry is given in Figure 4. When

the spacecraft velocity is perpendicular to the LOS, no in-

formation about the dynamic state of the spacecraft carried

over to the LOS acceleration. During the flyby we were

close to a very favorable edge-on orbit.

In Table 1 we give the a priori values for the parame-

ters solved in this paper. As we have mentioned, the obser-

vation we simulated does not make use of Phobos gravity

field information. The values in Table 1 are used as the ini-

tial value in our inversion. Thus, the retrieved Phobos grav-

ity field results can be compared with current publications.
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Fig. 1 Second derivative of LOS acceleration of MEX relative to Shanghai station near flyby point (time interval is 0.1 s and time span

is about 5 min).

Fig. 2 The transformation between a Phobos-fixed coordinate system to an inertial coordinate system (Archinal et al. 2011).
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Fig. 3 The variation of all the external forces acting on the MEX spacecraft during the flyby. The major forces are the Martian gravity

field, the three-body perturbation of the Sun, the solar radiation pressure, and the gravity of Phobos.
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Fig. 4 Angle variation during the flyby between the MEX spacecraft velocity and the LOS acceleration.

The standard deviation of the LOS observation data was

1.5 × 10−6 m s−2 based on data processing (we obtained

the value of the noise standard deviation by removing the

trend term in the observations). The distribution of the LOS

residuals after least square fitting is shown in Figure 5.

In Figure 5 we give the LOS acceleration residuals af-

ter parameter solution. About the first 1000 s. we have a

chance to track the MEX and generate the LOS observa-

tion. However, it is impossible to estimate gravitational pa-

rameters of Phobos using such short time tracking data. In

order to make the computation consistent, and as the ob-

ject of this work is to validate the effectiveness of this new

tracking method, we do the computation only using sim-

ulated data. The first 1000 s observation are also used to

verify the simulation data.

From Figure 5 we can see that the significant improve-

ment in the LOS residuals after we considered the influ-

ence of the Phobos mass and degree two gravity field co-

efficients step by step. The difference between the RMS of

the LOS residuals with and without estimation of the de-

gree two gravity field coefficients is not significant; how-

ever, from the bottom plot in Figure 5 we can see a clear

reduction around the nearest point in the residuals for the

flyby after we estimated the degree two coefficients.

In Tables 2 and 3 we present various estimates of

Phobos mass and degree two gravity coefficients. Table 2

shows that our estimate is close to the most recent value

calculated by Pätzold et al. (2014).

From Table 2 we find that our GM value result is con-

sistent with those from Andert et al. (2010) and Pätzold

et al. (2014). The reason is that both of these works use the

flyby tracking data of MEX, even though they use Doppler

tracking data; in our work we use total LOS acceleration

generated from the MEX precise ephemeris. Compared

with results from Andert et al. (2010) and Pätzold et al.

(2014), our results show better formal accuracy. This may

be related to the high accuracy of the LOS acceleration

data (1.5 × 10−6 m s−2). Another potential reason is that

the flyby distance of 58 km in our computation is shorter

than the flyby distance 275 km applied in their work. In ad-

dition, the relative error and uncertainty of the GM value in

our result (with gravity solved) is in the same level as those

of Jacobson (2010 without gravity solved). The compari-

son indicates the potential advantage of LOS acceleration

method to the traditional Doppler method.

In Table 3 we can see that our solution of C20 and C22

is consistent with those of Pätzold et al. (2014) and within

the error range. Because of the shorter flyby distance and

high accuracy of the LOS acceleration data we used in this

work, we find that the formal error of C20 has an improve-

ment of about a factor of five. As the time length of flyby

data is limited, the improvement of C22 is not significant.

Even though we retrieve the gravity field parameters from

the simulated data instead of real tracking data, the consis-

tent values with recent published values, and the improved

formal errors indicate the reliability of our proposed to-

tal LOS acceleration method. The relatively low formal

error from our method as presented in Table 3 probably

has three reasons. The first is the signal to noise level of

simulated raw data (Eq. (26)) which is about 20 dB from

the real tracking data. The second is the different raw data

process algorithms of the LOS method (Taylor series fit-

ting) and the conventional Doppler (phase counting). The

third is that the flyby distance 58 km in our computation is

shorter than the former distance that the Doppler method

adopted.
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LOS acceleration residuals of different force models
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Fig. 5 Distributions of the LOS acceleration residuals after the least squares fits. In the top plot, the central gravitation and gravitational

field of Phobos are not considered; in the middle plot the central gravitation of Phobos is considered while the degree two gravity field

is not included; and in the bottom plot both the central gravitation and degree two gravity field are considered. The sampling gap is 2 s.

Table 2 Several Estimates of the GM Value of Phobos from Various Flybys

Data base GM value (10−4
km

3
s
−2) Relative error Reference

Viking 6.600± 0.8 12.1 Christensen et al. (1977)

Viking 7.300± 0.7 9.5 Tolson et al. (1977)

Viking 8.500± 0.7 8.2 Williams et al. (1988)

Phobos-2 7.220± 0.05 0.7 Kolyuka et al. (1990)

Phobos-2 7.163± 0.008 0.1 Berthias (1990)

Viking only 7.126± 0.045 0.6 Jacobson (2010)

Viking only(w/o non-grav.accel.) 7.077± 0.003 0.04 Jacobson (2010)

Phobos-2 only 7.091± 0.005 0.07 Jacobson (2010)

Phobos-2 only (w/o non-grav. accel.) 7.091± 0.005 0.07 Jacobson (2010)

Viking & Phobos-2 combined 7.092± 0.004 0.06 Jacobson (2010)

Mars Express 2006 7.120± 0.120 1.70 Andert et al. (2010)

Mars Express 2008 (UniBw) 7.127± 0.021 0.30 Andert et al. (2010)

Mars Express 2010 (with C20) 7.072± 0.014 0.20 Pätzold et al. (2014)

Mars Express 2010 (GM only) 7.084± 0.007 0.10 Pätzold et al. (2014)

Mars Express 2013 (with C20, C22) 7.088± 0.003 0.04 This paper

Table 3 The Degree Two Gravity Coefficient Estimates of Phobos

Data base C20 C22 Reference

MEX flyby 2010 (Doppler) –0.0512± 0.0651 0.0038±0.0086 Pätzold et al. (2014)

MEX flyby 2013 (LOS acceleration) –0.0388± 0.0122 0.0124±0.0068 This paper

6 CONCLUSIONS

In this paper, we propose a method, the total LOS accel-

eration method, to obtain and model LOS acceleration ob-

servable from narrow-band tracking data which is different

from the traditional LOS acceleration method. Compared

to the conventional Doppler method of computing average

velocity the LOS method trys to recover instantaneous line

of sight acceleration which is useful in some tracking case

such as flying by (hyperbolic orbit) and near perigee (ellip-

tical orbit) with rapid change of velocity. We illustrated its

feasibility by modeling the second degree and order grav-

ity field of Phobos from a simulation arc during an MEX

flyby that took place on 2013 December 29. Our GM value
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result is consistent with those of Andert et al. (2010) and

Pätzold et al. (2014) , and the values of C20 and C22 are

also consistent with Pätzold et al. (2014) within error bar.

Our experiment validates the reliability of the total

LOS acceleration method in planetary gravity field esti-

mation. This method has the potential to be combined with

theoretical analysis for future planetary and asteroid explo-

ration (Hu & Ji 2017; Hu et al. 2015; Matsuoka & Russell

2017; Lauretta et al. 2017). It is also possible to reprocess

the radio tracking data of Toutatis to study its mass infor-

mation by employing this method Huang et al. (2013) and

such a work will provide reference for Chinese asteroid

exploration missions. Currently we have implemented this

tracking mode for Mars and lunar spacecraft, and plan to

process this datum in our independent Mars spacecraft pre-

cise orbit determination software MAGREAS (Yan et al.

2017). We will track lunar and Mars spacecraft with 65 m

antenna at Shanghai to apply this method in real data pro-

cessing. This method will hopefully be applied in other

planetary exploration missions investigating planetary or

asteroid gravity fields.
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